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Range-space methods  for convex quadratic programming improve in efficiency as the number  
of constraints active at the solution decreases. In this paper we describe a range-space method 
based upon updating a weighted Gram-Schmidt  factorization of the constraints in the active set. 
The updating methods  described are applicable to both primal and dual quadratic programming 
algorithms that use an active-set strategy. 

Many quadratic programming problems include simple bounds on all the variables as well as 
general linear constraints. A feature of the proposed method is that it is able to exploit the 
structure of simple bound constraints. This allows the method to retain efficiency when the number  
of general constraints active at the solution is small. Fur thermore,  the efficiency of the method 
improves as the number  of active bound constraints increases. 

Key words: Convex Quadratic Programming,  Range-Space Methods,  Active-Set Methods,  
Updated Orthogonal  Factorizations, Bound Constraints. 

1. Introduction 

The problem of concern in this paper is the convex quadratic programming (QP) 
problem with a mixture of bounds and general constraints: 

minimize cTx + ~xTHx 
x E ~  n 

subjectto l~{sgxX} <'u' 

where c is a constant n-vector and H is a constant n • n symmetric positive-definite 
matrix. The matrix ~r is m • n, where m may be zero. The constraints involving .ff 

will be called the general constraints; the remaining constraints will be called simple 
bounds or just bounds. 
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Apar t  from the requirement  of feasibility, the optimality conditions for QP involve 

only the constraints active (exactly satisfied) at the solution. Active-set methods 
are based on developing a prediction of the active set (the working set), which 

includes the constraints exactly satisfied at the current point (see, e.g., Gill, Murray 
and Wright, 1981). Let  x denote the current iterate, and g(x)  its gradient vector 
(g(x) = c + H x ) ;  the t rows of the matrix C are defined as the coefficients of the 
constraints in the working set, and the vector b is composed of the corresponding 
components  of l and u (so that Cx = b). Note that x satisfies the constraints in the 

working set exactly. The search direction p is chosen so that x + p  is the solution 
of a quadratic programming subproblem with the original objective function, subject 
to the equality constraints of the working set. Let A denote the Lagrange multiplier 
vector of the subproblem. With this definition, p and ;t are the solution of the system 

. 

Having solved (1.1) at a given iteration, it is necessary at the next iteration to solve 
a neighboring system in which C, x and g are replaced by related quantities ~', $ 
and g. Usually, C' is just C with a single row either added or deleted, Y = x + ap  
for a nonnegative scalar a, and g = g($).  

It is useful to classify active-set QP methods as either range-space or null-space 
methods. This terminology arises because the working set can be viewed as defining 

two complementary  subspaces: the range space of vectors that can be expressed as 
linear combinations of the rows of C, and the null space of vectors orthogonal to 
the rows of C In many cases the work required in an iteration is directly proportional 
to the dimension of either the range space or the null space. For example, the 
methods of Murray (1971), Gilt and Murray (1978), Bunch and Kaufman (1980) 
and Powell (1981) are null-space methods, and are most efficient when the number  
of constraints in the working set is close to n, since the dimension of the null space 
is then relatively small. By contrast, the methods of Dax (1981) and Gill et al. 

(1982) are range-space methods, and are most efficient when there are few con- 
straints. (Some methods cannot be categorized as either range-space methods or 

null-space methods. See, for example, the methods proposed by Bartels, Golub and 
Saunders, 1970; Fletcher, 1971; and Goldfarb and Idnani, 1983.) 

The method described in this paper is a range-space method. A feature of the 
method is that it is able to exploit the structure of simple bound constraints. This 
is important  for many practical problems in which all but a few of the constraints 
are bounds, and many bounds are active at the solution. The method will retain 
the efficiency of a range-space approach when the number of general constraints 
active at the solution is small, as well as the advantages of a null-space method 
when the number  of active bound constraints is large. 

We shall discuss primarily details of how to compute p and A, and not the various 

strategies for altering the working set. The techniques described may be applied in 
the implementat ion of primal, dual and primal-dual quadratic programming 
algorithms that use an active-set strategy. 
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2. The weighted Gram-Schmidt (WGS) method 

If C and H have full rank, p and A satisfy the following range-space equations: 

C H - I  C T  A = CH-1g; (2.1) 

and 
l ip = cT,~ --g. (2.2) 

Following Bartels, Golub and Saunders (1970), we note that the range-space 

equations may be solved using the factorizations 

H = R T R  and C = ( L  0)OTR, (2.3) 

where R is the n x n Cholesky factor o f /4 ,  L is a t x t lower-triangular matrix, and 

O is an n x n orthogonal matrix. 
The factorizations (2.3) provide a solution to the range-space equations (2.1) and 

(2.2) in the form: 

LTA = y T R - T g ,  (2.4) 

Rp = --ZZTR-T g, (2.5) 

where Y and Z are the n x t and n x (n - t) sections of the matrix O, i.e. 

O : ( Y  Z). 

A variant of (2.3)-(2.5)  has been used by Goldfarb and Idnani (1983), who recur 
the matrix OTR -T. 

We now propose a method that uses equations similar to (2.3)-(2.5),  in which 
we take advantage of the identity Z Z  T=- I -  y y T  in order  to avoid storing Z. In 
place of the orthogonal factorization in (2.3), we utilize the weighted Gram-Schmidt 
(WGS) factorization 

C = L YVR, (2.6) 

where L is easily invertible but not necessarily lower triangular. 
Given R, L and Y, we define the three auxiliary vectors u, v and w by 

R'ru=g, v = y T u  and w = Y v - u .  (2.7) 

(Note that Y r w  = 0.) Substitution into (2.4) and (2.5) allows Z and p to be defined 

from 

LTA = V (2.8) 

and 

Rp = w. (2.9) 

At each iteration of an active-set method,  a constraint is added to or deleted 
from the working set after a move of the form ~ = x + ap. (Note that if p = 0, more  
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than one constraint may be added or deleted at the same point.) These changes 

lead to updates of the factorizations H = RTR, C = L yTR. In practice, initial values 

for the vectors u, v and w are defined from (2.7) in terms of an initial feasible point 

and initial working set. Thereafter, the vectors u, v and w can be updated at 
negligible cost, as we show below. The principal computational effort per iteration 

lies in updating the factorization (2.6) as the working set changes, and in computing 

p (and A when needed) from (2.8) and (2.9). 

2.1. Special form of the working set 

At a typical iteration of an active-set method applied to problem QP, the working 

set will include a mixture of general constraints and bounds. If the working set 

contains any simple bounds, those variables will be fixed on the corresponding 

bounds during the given iteration; all other variables may be considered as free to 
vary (and will be called simply 'free variables'). We use the suffices 'F '  ('fixed') and 

'V '  ( 'varying') to denote items associated with the two types of variable. 
We denote by C the matrix whose t rows are constraints in the current working 

set, and assume that C contains nv bounds and mL general constraints (where 'L '  

denotes 'linear'), so that t = nr:+ inc. Let A denote the matrix whose rows are the 

mc general constraints in the working set, and let nv denote the number of free 

variables (nv = n -  nr-). (If bounds are not treated separately, nr = O, nv = n, and 

m L = t . )  

We assume that the variables are ordered so that the last nv variables are fixed, 
with all other relevant vectors and matrices ordered accordingly. In practice, the 

order of the variables is indicated by lists of indices, so there is no loss of generality 

in making this assumption. However, we shall see that this assumption has important 

implications for the update procedures. 

The Hessian matrix H is partitioned as 

H =  KT , (2.10) 
HF 

where Hv and Hv are nv x nv and nFxnF symmetric matrices. Similarly, the 
upper-triangular matrix R (the Cholesky factor of the Hessian) may be partitioned 

a s  

where Rv and Rr  are nv x nv and nF • nF upper-triangular matrices. (Note that Rv 
is the Cholesky factor of Hv.) 

The ordering of the variables assumed above means that the matrix of constraints 

in the working set can be written as 
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where Av  is an m E • nv matrix, and Iv denotes the nF-dimensional identity matrix. 
Assume that the Gram-Schmidt  factorization of A v R v  ~ is known, i.e., 

A v = L  v v YvRv ,  (2.13) 

where Lv is an mE X mE lower-triangular matrix, and Yv is an nv • rnL orthonormal  
matrix whose columns form a basis for the row space of A v R v  ~ (see Daniel et al., 
1976, and Gill et al., 1982). The matrix C (2.12) then has the factorization 

0 N ~ ( Y ~  O ) R  (2.14) 
C = L y T R =  Lv  M ] \  0 IF ' 

where N and M are matrices of order nv • nv and mE X nv respectively. (We shall 
show that it is unnecessary to store the matrices N and M.) Note that the matrix 
L in (2.14) is not lower-triangular, but that the columns of the n x t or thonormal  
matrix 

y = ( Y v  O) (2.15) 
0 IF ' 

form a basis for the row space of CR '. 
In the following, we show how (2.12) and (2.14) may be used to simplify the 

calculation of p and ,~ using the auxiliary vectors (2.7). The amount  of work required 
for each computation will be given as the highest-order terms in the expression for 
the number  of multiplications. 

2.2. Calculation of the search direction 

Let g and u be partit ioned as 

() gv and u =  . (2.16) 
g =  gv Uv 

T U The form (2.11) of R implies that g v = R v  v. The special form of Y in (2.15) 
implies that the t-vector v is given by 

v = y T u =  IF UV =', UV / \UV, I}nv" 

Similarly, the vector w can be written as 

w= u )0 
(Note that Y ~ w v = 0 . )  The nv zero elements of the right-hand side of (2.17) and 
the upper-tr iangular  form of R imply that the search direction has the form 
p = ( p~ 0) -r. This confirms that the elements of p corresponding to the fixed variables 
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are zero. The vector Pv is given by the solution of 

RvPv = Wv, 

and may be computed in order 1 2 2nv multiplications. 
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2.3. Calculation of the Lagrange multipliers 

When bounds are treated separately, the constraints in the working set are 
naturally partitioned into bound constraints and general constraints. Let A be 
partitioned into an nv-vector AF (the multipliers corresponding to the bound con- 
straints) and an lnc-vector At_ (the multipliers corresponding to the general con- 

straints). Substitution of (2.12) and the partitioned form of A into (1.1) gives, after 
rearrangement ,  

A~IAL = gv + HvPv (2.18) 

and 

av = gF--A[AL, (2.19) 

where gv is the gradient with respect to the fixed variables at the point x + p. 

We simplify (2.18) by using the factorization (2.13) of Av and the relations 
Hv T RTvUv Rvpv  and Yvvl - Uv Wv to obtain = R v R v ,  = g v ,  =Wv, = 

T A Y v L v  L = Uv+ Wv= YvVL. 

Hence, AL is the solution of 

LWAL = VL, (2.20) 

and may be computed in order �89 multiplications. 

A significant difference that arises when bounds are treated separately is the need 

to compute multipliers specifically for the bound constraints (otherwise, AL includes 
the multipliers for all the constraints). Therefore,  we must consider how to compute 

Av efficiently. Calculation of AF from (2.19) requires nvmL multiplications to form 
AT,q., plus the work needed to obtain gF" 

2.4. Storage options 

Calculation of gv from scratch involves a term of order nnv, and hence would be 
very expensive when nF is large. Fortunately, this expense can be avoided using 

one of two storage options (the details are given in Section 5). With the first storage 
arrangement,  the entire matrix R (2.11) will be stored (recall that Rv is a partition 
of R),  and R will be overwritten on H. When R is available, gv may be updated 

using nFnv multiplications. With the second storage option, the original matrix H 
is stored in addition to Rv.  In this case, an auxiliary vector is recurred so that gv 

may be computed when necessary, again at a cost of nFnv multiplications. 
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In the next two sections, we describe the update procedures associated with 
performing an iteration of the WGS method. With either storage option, only the 
vectors Uv, VL and Wv need be recurred. Barred quantities will denote those 
associated with the new working set. We have assumed the three-multiplication 

form of a plane rotation (see Gill et al., 1974). 

3. Changes in the status of general constraints 

3.1. Adding a general constraint to the working set 

When a general constraint is added to the working set at the point 2 = x + ap, a 

new row is added to Av.  Thus, the row dimension of Av,  the column dimension 

of Yv, and the dimension of Lv in (2.13) will increase by one. In practice, the 
ordering of the general constraints is indicated by a list of indices, and the index of 
the new constraint is placed at the end of the list. Hence,  we may assume without 
loss of generality that the row a T is added in the last position. In this case, 17"v is 
given by 

Yv = ( Yv z). (3.1) 

The new column z is a multiple of the vector RvTa orthogonalized with respect 

to the or thonormal  set of columns of Yv, i.e. z = T ( I -  Yv  Y~,)q, where q satisfies 
RTvq = a and r is a normalizing factor. The m a t r i x / . v  is obtained by adding a new 
row to Lv. For complete details of the updating algorithm, including the use of 
reorthogonalization to ensure sufficient accuracy in z, the reader is referred to 

Daniel et al. (1976) and Gill et al. (1982). 
The following theorem describes how the quantities Uv, VL and Wv may be updated 

following the addition of a general constraint. 

Theorem 1. Let p denote the vector that satisfies the range-space equation (2.2) at 
the point x. Let ~ (~ = x + cep) be a point at which the row a T is added to Av .  Assume  

that the updated factors L v  and ~'v of A v  = - - v  Lv  Y v R v  have been computed, and that 

z, the new last column of Yv,  is available. The vectors Uv, vc and Wv are updated 

as follows: 

(i) Uv = Uv + aWv; (3.2) 

~c = (vvt-), w h e r e u = ( 1 - a ) z V u v ;  (3.3) (ii) 

(iii) Wv = (1 -- a ) W v +  vz. (3.4) 

Proof. Using the relations, #, = g + aHp, RTvRv = Hv and R v p v  = Wv, we have 

R r  &v= ~,v= g v + a H v P v =  R ~ u v  + aRTvRvpv--  R ~ u v +  aRTvwv, 

and (i) follows immediately. 
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To prove (ii), we use the definition of ~v, (3.1) and (3.2) to give 

( [ Y v u v  a Y v  v~ /~L = ~'T/~V = yV,~ = 7- + T W 
zT] av \ ZTUv+,~Z:Wv 1" 

T Since Y~wv =0,  ZXWv = - z z u v  and VL = Yvuv,  this proves (ii). Similarly, 

VVv= YVt3L--/.~v= ( Y v  Z) (V:~ ) - - (Uv+O~Wv) ,  

which reduces to (iii) after substituting YVVL--UV = WV. [] 
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Note that in a dual QP algorithm that retains dual feasibility, the steplength a = 1 
will usually be taken when a constraint is added to the working set; cases (i)-(iii) 
then simplify. If further constraints are added at the same point, Theorem 1 remains 
true with a = 0. 

The number of multiplications required to update Lv and Yv following addition 
of a general constraint is of order �89 + 1)nvmL, where k is the number of 
reorthogonalization steps (for well conditioned problems, k is usually zero). The 
updates of Uv, VL and Wv require negligible work. 

3.2. Deleting a general constraint from the working set 

When a general constraint is deleted from the working set at the point x + ap, 
the row dimension of Av, the column dimension of Yv, and the dimension of Lv 
are all decreased by one. In this case, the relationship between Yv and Yv is given 
by 

YvPv = ( ? v  2), (3.5) 

where Pv is an orthonormal matrix representing a sequence of plane rotations (see 

Gill et al., 1982, for further details). 
The following theorem indicates how the quantities Uv, VL and Wv may be updated 

in this case. 

Theorem 2. Suppose that a constraint is deleted from the working set at the point 
= x + ap, where p satisfies (2.2). Assume that the updated factors Lv and Yv of 

.4v = Lv Y ~ R v  have been computed, so that the relationship between the old and new 
orthogonal factors is given by (3.5). Then 

(i) av = Uv+ aWv; (3.6) 

(ii) (~ ) )  ---- P~OL; (3.7) 

(iii) #v=(1--a)Wv--U2.  (3.8) 

- - T -  Proof. Result (i) follows as in Theorem 1. To prove (if), note that, since /'~L = Yvuv,  
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we may  write 

~T ] ~iv, 

where  u = ~Ta v. Using (3.5) and (3.6) gives 

= P v  Y v ( u v  + C~Wv). 

Since Y ~ w v  = 0 and YWuv = vL, this gives the desired result. 
Finally, to p rove  (iii), we use the definit ion of #v  to write the identi ty 

a,v = Y v ~ L -  av  = ( Yv- ,~) - a v -  ~,~. 

Using (3.5), (3.6) and (3.7) gives 

1~ v T = YvPvPvvt_ - U v -  e~Wv- u2. 

Since Pv  is o r thonorma l  and Y v v L -  Uv = Wv, this expression simplifies to (iii), as 
required.  [] 

No te  that  a primal QP algor i thm will usually delete  a constraint  only when c~ = 1, 
in which case (i) and (iii) simplify. If m o r e  than one constraint  is dele ted at the 
same point,  the t h e o r e m  remains  t rue with c~ = 0, Pv = 0 and Wv = 0. 

The  n u m b e r  of mult ipl ications required  to upda te  L v  and Yv af ter  deleting the 
ith constra int  is of o rder  3 ( m L - i ) 2 + 3 n v ( m r .  - i); the updates  of Uv, vt_ and Wv 
require  negligible extra  work.  

4. Changes in the status of bound constraints 

When  the status of a bound constraint  changes,  in general  the variables  must  be 
reordered to mainta in  the convent ion  given in Section 2.1. This leads to several  
differences f rom the update  p rocedures  given in Sect ion 3, since reorder ing  the 
variables  al ters the Hessian H (and hence the Cholesky  factor  Rv) .  

4.1. Adding a bound constraint to the working set 

W h e n  a bound constra int  is added to the working  set, a previously  free var iable  
becomes  fixed on its bound.  Thus,  the column dimension of A v ,  the dimension of 
Rv ,  and the row dimension of Yv in (2.13) are  decreased by one. The  dimension 
of L v  is unal tered.  

In o rder  to clarify the explanat ion of the upda te  procedures ,  we shall first assume 
that  the last free var iable  (variable nv) is to be fixed. This cor responds  to delet ing 
the last column (say, a)  of Av ,  so that  A v  = (fi~v a) .  In this case, /~v is simply a 
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submatrix of Rv, i.e. 

p 

The weighted Gram-Schmidt  factorization (2.13) of Av is computed as follows. 
First, note that for any vector z, it holds that 

A v = ( A v  a)=(Lv  O)(Yv z) rRv.  (4.2) 

We shall choose a special unit vector z that is the result of orthogonalizing the 
nv-th coordinate vector ev with respect to the columns of Yv, i.e. z = r ( I  - Yv Y~)ev 
for some normalization factor ~'. (Note that z is orthogonal to all the columns of 

Yv.) Daniel et al. (1976) show that, if Yv is partitioned as 

then z is of the form 

z = \  1/'r ]' 

where r = ( 1 - ~ T ~ )  t/2. 

The crucial property of the vector (4.3) is that a sequence of plane rotations that 
transforms the last column of (Yv z) to ev will simultaneously produce e~ as its 
last row. Hence, if P denotes an (m~.+l)-dimensional orthonormal matrix that 

represents an appropriate sequence of plane rotations, we have 

(Yv z ) P = ( ~  v 01). (4.4) 

Substituting (4.1) and (4.4) into (4.2), and using the orthogonality of P gives 

(,4v a ) = ( L v  O)ppT(yv z) r P = ( L v  0)P 0 v 1 / \  0 p " 

The rotations represented by P take linear combinations of the columns of ( Yv z) 
in the order (mE, mE+l ) ,  (mu-- 1, m L + l )  . . . . .  (1, mL+ 1). Thus, P does not alter 
the lower-triangular structure of the first mE columns of Lv, and we have 

(Lv O)P = (/~v v), 

where i v  is lower-triangular (v is a reconstituted version of the column of A v R v  1 
that is being deleted). Clearly 

as required. 
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Now we turn to the general case in which the j-th variable (j<~ nv) is to be fixed 
on a bound. Because of the ordering convention defined in Section 2, the variables 
must be reordered so that the first n v - 1  variables will be free during the next 
iteration. This is accomplished formally through a permutation matrix that reorders 
the variables so that variable j is in position nv (note that the last nv variables are 
not reordered, and hence the permutation matrix affects only components 1 through 
nv). 

Let /7 denote a suitable nv-dimensional permutation matrix, such that the re- 
ordered Hessian with respect to the first nv variables is FITHvII. The Cholesky 
factor/~v of FITHvlI is given by 

t~v = QRvI1, 

where the nv x nv orthonormal matrix Q represents a sequence of plane rotations 
that make R v H  upper triangular. To verify that /~v is indeed the Cholesky factor, 
observe that 

llV Hv l I  = 17T RT R v H  = FIT R ~:QT QRv l I  : kTvl~v. 

The Hessian /4v with respect to the new (smaller by one) set of free variables is 
/-/1HvH with its last row and column deleted, i.e. 

This implies that the (nv-1)-dimensional  matrix/~v satisfies 

(/~v r ) = I ~ v = Q R v H .  (4.5) 
P 

The number of multiplications required to compute/~v is of order ~(nv-])- .  When 
all of R (2.11) is stored, a further 3 n v ( n v - j )  multiplications are required to apply 
the plane rotations in Q to the rows of S.) 

When /~v is defined by (4.5), 17"v and i v  may be obtained by a generalization 
of the procedure described at the beginning of the section. The major difference in 
the results is that the relationship between Yv and 17"v changes from (4.4) to 

O ( Y v  z ) P = (  )Tv0 01)" (4.6) 

The number of multiplications required to update Lv and Yv when the j-th variable 
is fixed on a bound is of order 4 n v m L + 3 m L ( n v - j )  +~mE.3 

The following theorem indicates how to update the vectors Uv, VL and Wv following 
addition of a bound to the working set. 

Theorem 3. Let the j-th free variable be fixed on a bound at the point x + ap. Assume 
that the updated/actors Rv, Lv, and Yv of ,4v = Lv yTvl~v have been computed, and 
that z, the vector defined in (4.3), is available. The quantities Uv, vt and Wv are 
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updated as follows: 

(i) (Uwv)=O(Uv+O~Wv); (4.7) 

ProoL To prove (i), observe that gv, the ( reordered)  gradient with respect to the 

old set of free variables at the new point is given by 

where ,/ is the componen t  of the gradient with respect to the variable to be fixed 

on a bound (the value of 7 is not  needed to perform the updates). Using the relations 

R~/uv = gv, Hv = R~/Rv, and RvPv = Wv, we obtain 

( g'v) = llTRTv(Uv + ~Wv). (4.10) 
Y 

Since - v  - Rvuv  = gv, we may write 

r r p / \  o) / 

Substituting f rom (4.5) and (4.10), we have 

and therefore  

(~ O T ' = Uv+ ~Wv. (4.11) 

Since O is o r thonormal ,  (i) follows from (4.11). 
In order  to prove (ii), we begin with the definition gL = Y~av ,  and note that 

1]\w]" 

Substituting from (4.6) and (4.1 1) gives 

y T  

where the last expression was obtained using the relations YWuv = vt_, Y~wv=O, 
Wv = Yv VL -- UV and YWz = O. 
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Finally, since ~v = )TrilL--fly, it also holds that 

using (4.6), (4.7) and (4.8). Since YVVL--Uv = Wv, we have the desired result 
(4.9). [] 

Comparison of (3.2)-(3.4) with (4.7)-(4.9) shows that the updates to Uv, vr and 
Wv associated with adding a bound to the working set are very similar to those 
needed when adding a general constraint; the difference is that further plane rotations 

must be applied to certain vectors. This means that the updates can be implemented 
with very little additional programming complexity. 

4.2. Deleting a bound constraint from the working set 

When a bound constraint is deleted from the working set, a previously fixed 
variable becomes free. In this case, the column dimension of Av, the row and 
column dimensions of Rv in (2.13), and the row dimension of Yv are increased by 
one; and the dimension of Lv remains unaltered. 

In order  to maintain the convention defined in Section 2, the new free variable 
will become variable nv+  1. Thus, the Hessian /4v with respect to the new set of 
free variables and its Cholesky factor /~v will be such that 

/ ~ v = ( H v  h)  and / ~ v = (  Rv r )  (4.12) 
h v ~ P �9 

When R is available, r is obtained from the update of S and RF. Assuming that 
variable nv+j  is released from its bound, this update requires of order -~j(j-1) 
multiplications. When H is available, r is computed (after reordering) from one 
further step of the column-wise Cholesky factorization of Hv,  which requires of 

1 9 order ~n~ multiplications. 
Deletion of a bound from the working set as described above adds a new column 

at the end of Av; let a denote the new column of Av. From (2.13), the augmented 
matrix Av may be written as 

A v = ( A v  a ) = ( L v  v) 0 1/  ' 

with v =Av q .  The vector q is the solution of the triangular system /~vq--ev§ 
where ev+~ denotes the (nv+  1)-th coordinate vector. 

The matrix (Lv v) is lower-triangular except for the 'vertical spike' v, and may 
be reduced to lower-triangular form by a sequence of plane rotations in the planes 
( 1 , m L + l ) ,  (2, m L + l )  . . . . .  (mE, mE+l ) .  If we let P denote the (mE+ 1)-dimens- 
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ional or thonormal  matrix of plane rotations, we may write 

0 - 
A v  = (Lv v)PP v Y~ Rv  = (Lv 0)P T Rv. 

0 1 0 1 

The effect of the application of P on thd columns of the augmented orthogonal 

factor is to fill in the zero elements of the last row and column. Thus 

The matrix ~Tv is the orthogonal factor associated with ,4v and /~v ,  and the vector 

:g lies in the null space of A v R v  1. The updates of Lv and f 'v  following deletion of 
1 9 3 2 

q - i m L  a bound from the working set require of order ~n9 + 4 n v m  L multiplications. 
Following the changes described above, the updates to the vectors Vv, VL and Wv 

are given in the following theorem. 

Theorem 4. Assume that a bound is to be deleted from the working set at the point 

= x + ap, and that the updated factors Rv ,  Lv  and Yv offi~v = Lv -T - Y v R v  have been 

computed. Then 

\ /x / '  

where Ix can be calculated from Uv, gF and the elements of/~v; 

I x / '  

Proof. When a bound has been deleted from the working set, we have 

where gv is the new gradient vector with respect to the old (smaller) set of free 
variables, and 3' is the component  of the gradient with respect to the newly freed 
variable. With the first storage option, y will be available after the update of gF 
(see Section 5.2); with the second storage option, 3' may be computed directly 
from H. 

It follows from the definition of the quadratic function, the form (2.10) of H and 
the form of p that 

gv = gv + aHvPv. 

- -  T T 
R v R v ,  Wv, Using the relations g v - R v u v ,  Hv = and RvPv = this expression 
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becomes 

gv = R~(uv  + c~ Wv). (4.16) 

Let us partition the ( n v + l ) - v e c t o r  t~v as 

where av is an nv-vector. Then, from the expression (4.12) for /~v, we have 

r T p / \  I ~ / Y " 

The expression (4.16) and the first nv equations in (4.17) give 

from which it follows that LTv = Uv+ aWv. The scalar ~ may then be obtained from 
the last equation in (4.17), i.e. 

7 - rVt~v 

P 

This proves (i). 
To prove (ii), we use the definition VL = 37"~v to write 

where ~, = 2T~v. Substituting from (4.13) and (4.14) gives 

( v ) ) = P T (  Y~ 01)(Uv + aWv / 
0 ~ / 

The desired result then follows from the relations Y~uv = ve and YWwv = O. 
Finally, by definition, Wv = 37vVe - Uv, and hence 

Substituting from (4.13), (4.14) and (4.15) and using the orthogonality of P, we 
obtain 

o 11 \ n /  o 

which is the desired result. [] 
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One of the most important implications of Theorems 1-4 is that the only difference 
between a change in working set involving a bound constraint and a change involving 
a general constraint is that some of the relevant vectors must be transformed by 
an additional sweep of rotations. 

5. Computing the multipliers corresponding to the fixed variables 

In order to delete a bound constraint from the working set, the vector AF must 
be computed. As noted in Section 2.3, AF is defined by (2.19), which involves the 
two terms gv and A~A L. The second term is obtained by solving (2.20) for Zc; 
forming AWAL then requires nvmL multiplications. We now discuss how to obtain 
gF with the two available storage options. 

_5. I. Change  in the gradient after a change in x 

The change in the gradient may be viewed as two separate parts, corresponding 
respectively to the move from x to ~ and to the change in the working set. The 
first change is independent of the type of constraint to be added or deleted; the 
second change is just a reordering. 

From the definition of the quadratic function, the gradient ff at the point ~ = x + ap 
is given by 

~,=g+c~Hp. (5.1) 

With the first storage option, the Cholesky factor R (2.11) of H is available. We 
may therefore substitute (2.11) and the definition R p =  w from (2.1) into (5.1), 
giving 

g, = g + c~RTw. (5.2) 

The forms (2.11) of R and (2.17) of w imply that 

(R~wv~ 
R Tw = \ STWv }" (5.3) 

Thus, using (5.2), (5.3) and the partitioned form (2.16) of g, we have 

~v = g v +  o~R~wv 

and 

(5.4) 

(,F = gv + aST Wv. (5.5) 

Equation (5.5) shows that gv may be updated with nvnv  multiplications when all 
of R is stored. 
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With the second storage option, all of H is available. In this case, it follows from 
(2.10) and the partitioned form (2.16) of g that gv may be written as 

fi, v = HFfv+ KT-~v + CF 

= ~ + K-rXv, (5.6) 

where rh denotes the vector HF~v+ CF. Thus, for the second storage option, the 
vector m (m = H v x v + c v )  is recurred, and gv may be computed when necessary 

from (5.6), at a cost of nFnv multiplications. 

5.2. Change in status of a general constraint 

When a general constraint changes status, the ordering of the variables is not 
altered, and hence gv= gv. Thus, the update (5.5) may be used to obtain gF with 

the first storage option. The change in status of a general constraint does not 
alter m. 

5.3. Change in status of a bound constraint 

Following the change in status of a bound constraint, the variables are reordered 
as described in Sections 4.1 and 4.2. The reordering is expressed formally through 
a suitable permutation matrix H. The gradient is also reordered us ing / / ;  thus, at 
x + o~p we have 

g = / ~ T ~  = / ~ T ( g  _~_ aHp).  

Storage Option 1. The update to gv depends on whether a bound constraint is added 
or deleted. When the j- th bound variable is added to the working set, a scalar y 
(the component of the gradient with respect to the newly fixed variable) is added 
at the front of gF to give 

gF = ~ . 

The value of y is one of the components of gv; since gv is not updated, y may be 
computed using R as follows. The relationship _ T g v - - R v U v  and (5.4) imply that 

fi, v = Rrv(Uv + aWv). (5.7) 

Since y is the j-th component of gv, it can be computed using (5.7) by multiplying 
the j-th row of RTv by the vector Uv + aWv before any updates are performed. 

When a bound is deleted from the working set, (5.5) gives the updated gradient 
with respect to the old set of fixed variables. The reordering in this case simply 
removes the component of gv corresponding to the variable to be freed. This value, 
y, is then used to update Uv (see Theorem 4), and the remaining n v - 1  elements 
of gv form gF- 

In either case, updating gv involves negligible work beyond that required to obtain 
gv from (5.5). 
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Storage Option 2. With the second storage option, Rv and H are available. In this 
case, gv is computed from (5.6), where the vector m is updated (m- -HFx~+  Cv). 

When a bound is added to the working set, a new component is added at the 

front of Xv, and we have 

~ F = ( ~ v ) ,  ~ v = ( ~ v ) a n d  / 4 F = ( h  h~) .  

Thus, r~ may be written as 

r~ = lYIvY, v + cv = h H F / \  XF/ c~: rn + ~h " 

The formula (5.8) gives the update for m. 
When deleting a bound, the reordering of the last nv components of x is defined 

by a permutation matrix H such that 

The Hessian /4F with respect to the reduced set of free variables is given by 

Applying the permutation to m gives 

H v /  \ Y~F/ 

\ /-IvXv q- CF]" 

Thus, we may update n~ from 

= , -  

6. Summary and discussion 

In Table 1, we summarize the number of multiplications required to perform the 
calculations associated with an iteration of the WGS method, for both storage 
options. The word 'Same' in the column for the second storage option means that 
the procedure requires the same number of multiplications as with the first storage 
option; the entry ' - - '  in a column means that the given procedure is not executed 

with that storage option. 
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Table 1 
Summary of calculations in the WGS method 

Computation Storage option 1 Storage option 2 

C o m p u t e  Pv  

C o m p u t e  A L 

U p d a t e  gF 

C o m p u t e  A F 

U p d a t e  L v  a n d  Yv 

U p d a t e  R 

U p d a t e  R v  

Add general 
Add bound j 
Delete i-th general 
Delete bound 

Add bound j 
Delete bound nv + j 

Add bound j 
Delete bound 

�89 Same 
�89 Same 
F/FF/V 
flFD3I L F/F( n V n t- /~IL) 

~nv + 2nvmL Same 
4nvmL + 3mu(nv--j)+2mZL Same 
3nv(mu- i) +3(mL_ i) 2 Same 
�89 + 4nv mr. +~m 2 Same 

!( ~'Iv - j)2 + 3 nv( n v -- j) 
. .  J(J--l) 

3 " ~ 
- -  ~ ( n v - l ) -  
- ~ , , ~  

Note that substantial savings in work are achieved by taking advantage of bounds 
as nv increases (nv decreases). (We have assumed that no reorthogonalization is 

required when adding a general constraint to the working set.) 
Because of the extra work needed to compute the multipliers for bound constraints, 

it is recommended for primal methods that bound constraints be considered for 

deletion only when no general constraint is suitable for deletion. With this strategy, 

the multipliers for the bound constraints need not be computed until they are 

required. (However, gv must be updated at every iteration with the first storage 
option.) 

With the first storage option, the major storage requirements for dense problems 
1 are 2n- elements for the Cholesky factor R (since it is assumed that the Cholesky 

factors of H are stored in place of H itself, this storage is necessary to store the 
definition of the problem), and ~ -2 - - ~ m L +  m ~ n v  elements for the matrices Lv and Yv, 
where fftL denotes the maximum number of general constraints in the working set, 

and fiv denotes the maximum number of free variables at any iteration. 
The first storage option is particularly useful when the Cholesky factors of H are 

available rather than H itself. For instance, the QP problem may be a subproblem 

within a nonlinear programming algorithm that performs quasi-Newton updates to 

the Hessian H of the Lagrangian function (see, e.g., Schittkowski, 1982). The 

updates are often expressed in terms of the Cholesky factor R of the Hessian. In 

order to begin the method, the variables must be ordered as described in Section 

2. In general, this could involve several modifications to R to reflect the reordering 
of its columns. However, the expectation would be that the set of free variables at 
the solution of one subproblem will eventually be the same as for the next. 

In the dense case, the storage requirements for the second option include an 
1 - 2  additional ~nv locations to store Rv. (We assume that storing H is equivalent to 

storing R.) The second option would have an advantage in storage for problems in 
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w h i c h  H is s p a r s e ,  b u t  s u b s t a n t i a l  f i l l - in o c c u r s  w h e n  c o m p u t i n g  t h e  C h o l e s k y  f a c t o r  

R. In th i s  case ,  t h e  s t o r a g e  r e q u i r e d  f o r  H a n d  R v  m i g h t  b e  s ign i f i can t ly  less t h a n  

t h a t  r e q u i r e d  to  s t o r e  al l  of  R. 
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