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A Weighted Least-Squares Method for the Design
of Stable 1-D and 2-D IIR Digital Filters
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Abstract—In this paper, we present a new approach to the yields a stable rational function. When the iteration converges,
least-squares design of stable infinite impulse response (IIR) a stable and truly least-squares solution is obtained. Moreover,
digital filters. The design is accomplished by using an iterative by adequately adjusting the weighting function, the proposed

scheme in which the denominator polynomial obtained from thod Iso b d to desi | irioole MR filt
the preceding iteration is treated as a part of the weighting MEN0U Can aiso be used 1o design nearly equirippie lers

function, and each iteration is carried out by solving a standard With guaranteed stability. The method is then extended to

quadratic programming problem that yields a stable rational address the least-squares design of stable IIR two-dimensional
function. When the iteration converges, a stable and truly least- (2-D) filters. Examples are included to illustrate the proposed

squares solution is obtained. The method is then extended to design techniques.

address the least-squares design of stable IR two-dimensional

(2-D) filters. Examples are included to illustrate the proposed

design techniques. Il. THE WEIGHTED LEAST-SQUARES METHOD
Index Terms—IIR filter, quadratic programming, weighted
least-squares method. A. Motivation

Let Iy(w) be the desired frequency response specified
in [0, 7). We seek to find a causal stable rational function
z) = N(z)/D(z) that best approximatesy(w) in the

_ r
EAST-SQUARES methods have been extensively USWéightedLg—norm sense. For the sake of notational simplicity,
for dealing with various analysis and synthesis problenyg. §enote

in science and engineering. In a digital filter context, many

least-squares design methods have been proposed; see [1]-[8] D(2)
and [16] among others. A literature survey shows that most N(2) 1)
of successful least-squares designs are for the finite impulse “

response (FIR) filters. A major problem with the existin

least-squares techniques as applied to the design of infi %ﬁré?re d = ld o4 dnl', _— lag a1 - ta"\]/\tli ;“(Z). -
impulse response (IIR) filters is that the least squares cest. ht" z . ] ,tgn I/?/Q(Z) ?h[l - htciL I' tlf‘ atg|veh
function needs to be modified to avoid the division operatio €ignting tunction (w), the weightedZ, cost function is
introduced by the rational transfer function of the filter Sgeflned by

that the modified cost function can be explicitly expressed = '

as a quadratic form with respect to the filter parameters. In J(d,a)=3 / W(w)|Fy(w) = F()|? dw.  (2)
doing so, however, the solution obtained by minimizing the 0
modified cost function is no longer a truly least-squares desig{yte thatJ(d, a)
Moreover, even for this sort of quasi-least-squares solution,

I. INTRODUCTION

1+qf(2)d
q3(2)a

in (2) can be expressed as

stability of the filter designed is not guaranteed. 1 [ W) y o
In this paper, we present a new approach to the least-squartlél, 2) = / CDE |[Fa(w)D(e’) = N(e*)|” dw.
design of stable IR digital filters. The design is accomplished 3)

using an iterative scheme in which the denominator polyno-

mial obtained from the preceding iteration is treated as a PREbst of the least-squares algorithms in the literature then

of the Weighting function, and_each iteratiqn is carried Olﬁeglect the termD(¢/)[2 underneath¥ (w) in (3), leading
by solving a standard quadratic programming problem th@)t the following modified cost function:
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term W(w)/|D(¢’*)|? in (3) as a new and known weighting Because of the presence of denominafdz) in (2), the
function to form a standard least-squares minimization probbjective function/(d, a) is nonquadraticand has, in general,
lem. To justify this treatment, polynomid@P(z) must be stable multiple minimum points. Consequently, one can only expect
so thatW (w)/|D(e’*)|? will be a well-defined weighting, and the limiting pointx = [d* a‘]* in (8) to be a local minimum
|D(e?*)| must be known. The stability problem encounterepoint of .J(d, a). To show this, note first that if

here is solved by imposing a set of linear constraints on

the coefficients of D(z), which ensures that all zeros of o [dW (11)
D(z) are inside the open unit disk. Note that minimizing a ~ a®
guadratic form subject to a set of linear constraints is a typical
optimization problem known as quadratic programming, tminimizes J;,(x*)), then
which reliable solutions can be obtained using well established
techniques [9]. Furthermore, the teri(¢’“)|? underneath 9Jx[xM)] —0 (12)
W(w) in (3) is made available by adopting the following Ix®) |y '
iterative scheme: o . . . I
This, in conjunction with (8) and (10), implies that
k y 1 [T W(w) jw
Ald® ) =5 /0 Dis(emyp P VIE| - _ QAR 0. (13)
— Ni(e?*))? dw (5) 0K |gop kooo OB fp) s

Hence, the limiting poink is a stationary point of the objective
Fl[unction J(x). Next, we consider a neighborhood of the
imiting point x, which is denoted byB,.. By (6), it follows

wherek =1, 2, .-+, Di(e?) = 14 ¢4 (w)d®), Ny (e/*) =
qb(w)a®, d®, and al*) are the parameter vectors to b

determined in thekth iteration. The initial parameter vector : ) X :
d® can be chosen quite arbitrarily, except tHag(z) must th%t for a f_|xe(_j indext, Jy is globally convex with respect to
be stable, i.e., the zeros dP(z) must be inside the open.x( ). This is simply because in such a case, the weiGt)
unit disk in the plane. For example, one may cha® — is known and always nonnegative fore [0, ), and J; is a
00 --- Of. At the kth iteration, D ' (%) is known and guadratic function with a nonnegative definite Hessian matrix.
stable: henc.e (5) can be Writteh ;;1 If we assume that for sufficiently lardge Jy is also uniformly
' ' positive definite inB,. in the sense that for sufficiently large
w , k there exists? > 0 such that
@D, a®) =4 [* W) [Fiw)Du()
0

' XHyx > fll%[*  forx 14

_ Nk(e]w)|2 dw ©6) *Hyx > 1% orx ¢ B, (14)
then ask — oo, we have
where
ot s Al12 A
Wiw KH(x)%x > f|%|?  forx e B, (15)
Wi(w) = % )
| Dr—1(e?)|

whereH(x) is the Hessian matrix of(d, a) at the limiting
is, for a stableD;_; (¢?*), a well-defined, nonnegative weight-POINtX. ThusJ(d, a) is strictly convex at, and hencex is
ing function. Obviously, finding vectord® and a® that @ local minimum point of/. _
minimize Ji,[d®), a®] in (6) has a standard procedure to As a fur_ther remark, it |s_|mportant to.stress th_t dlﬁe_rent
follow. Details of this procedure subject to a set of stabilit)Miting points may be obtained when different initial points
constraints are given in parts B and C of this section. For tREE chosen simply becauséx) is not globally convex. On the
moment, let us assume that the sequence of parameter Vecqypg_r hand, our nur_nencal experience |nd|cat_es that sgtlsfactory
{d(k)7 a(k)} has been generated by iteratively solving thg§5|gn can l_Je gc_hlevet(j) even when the design algorithm starts
standard least-squares problem (6) subject to a set of stabi§h the trivial initial d® =10 0]".
constraints and that

d® — d anda® — a. (8)
B. An Explicit Expression fod;[d®), a(*)]
Then, it follows that in Terms ofd® and a®
o o o o Letting F;(w) be the complex-valued desired frequency
Dy (e’¥) — D(e’?) and Ny (e’“) — N(e*) (9  response, we can write
and {d, a} minimizes the limit ofJ,[d®®), a(¥)], namely | Ey(0) Di (7)) = Nip(3) 2
J(d, a) = lim J[d®, a®)] (10) = d® (| Fy(w)]*Quu(@)]d™ + a® Qaa(w)a™

—2d® Qua(w)a® + 2d®[| Fy(w)Pqu(w)]
where J(d, a) is defined by (2). — 22" Gy (w) + | Fu(w)]? (16)
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where we can write
Qui(w) = Ji[x®] ~ %x(k)th(k) +bix® ¢ (19)
i 1 cos(w) e cosf(n — 1w] It follows from the definitions ofK that the quadratic form
cos(w) 1 w o cos|(n = 2)w] Ji[x®] is positive definite.
Lcos[(n — 1)w] cos[(n — 2)w] --- 1 C. The Stability Issue
Qoo(w) = The rational function generated from théh iteration must
ro1 cos(w) cos(nw) be stable. It is well known [10], [11] thab,(z) is stable if
cos(w) RAD(¢™)] >0  forw € [0, 7 (20)
: Qui(w) o oy
L cos(nw) yvhere RéD;.(e?¥)] denotes the real part Cﬂ);.g(.e ). It is
Qua(w) = important to note that (20) offers only a sufficient condition
L)1 ()T (@) + Fa(w)Ty ()qh ()] for the stablht)_/; _hence, the set of polynomialy, satlsfylng_
2 1 2 L 2 (20) is a nontrivial subset of the set of all stable polynomials
Q(w) = of ordern. Consequently, the solution obtained by minimizing
[cos(w) cos(2w) - -+ cos(nw)|* Ji in (19) subject to constraint (20) can only be claimed as
Go(w) = suboptimal as it is possible that the optimal solution may have

1 - — excluded by constraint (20) in the minimization process. On
3[Fa(w)q2 (@) + Fa(w)qa(w)] the other hand, however, (20) is less conservative than other
known linear constraints that ensure the stability/gf [11],

;Vr'ltg Fql’ rgébeac?i?/ell; d Si?gt't?]gat tgitéonj(i%a;en do%l’ (qu) [12]. Refer to [11, Appendixes | and Il] for a detailed analysis
d» . 11 22 H : H
are symmetric Toeplitz matrices characterized by their fir(é){1 this matter. In practice, (20) is replaced by

columns. LetQl;, = {w;, ¢ = 1, ---, L} be the set of the REDi(™)] >6  we|0,n] (21)
equally spaced frequencies fnover which the integral in (6) ) . . .

is evaluated withZ, > 4n, as suggested in [11] for sufficientWhere is a small and positive number and is then imple-
degree of accuracy; then, the cost functifrid®, a®)] can Mented on a dense grid of points o¥@rz]. Let® = {€;, ¢ =

be approximated explicitly in terms ad® and a® in a 1, M} be the set of grid points ofb, 7]. Using matrix
standard positive-definite quadratic form as notation, condition (21) on s& becomes

(k) -
), 2] L0 K1 d® + La® Kpa® Bx < (1= emn (22)
— d(k)tKIQak + d(k)tbl — a(k)tbQ +e (17) where '
qf (/) 1
where B=- 0 €yl = .
L qf (/) Mx(2n+1) 1 s
K =A Z Wi (wi)| Fa(wi)|* Qui(wi) (23)
i=1
L Thus, the task at théth iteration is to minimizeJ;[x*)] in
K =A Z Wi (wi)Qu2(w:) (19) subject to constraints (22), which is a typical quadratic
i=1 programming problem. With a positive defink& the solution
L of (19) and (22) can be computed efficiently. For example,
Ky =A Z Wi (wi)Qaz(w;) one can convert the problem at hand first to a so-called
=1 least distance programming problem, which can be further
L 9~ converted to a non-negative least squares (NNLS) problem,
by =A Z Wi(wi)|Fawi)|"qu (wi) and the NNLS problem can then be solved using an “active
Zzl set” method. Refer to [9, ch. 23] for the details of this method.
by =A Wi (w;i) b2 (ws : :
2 ; kwi)dz(wi) D. The Constrained Least-Squares Design
o Ww) As was mentioned in Section II-A, the iteration begins by
Wilwi) = D1 (@) choosing an initiald® = [0 --- 0]*. Matrices K, b, and

B are then evaluated, and®) is computed as the solution
wherec is a constant independent daf*) anda®), andA is of the quadratic programming problem (19), (22). In the
the increment for numerical approximation &f in (6). With next iteration, d®) is utilized to update matrice¥ and

b, and thenx(® is computed as the solution of the same

Ki —Kp b] L _ [d¥ drati i blem. The iterati t il
K= 1 b— x® = |, | (18) guadratic programming problem. The iteration continues unti
—Ki» Kz — b a |x(*) — x(k=1)|| is less than a prescribed toleranceAt that
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time, the convergence is claimed, artl’ is deemed as the x(**1) relies more on solution(®) so that the algorithm would
solution of the constrained least-squares problem. converge faster at the risk of numerical instability, whereas
There are two issues that need to be addressed herea i¥mall o tends to stabilize the algorithm by using more
whether the design algorithm described above always cdnformation from the preceding iteration result at the expense
verges and ii) if the algorithm does converge, whether tlué reduced convergence rate. Anin the range [0.3, 0.5] is
limiting point is a solution to the constrained optimizatioroften found appropriate, and the modified algorithm with a
problem a € [0.3, 0.5] was successfully used to design a variety of
digital filters with different (but stable) initial points. It should
be pointed out that this algorithm modification was motivated
Subject toBx < (1 — 6)eant1. (24) by several recent design methods for multirate systems [18],
[19], where a similar relaxation technique was used to improve
Let us consider the second issue first. Assuri® — x convergence of the algorithms, although the design scenario
as k — oo, wherex® minimizes J; in (19) subject to there differs considerably from ours.
constraint (22). It follows thak‘*) satisfies the Kuhn-Tucker  As the second remark, we present a sufficient condition for
(KT) conditions [17, ch. 10], which are a set of necessafjie convergence of the modified algorithm. Define the ratio
conditions forx(*) to be the solution of problem (19), (22). BD) _ oB)
As k — oo, the assumption that*) — x in conjunction with e = u
the smoothness of the objective functigp with respect to [[x®) — x(®=1)]]
x™) now implies that the KT conditions fox™™) converge |t can be shown that if, has a less-than-unity upper bound,
to the KT conditions for the limiting poink. In addition, e
as k — oo, the constraints in (22) become a set of linear
inequality constraints that guarantee the stability of the IIR me <y <1 (28)
filter produced by the limiting poink. Furthermore, by using
an argument similar to that made in Section II-A, one ¢
show that the objective functiofi(x) is strictly convex at the
limiting point x, provided that the Hessian matrices .£f's [xFFD — x®)|| < ]|x® — xF=D)|, (29)
are uniformly positive definite for sufficiently large Under . ,
these circumstances, one concludes thiata local solution of 'herfore, for sufficiently largen andn with m > n > L,
the constrained optimization problem (24) [17]. It is importartt/® Nave
to stress that the term “weighted least-squares design” used in (.
the rest of the paper is referred to a local solution of (24). Th -
local nature of the solution is primarily due to the high degree. *)
of nonlinearity of J(x), and the complexity of the stability which approaches zero when, n — oo, and hence{x'*}
requirement has forced us to consider a set of linear sufficiéh@ Cauchy sequence in a finite-dimensional Euclidean space.
constraints in (24). Consequently, a solution to (24) can Onlﬁyrther, notice that the above sufficient condition is equivalent
be deemed suboptimal. to
Let us now address the convergence issue with two remarks. |@[x™] — e[xFV]|| < glIx® — x*=| (31)
The algorithm proposed above converges with a wide range
of initial points. However, we have also identified a verjor a 8 € (0, 1). In other words,{x(®} is convergent if
limited number of occasions where the algorithm convergésis a contraction mappingvhen it applies to the sequence
rather slowly or does not converge, at least within a reasonapl@duced byx*+1 = &[x®]. Although a rigorous proof
number of iterations, say, 50. A simple modification of thég not available to date, witlv € [0.3, 0.5], the modified
algorithm described below is found to be effective in improvalgorithm was always successful in producifig®} with
ing the robustness of the algorithm. Lét be the operator ration, <y < 1in our extensive simulation study.
that maps an initial point to the solution of the quadratic
programming problem in (19) and (22). The iterative algorithfa. A Quasi-Equiripple Design

Minimize J(x)

(27)

for k > L whereL is a positive integer, then sequenjoel*)}
nverges. As a matter of fact, this condition implies that

n—L+1 _ . m—L+1
! I — x| (30)

n i
x| < T

can then be described by Like the approach used in [6], the weighting functidi(w)
(kD) — (I)(x(k))' (25) can be updated properly to achieve a quasi-equiripple design.
At each iteration, one can use a second iteration loop as applied
We now modify this to to the weighting function (w) so that a nearly equiripple
*® * design can be achieved. In this second iteration 138jjw)
u'® =o[x'"]) is updated on each frequency band containe@jmamely,
and Wiri1(w) = Wi(w)r(w), wherev(w) > 0 is determined
<k — qu® 4 (1- a)x(k) (26) by the extreme values of the design error at Mieiteration

in conjunction with an interpolation technique that ensures
where0 < « < 1 is a relaxation constant. In other words, the;(w) # 0. The second iteration loop is terminated when the
next pointx(*+1) is obtained by combining the solution of (19)extreme values of the design error are nearly equal. See [6]
and (22) with the initial point used. A largemeans that point for the details of this design technique.
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Ill. EXTENSION TO THE TWO-DIMENSIONAL CASE D sense. Thus, minimizing (36) with respect to parameters
In the 2-D case, we seek to find a stable 2-D rationl = ands‘* is a least-squares problem. As will be shown in
function of order(ny, ns) Section IlI-B, the requirement thaby(z1, z2) is _stablg can
be satisfied by imposing a set of linear constrainta-@. In
N(z1,22) what follows, we first derive an explicit expression féy, in
P2y, 20) = —/—1—¢ 32 k k
(21, 22) D1, %) (32) terms ofr® and s,
that best approximates the desired frequency response
Fy(wi, w2) given onQy = [—m, m) X [—7, 7) in weighted . _ ® <%
L»(2) norm. A. An Explicit Expression foda[r'*/), st*)]
Using vector notation, the denominator and numerator of With the above matrix notation, we compute

F(z, z2) can be expressed as
|Fa(wy, we) Dr(wi, w2) — Ni(wy, w2)?

D(Zl, 22) =1+ Pi(zb ZQ)r = |Fd(w1, w2)|2|Dk(w1, CUQ)|2 + |Nk(w1, CUQ)|2
N(z1, z0) =p5(21, 22)s — 2Re[Fy(w1, w2) Dy (w1, wa)Ny(wr, wa)]
where where
p1(z1, 2z2) =[7] 2™ gt e eyt e Mgt |Di(wi, w2) | =14 2P (wy,wo)r® + r(k)tPll(wl,wg)r(k)
IR |Ni(w1, w2)|? =% Pog(wr, wa)s™® (38)
p2(z1, z2) =[1 pi(z1, 22)] _
r=[r - with
s=[s1 " Smr1]’ p1(wi, we) =[cos(wy) «+ - cos(nwy) cos(ws)
m=(ny+ D(ny+1) -1 (33) cos(wy +wa) -+ cos(niwy + ws)

- cos(niwy + nawa)]
P11(w1, wa) =the symmetric Toeplitz matrix
determined by its first column

Define the weighted., cost function by

Jo(r, s) = 5/ o Wa (w1, wa)|Fa(wy, w2) [1  cos(wy) --- cos[(ny — 1)w]

— Flwy,w2)[* dwy duwy (34) cos{ws —wi) cos{wa)
whereWs(wy, we) > 0 is the weighting function given ofts, - coslwa + (n1 = D] \
and F(wy, we) is characterized by (32). Like the 1-D case, ++ cos[nawy + (n1 — Lwi]]
(34) can be expressed as P22(w1, wo) =the symmetric Toeplitz matrix

W(ws, w determined by its first column
2 1, 2
/ /Q 1D(wr,w2) 2 |Fa(wi, w2)D(wi, w2) [1 cos(wy) - cos(niwr) cos(ws)
2 )
— N(wi, w2)|? dwy du (35) cos(wr Fwz) - cosimwy )

-+ cos(nywy + nowo)]’
which suggests the following iterative least-squares scheme

for the design problem at hand: and
N (K Re[Fy(wy, w2)Di(wr, w2) Np(wy, we)] =
Jok r(k),s(k) :l/ Wor(wr, w2)|Fy(wy, we) Dy (wi w ] . ]
2 ( ) 2 a, 2 ( 1 2)| ( 1 2) ( 1 2) f)t(wl, wg)s(k) —i—r(k) P12(w17 wg)s(k) (39)
— Ni(wi,wo)|? dwy dwy (36)
with

with k=1,2,---,r® =[0-.. 0] )
[ ] p2(w17 w?) = %[Fd((«Ub («UQ)ﬁQ(wl, w2)

Dp(wi, wo) =1+ pi(wi, w2)1‘(k) + Fy(wi, wo)pa(wr, w2)]
Nk(wh w2) IPtg(wb w2)5(k) P12(w17 w2) = %[Fd(wb w2)P1(w1, w2)ﬁt2(w1, w2)
Il = t
Wor(wi, wa) = Wa(w1, wa) (37) + Fa(wi, w2)Py (w1, w2)Pa(wi, w2)].

| Di—1(wr,w2) |2 o _ . .
A discretization of the integral in (36) then gives

At the kth iteration, Wy (w1, w2) given by (37) is known and .
non-negative, provided thaby_;(z1, z) is stable in the 2- To[r®, sM] ~ Lx® ' Gx® £ b'x® 1 ¢ (40)
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where where
G = [ Gu —G12} b= [ b1:| [ —Pi(wi1) i
—Gt12 G'22 —b2 1
Gy =A? Z Z Wor(wii, way) R=-— ;ﬁi(wl’l) ex = |: (46)
P g —p1(wi,1, w2,1) 0 )
2 . 1 Kx1
| Fa(wii, wo)|*Pri(wie, woy) :
Gy = A? Z Z Wor(wii, w2j)Pra(wis, way) L—p1(w1, 1, wa,7)
T .
with K =1 +1 xJ.
Gy = A? Z Z Wor(wii, w2j)Poa(wis, wajy)
, Lo , C. The Constrained Least-Squares Design
by =A Z Z War(wiiy wo;)[Fa(wiis way)l The design begins by choosing a stable initi@ such as
oo r® = [0 ... 0]*. MatricesG andb in (40) andR. in (45) are
“Pr(wii; w2;) then evaluated, and the quadratic programming problem in (40)
by =A%) "> Wa(wii, wa;)P2(wii, wa;).  (41) and (45) is solved to obtain(V). In the next iteration, matrices
P G andb in (40) are updated using(!), and then, the same

guadratic programming problem in (40) and (45) is solved to
c is a constant independent o) ands®), and{wy;, wy;} is  obtainx(?. The iteration continues untjkx®) —x*=1|| < ¢,
a dense grid points over the regiéh with 1 <¢ < L;, 1 £ which is a prescribed tolerance.
J < Ly, Ly > 4ng, and Ly > 4n,.

D. The Design of Quadrantally Symmetric 2-D Filters

B. The Stability Issue It is noted that even for a moderate density of grid points
As was mentioned earlier, the stability constraint ofin {22, the number of stability constraints in (45) can easily
Dy(z1, z2) has to be imposed. It is well known [13] thatexceed 2000, this in conjunction with a large size ma€sx
Dy(z1, z2) is a stable polynomial if and only if i) polynomial in (40) for a filter of moderate order, leads to a large size
Dy(z1, z2) with 22—1 = 0 is stable, and ii) for each fixed quadratic programming problem. However, the computational
27! on the unit circle,D(zy, z;) is stable. This stability burden can be considerably reduced by restricting the filter
condition, in conjunction with the 1-D sufficient stabilitybeing designed to the class of quadrantally symmetric filters.
condition that has been used in Section II-C, yields tH&is well known that all circularly symmetric filters, various
following sufficient condition for the stability oDy (z;, z»): regularization filters [14], fan, and diamond-shaped filters

Polynomial Dy,(z, z) is 2-D stable if possess a quadrantally symmetric frequency response. It is
also known [15] that the transfer function of a quadrantally
Re[Dk(ejwl)] >0 for w, € [0, 7] (422) symmetric 2-D filter has a separable denominator, i.e.,
ReDy(e?, ¢#2)] >0  for wi, wo € [0, 42b Nz, 2
q k(@ ¢ )] w1, W2 [ 7T] ( ) F(Zl, 22) _ (71772) . (47)
) g(z1)h(22)
where Dy (z;) is the 1-D polynomial defined b
k(=) poly y Obviously, the design idea addressed in the preceding sub-
. sections is applicable tadF(z;, z2) in (47) with reduced
Dr(z1) = Di(z1s 22)] 5100 (43) computational complexity.
Let
From (33) and (42), it follows thaby(z1, z2) is stable if ,
9(z1) =1+4qi(z1)8
—plw)r® <1-6  w €0, 7 (44a) h(z2) =1+ q5(z2)h
—pi (w1, w)r® <1-6  wi,wr €0, 7 (44b) g=lgr - gnl]'
h=[hy - by,
where r§k> is the vector consisting of the first; compo- Qi(z) =t ™)
nents ofr®), § > 0 is a small constant, ang;(w;) = Q) =[5t 2"

[cos(wy) -+« cos(niwi)]t, pi(w:) was defined in Section IlI-
A. Implementing constraints (44) on a set of dense grid poirthe cost function/,;, in (36) in this case becomes
over Q, say,0s = {(wys, we;), 1 < ¢ <11 <5< JY
we obtain the following linear constraints for the stability of Jor[g®, h®) () =1 / Woar(wi, ws)
Dk(zl, 22)2 195
| Fa(wr, w2)gr(wi) i (wz)
Rx(k) S (1 - (5)6[{ (45) bt Nk(wl, CUQ)|2 dwl dCUQ (48)
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withk=1,2,---, g9 =[0--- 0", k9 =[0 ... 0] 10
gr(wy) =1+ Ch(wl)g(k)
hi(w2) =1+ qa(wz)h™ n
Ni(wi, w2) = phlwr, wa)s®
Wa(wy,w2) S .10
Wor(w1, wa2) = . £
ks ) = T b (@) ;
[
o
At the kth iteration, one seeks to find parameter vectgfd, 8 -20f
o]
h*), ands(*) that minimize (48). At this point, we must stress g
that unlike the general case (36), minimizing (48) is no longer & a0k
least-squares problem since the parameteg§ihandh® are ~ ©
multiplied by each other before the square. There are several
approaches to modify,; so that it can be reformulated as a -40}
least-squares problem. For example, the modificatio-pf
given by 50 ; ; i i
0.1 0.2 0.3 0.4 0.5
. . normalized frequency
Jo =3 / /Q Wor(wr, w2) | Fy(wy, w2) Dy (w1, we) (@)
2
—Nk(wl,w2)|2dw1 dCUQ 30

> gr(w)hi_1(w2) for evenk
Dieor, wz) = {gk—l(wl)hk(WQ) for odd k (49)

leads to a least-squares problem. For an eleparameters
g® ands® are sought to minimizes,z, whereas for an odd
k, parameterhi® ands®) are sought to minimizesy,. From
(49), it follows that ifg®*) — g, h®*) — h, ands'*) — s under
certain stability constraints (which will be detailed shortly) as
k — oo, then the 2-D transfer function associated with the @
limiting vectorsg, h, ands minimizes

N
Q

—_
%)
T

group delay

Jp=1 / Wa (w1, wa)|Fu(wr, wa)
Qo 5t
N 2
_N@uwd) |7 (50)
gwDh(w:) i i i . .
(o} 0.1 0.2 i 0.3 0.4 0.5

and, therefore, offers a weighted least-squares solution to the normalized frequency
design problem. ()

; - P ; “ Fig. 1. (a) Magnitude response of the filter in Example 1 and (b) group
Given Dy (w1, w2) by (49), explicit expressions afy;, for delay of the filter in Example 1.

even and odd:'s can be derived in a manner similar to that
in Section llI-A. These expressions are given below withoand

deriving the details. Giie =A? Z Z Won(wiiy woi )| Fu(wiis wai)|?
For evenk i ,
“|hr—1(w2i)[*P1ie(wii)

Jorlg®, s®] m Lx G x® 4 btx® ¢, (51) Grae =A%) > War(wii, wa;)Proe(wii, wa)

g

where Gaze = Gaz in (41)

bie =A? Z Z War(wii, waj)| Fa(wii, waj)|

_ [ Giie _G12€:| b, — [ ble:| i g

Glae  Gox b | hr—1 (wa)[* D1 (w1i)

(k) .
x) = E( )} (52) bae = A? Z Z War(wii, waj)Pae(wii, waj)  (53)

O
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TABLE |
COEFFICIENTS OF THETRANSFER FUNCTION IN EXAMPLE 1

Denominator Numerator
1.0 0.00216452
0.85183505 0.01422263
1.40277206 0.01070862
1.15151797 -0.00173896
0.95948743 -0.00056474
0.81499579 0.01648599
0.68685173 0.01450372
0.52355787 -0.01424925
0.35584783 -0.01101010
0.23561367 0.04991283
0.15595331 0.04637753
0.08260605 -0.19765241
0.01749834 0.33139538
-0.01347975 -0.25569216
-0.01109415 0.13691517

=[cos (w1) -+ cos(niw)]

p1(w1)

P2e(w1, w2) =

Pioc(wi, wo) =

Ple(wl)

3[Fa(wr, wo)hy—1(w2)Pa(wi, wo)
+Fd(w17 w2)ﬁk—1(w2)P2(w1, wa)]
S[Fu(wr, w2)hp—1(w2)P1e(w1)Ph(wr, w2)
+ Fa(wr, wa)hi—1 (w2)P.(w1)Ph(wi, wo)]

— [e_jwl e

e—jnlwl]t'

(54)

——

\\

/W//lill \\\\\\\\\\W
: ’Wl/ﬂfﬂiﬂ/ m\\\\\\\\\\\\\
<

10.5

10

9.5

05

whereP;;.(w;) is the symmetric Toeplitz matrix determined

by its first column(1

cos{wy) -

cos[(ny — 1)wi]]*. For odd

k

Jor[n® ) )] x %xgk)t G,x® +btx®) 1 ¢,
where
_| Guw _G120:| b, — [ b1, }
’ G120 Gz, ’ = b

and

Giio =A% Y Wanlwii, way)|Fa(wui, way)?

J
N gr—1(w2i)|*P11o(wa;)
Gz, = A? Z Z Wor(wii, w2j)P12o(wii, woy)
% J
Gaoo =Gos in (41)

by, = A? Z Z Woap (w1, wo) | Fa(wii, wap)|?

O

(55)

(56)

10.5

-0.5

-0.5

(c)
Fig. 2. (a) Magnitude response of the filter in Example 2. (b) Group delay
(alongw1) in the passband of the filter in Example 2. (c) Group delay (along
w2) in the passband of the filter in Example 2.

N gr—1(w1a)*P2(way)
by, = A? Z Z Wor(wii, woj)P2o(wis, way)  (57)

i
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with Example 1: A halfband highpass IIR filter of order 14 with
linear phase response over its passband is designed using
the iterative constrained least-squares method proposed in

- f— DTS t
) ba(w2) = [ICOS (w2) -+ cos(naws)] Section Il. The desired frequency is given by
P2o(wi, w2) = 3[Fa(wr, w2)gr—1(w1)Pa(w, w2) 12 > 0,595
+ Fy(wi, w2)Gr—y (wi)p2(wi, w2)] Fy(w) = {06 Z < 0'27;- (63)

Pioo(wi, wo) = 2[Fy(wi, wa)gp_1(w o (W )Ph(wi, w
120(u1, 02) 2[—d( ' 2)95 1 1)pi( 2)p25 b @2) As was observed in [11], good designs are usually achieved
+ Fa(wr, w2)G5-1 (@1)P2o(w2)Pa (w1, @2)] e the group delay is set to be betweer 1 andn/2,
Pao(wy) = [e77%2 -0 eTIM2], (58)  wheren denotes the order of the filter. The desired group delay
in (63) is obviously in agreement with this observation. The

whereP1;,(w;) is the symmetric Toeplitz matrix determinedveighting function(w) is chosen as 1 in the passband and
by its first column[l cos(ws) - -- cos[(ns — 1)ws]]. Note Stopband. With a trivial initiad® = [0 - -- 0]* and tolerance

that in either case, the number of parameters involvedyjn € = = 107%, the algorithm converges after six iterations. The
has been reduced from the general casg{of +1)(ns+1)—1 amplitude response and group delay are shown in Fig. 1, and
t0 (ny +1)(n2+1)+ny (for evenk) or (ny +1)(ns+1) +ns the coefficients of the filter designed are given in Table I. The
(for odd &). Since the filter is quadrantally symmetric, thdn@imum modulus of the filter poles is 0.9276; hence, the
region{2, can be reduced tf, = [0, 7) x [0, 7). Moreover filter is stable. The peak error in the passband is 0.1406 dB,
the stability constraints (45) are in this case replaced by and the peak error in the stopband-27.8974 dB. ,
Example 2:In this example, a 2-D circularly symmetric
lowpass IIR filter of order(ni, na) = (14, 14) with linear

Rx® < (1-6)ex: (59) phase over its passband is designed using the least-squares
method developed in Section IllI-D. The desired response is
for evenk, wherex® = [p®" s®]t, and given by
16—j10(w1+w2) /w% + w% S 0.57
Fd(wl, wg) = . (64)
0 Vwi+w?>0.7

Again, the desired group delay in (64) is in the range
[n:/2,n; — 1] (¢ = 1,2) as was suggested in [11]. The
weighting functionW (w;, w,) is chosen as 5 in the passband
and by and 1 in the stopband. With trivial initigg® = [0 --- O],
h® = [0...0]" and tolerances = 5 x 1073, the design
algorithm converges after 12 iterations. The maximum pole
radius of the designed filter is 0.9236; hence, the filter is stable.
The resultant magnitude response is shown in Fig. 2(a). The
for odd k, wherex(*) = [h(k)t S(k)t]t, and maximum ripple in the passband is 0.0118, and the maximum
ripple in the stopband is 0.0268. Moreover, let the phase

. response of the designed filter pev, w2). The group delays

—b3(w2,1) 1 of the filter corresponding t@;- andw-.-axii are defined by
: 0 exo = (62)
Ix1

—Pi(w,1) 1
R. = : ol erxi=|: (60)
Ix1

—pi(w, 1) 1

R,x®) < (1 - 68exs (61)

R, = 9

1 a—wl

—f>t2(w2,J) Tl(wb w2) = - (wb w2)

It follows that the number of constraints is reduced from m2(wi, w2) = = 5p(wr, w2).

I+1Ix JtoIforevenk and toJ for odd k. Fig. 2(b) and (c) shows the 3-D plots of group delay

11 (w1, w2) and m(wy, we) in the passband of the filter

IV. DESIGN EXAMPLES designed. It is observed that the peak-to-peak deviation in
The design method proposed in this paper is fairly genetfie passband for both and 7> is 0.2564, representing a
in the sense that 2.564% group delay distortion.

1) it can be used to find a 1-D or 2-D transfer function that

approximates arbitrary amplitude and phase responses; V. CONCLUSION
2) the design obtained is optimal in the least-squares senseye have proposed a new approach to the weighted least-
3) the stability of the filter obtained is guaranteed,; squares design of stable IIR 1-D and 2-D digital filters. The
4) by using appropriate weighting, a quasi-equiripple deffficulty of taking the denominator of the transfer function

sign can be achieved. being designed into account in a least-squares setting is

In this section, two examples are presented to illustrate thigercome by means of an iterative strategy that treats the
design methodology. denominator as a part of the weighting function, and the
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stability of the filter designed is guaranteed by a set of line@s] C. K. Chen and J. H. Lee, “Design of quadrature mirror filters with
constraints on the denominator coefficients. The usefulness of linear phase in the frequency domaifi?EE Trans. Circuits Systyol.
h d thod has b d trated by two desian 32 PP: 593-605, Sept. 1992, o
€ proposed metno as been demonstrate y Wwo 6%@]1 H. Xu, W.-S. Lu, and A. Antoniou, “Improved iterative methods for the
examples. design of quadrature mirror-image filter band#2EE Trans. Circuits
Syst. 1| vol. 43, pp. 363-371, May 1996.
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