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Abstract

Medical imaging is an essential medical diagnosis system subsequently integrated with artificial intelligence for assistance 

in clinical diagnosis. The actual medical images acquired during the image capturing procedures generate poor quality 

images as a result of numerous physical restrictions of the imaging equipment and time constraints. Recently, medical image 

super-resolution (SR) has emerged as an indispensable research subject in the community of image processing to address 

such limitations. SR is a classical computer vision operation that attempts to restore a visually sharp high-resolution images 

from the degraded low-resolution images. In this study, an effective medical super-resolution approach based on weighted 

least squares optimisation via multiscale convolutional neural networks (CNNs) has been proposed for lesion localisation. 

The weighted least squares optimisation strategy that particularly is well-suited for progressively coarsening the original 

images and simultaneously extract multiscale information has been executed. Subsequently, a SR model by training CNNs 

based on wavelet analysis has been designed by carrying out wavelet decomposition of optimized images for multiscale 

representations. Then multiple CNNs have been trained separately to approximate the wavelet multiscale representations. 

The trained multiple convolutional neural networks characterize medical images in many directions and multiscale frequency 

bands, and thus facilitate image restoration subject to increased number of variations  depicted in different dimensions and 

orientations. Finally, the trained CNNs regress wavelet multiscale representations from a LR medical images,  followed by 

wavelet synthesis that forms a reconstructed HR medical image. The experimental performance indicates that the proposed 

model SR restoration approach achieve superior SR efficiency over existing comparative methods

Keywords High-resolution (HR) · Low-resolution (LR) · Super-resolution (SR) · Wavelet decomposition · Convolution 

neural network (CNN) · Edge preserving smoothening · Multiscale decomposition
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Introduction

In the field of image processing community and human 

visual analysis, high-resolution images are extremely 

essential. Several fields pursue high-resolution image, 

i.e. medical imaging, computer vision, remote sensing 

and machine vision, etc. We may use hardware processes 

to upgrade an image sensor constructing technology or 

use the large sensor dimension to improve a resolution of 

the images. However Upgrading a hardware is typically 

costly because of the constraints of the physical system 

and possess lengthy duration, particularly in some spe-

cific sectors namely Computerised Tomography (CT) and 

Magnetic Resonance Imaging (MRI) in medical imag-

ing. Thus, a particular algorithm to enhance the quality 

of the images is another good choice. An image process-

ing system, i.e. super resolution has gained more attention 

over the past 2 decades. Super-resolution is an approach 

that relates to retrieve the HR images from its LR coun-

terparts. Super-resolution technology and methods have 

grown rapidly over the years and has widespread appli-

cation in the field of remote sensing [1], object recogni-

tion [2], security monitoring [3] and medical imaging [4]. 

Using resolution degradation, HR images could smoothly 

create their respective LR images. However, owing to the 

general absence of images information and sharp edges, 

inverse mapping reconstruction from low-resolution to 

high-resolution is a challenging process. Substantial num-

bers of SR techniques have recently been introduced and 

that using machine learning are excellent. In recent years, 

many developments have been made in super-resolution 

models since the advent of the pioneering work [5], and 

numerous techniques have been introduced not only for 

images, however, but also for videos and range images that 

is mostly related to CNN. Although the performance of the 

resent convolutional neural networks related techniques 

are mostly fuzzy and overly smoothed since whole charac-

teristics from the input images, i.e. from LR images have 

not been completely exploited and the fine details cannot 

be retrieved [6–9]. Therefore, obtaining a superior quality 

image from the equivalent LR images is still very difficult. 

The resolution of the medical image is the relatively sig-

nificant component influencing the diagnostic result. HR 

diagnostic images may allow doctors to assess the situa-

tion of patients further precisely. Enhancing the resolu-

tion of medical imaging utilizing super resolution will 

dramatically increase an accuracy of the diagnosis at the 

same time saving a material together with funds needed 

to upgrade equipment. For accurate disease diagnosis, 

description of minute anatomical regions and pathologies 

are important. Microscopic changes in the microvascu-

lature around the tumour for instance are a significant 

biomarker for the diagnosis of cancer [10] and non-appar-

ent soft exudates are relevant pathologies for the diagnosis 

of retina disease [11]. Although due to imaging equipment 

and limited specifications, various original medical images 

undergo from restricted resolution. This low resolution of 

medical images prevents small anatomical landmarks and 

pathologies from being correctly identified or segmented 

and hinders the proper diagnosis of certain sever disease 

at premature stages. A significant amount of effort have 

been reported in recent few years to enhance the resolution 

of real medical images. For improving pioneering reso-

lution techniques, i.e. simple bicubic interpolations and 

their variants, typically undergo a large loss of sharp edge 

information and high local contrast [12]. Super-resolution 

reconstruction methods then became popular for improve-

ment of the resolution of medical images.

The remaining article is structured as follows: Sec-

tion  “Related work” illustrates the related work. Sec-

tion  “Weighted least squares optimisation framework” 

discusses weighted least squares optimisation framework. 

Section “The proposed SR method” illustrates the particulars 

of the proposed weighted least squares optimisation-based 

CNN approach. Section “Experimental results and analysis” 

discusses the experimental setup details, procedures, results 

and visual interpretation and subsequently detailed conclu-

sion is mentioned in Section “Conclusion”.

Related work

Yang et al. suggested a regularised image super-resolution 

system for medical imaging on the basis of sparse represen-

tations [13]. Rueda et al. restored a HR version of a LR brain 

MRI images [14] and Wei et al. introduced a medical imag-

ing SR algorithm in [15] along with a strong PSNR and 

visual perception ratio [15]. Dou et al. recently suggested an 

SR approach to obtain additional details from a LR medical 

images on the basis of the random forest model selection 

strategy [16]. Peter and Jebadurai suggested a SR for retinal 

images on the basis of multi-kernel support vector regres-

sion [17] While these approaches are, moreover, successful 

as compares to conventional interpolation related methods, 

however, in case of high upscaling factor still do not recover 

high-quality images. Some new SR methods have also been 

published, powered by the huge achievement of machine 

learning in the computer vision. Kim et al. provided a more 

adequate super-resolution system with VDSR on the basis 

of VGG-net [18]. Deep residual learning [19] is used by 

VDSR, which was introduced which by Microsoft research 

(MR) researchers and are renowned for taking first position 

in ILSVRC 2015, a large image classification competition. 

VDSR suggested a way to substantially accelerate the train-

ing procedure by utilizing residual learning together with 
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gradient clipping. Dong et al. initially introduced single 

image CNNs known as SRCNN model [5]. The super-reso-

lution technique for grayscale medical image is introduced 

in [20], based on the fundamental structures of CNNs. He 

et al. suggested residual neural network, i.e. ResNet for sim-

plifying SR model training process [19]. To further boost 

the SR efficiency of ResNet [21], Tei et al introduced a 

52-layer recursive network and Lim et al. eliminated redun-

dant component in ResNet thus expending the structure size 

[22] and achieved a substantial improvement. In the SR 

model, Zhang et al. [23] endorsed an efficient residual dense 

block. A deep network having channel attenuation [24] was 

further explored and the state-of-the-art PSNR output was 

achieved. GAN based SR has recently emerged and contin-

ues to develop because of great result of GANs by generat-

ing realistic image. SRGAN [25], Neural Enhance [26] and 

ESRGAN [27], for instance, are whole GAN-related meth-

ods. In particular, Mahapatra et al. suggested an SR algo-

rithm for medical images utilizing P-GANs [11]. Although 

there are so many methods published, as described above, 

medical images super resolution is still a challenging task 

and the performance of reconstruction is still unsatisfactory 

for higher upscaling factors. The model suggested at a very 

early stage is SRCNN [28]. Two to four CNN layers are used 

by Dong et al. to demonstrate that trained convolutional neu-

ral network layer design executes well on SR operations. The 

researchers found that, it is better to use a large convolu-

tional neural network filter size rather than deep convolu-

tional neural network layers. Super-resolution CNNs 

(SRCNN) are accompanied by the image super-resolution 

Deeply-Recursive Convolutional Neural (DRCN) [29]. 

DRCN uses deep CNN layers (20 in total), meaning the 

method have large parameters. Still, they share the weight of 

individual convolutional neural network to decrease the 

number of training parameters, i.e. they are able to train the 

deeper convolutional neural network and achieve significant 

efficiency. Very deep RED networks [30] are related to resid-

ual learning. RED [30] is reacted to residual learning. RED 

involves symmetrical convolutional, i.e. encoder and decon-

volutional, i.e. decoder layers. It also possesses skip connec-

tions and connects each two or three layers instead. They 

basically train deep, i.e. 30 layers with this symmetric struc-

ture to obtain excellent results. Therefore, this study repre-

sents the “the deeper the better” theme. Yaniv Romano et al., 

on the other hand, suggested rapid and accurate image super 

resolution (RAISR) [31] that focused on shallow and quick 

learning. Its categorizes source image patches in accordance 

to the intensity, angle and patch coherence and then forms 

maps between the clustered patches from LR image to HR 

image. FSRCNN [32] was also introduced by Dong et al. as 

the faster variant of their SRCNN [30]. Wang et al. imple-

mented WMCNN [33] by training CNNs based on wavelet 

analysis, an aerial image super-resolution process. For 

multiple representations, wavelet decomposition was per-

formed in aerial images. FSRCNN makes use of transposed 

CNN to directly perform an input image. The processing 

speed of RAISR and FRSCNN is 10–20 times quicker than 

other existing approaches focused on machine learning. 

Their efficiency still is not as good as other deeply convolu-

tional techniques. However, convolutional neural network-

based SR techniques have obtained remarkable success in 

handling bicubic degradation, it is not easy to apply them to 

deal with other more realistic degradation models. Several 

methods, i.e. LapSR [34] having progressive upsampling, 

i.e. MDSR [22] together with scale specific approaches, i.e. 

meta super-resolution [35] having meta upscale procedure 

have been proposed for resolving bicubic degradation 

together with multiple scale factors for a single design. The 

techniques introduced in [26, 36] take the PCA size 

decreased and blur kernel as an input to deal with a fuzzy 

LR image for versatility. These techniques, however, are 

restricted to the Gaussian blur kernel. The deep plug-and-

play techniques [37, 38] are possibly the most convolutional 

neural network related works that can manage multiple ker-

nels, noise levels and scale factors. Under a MAP frame-

work, the key concept of corresponding approaches is to 

plug the learned convolutional neural network into an itera-

tive solution. However, these are basically model-related 

techniques that undergo from a higher computing burden and 

requires hyper-parameters selected manually. To develop an 

end–end training model to produce superior performance 

with fewer iterations remains under investigation. Although 

the restoration of blind images based on learning has 

recently received significant attention [39–43], we observe 

that these works focused on non-blind SR that implies that 

the low-resolution image, noise level and blur kernel are to 

be known in advance. Non blind SR is yet in fact, an active 

research direction. Following [44], Li et al. [45] divide input 

HSIs into overlapping groups of bands using a grouping 

technique. The spectral similarity between neighbouring 

bands can be effectively exploited in this manner without 

raising the model parameter. Corrales et al. [46] suggested 

a method that combined denoising and super-resolution. To 

that end, they investigate two architectural designs: in-net-

work incorporates all tasks at the feature level, and pre-net-

work performs denoising first, then super resolution. Jiang 

et al. [47] proposed a deep edge map driven  super-resolution 

approach that includes both an edge prediction and a SR 

subnetwork. The edge prediction subnetwork utilizes a hier-

archical representation of color and depth images to generate 

an appropriate edge maps that the super-resolution subnet-

work to perform better. The super-resolution subnetwork is 

a disentangling cascaded network that up samples super-

resolution results incrementally, with .each stage consisting 

of a weight sharing module and an adaptive module. 

Recently, Quantum image processing (QIP) [48] is playing 
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a pivotal role by taking the benefit of quantum mechanics 

features to characterize images in a quantum computer, 

thereafter implements various image operations based on the 

image format. It is a branch of quantum information and 

computing science. Many researchers have shown that quan-

tum computing has significantly enhanced computational 

performance. With the recent accomplishment in the area of 

quantum information, the pursuit for a Quantum Neural Net-

work (QNN) model [49] by combining quantum computing 

with the remarkable features of classical neural networks has 

already begun. Tenne et al. suggested SR enhancement by 

quantum image scanning microscopy (QISM) [50], which 

implemented image microscopy: by integrating image scan-

ning microscopy and the measurement of quantum photo 

relationship, the resolution of image scanning microscopy 

can be increased up to twofold, four times beyond diffraction 

limit. Alves et al. [51] proposed a method that integrates the 

advantages of RAISR [31], a non-hallucinating and efficient 

computational approach, and Variational Quantum Eigen-

solver (VQE), a hybrid classical-quantum method, to con-

duct super-resolution with the assistance of a quantum com-

puter while maintaining analytical efficiency. It covers the 

production of extra hash-based filters learned with the tradi-

tional execution of super-resolution methods to further 

investigate performance refinements, create substantially 

sharper image, and influence the learning of efficient upscal-

ing filters along with integrated enhancement effects. Israel 

et al. [52] identified an imaging system with a larger fill 

factor, higher quantum performance, low noise, and scalable 

structure based on a fibre bundle coupled to single photon 

avalanche detectors. Their device enables super-resolution 

microscopy based on localization in a non-sparse 

non-stationery scenario using details on the number of active 

emitters derived from non-classical photon statistics [66, 

67].

Weighted least squares optimisation 
framework

Edge preserving smoothening via weighted least 
squares optimisation

We initially define an edge-preserving smoothening method 

related to the Weighted Least Squares Optimisation 55 sys-

tem and further demonstrate to establish multiscale edge-

preserving decomposition which captures information on 

different scales. An edge-preserving smoothing could be 

seen as negotiate between two theoretically inconsistent 

priorities. Considering an original image g, we are seeking 

for a new image u, which possess similar to g and, at the 

same time, smooth as far as possible everywhere, except for 

crucial gradient in g. It can be demonstrated formally for 

finding a minimum of

where the subscript p indicates a pixel’s spatial location. 

The purpose of data expression (u
p
− g

p
)2 is for reducing 

a gap among g and u, further the second expression (regu-

larisation) seeks to gain smoothness by reducing the par-

tial derivative of u. A smoothness necessity implemented 

(1)

∑

p

((

u
p
− g

p
)2 + �(a

x,p(g)

(

�u

�x

)2

p

+ a
y,p(g)

(

�u

�y

)2

p

))

,

Fig. 1  Medical image datasets utilized for comparing and evaluating techniques [53, 54]
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through weights of smoothness a
x
 and a

y
 , that rely on g, in 

the spatially varying form. Finally, an equilibrium between 

the two terms is responsible for λ; raising the value of λ 

affects in increasingly smoothes image u. We could re-write 

equation using matrix notation in quadratic form:

Here A
x
 and Ay are diagonal metrics comprising a

x
(g) 

and a
y
(g) , smoothness weight, respectively, and D

x
 and 

Dy represent discrete differentiation operators. A vector 

u which minimises Eq. (2) is defined specially as a linear 

system solution.

where L
g
= DT

x
AxDx + DT

y
AyDy . It is precisely a linear sys-

tem utilized in Lischinki et al. [56], in which the modulo of  

the differences in notation were mainly utilized for extract-

ing piece-wise smooth adapting maps from a sparse group 

of constraints.

D
x
 and Dy are forward difference operators in our imple-

mentation, and thus DT

x
 and DT

y
 are reverse differences 

operator, that means L
g
 is the spatially in-homogenous 

Laplacian matrix operator of five points.

We describe smoothness weights in similar form as in 

Lischinki et al. [56],

The exponent α (typically 1.2 and 2.0) defines the sen-

sitivity to the gradient of g, while ℓ represents log lumi-

nance channel of the original image g, where ɛ is the minor 

constant, i.e. typically 0.0001 which prohibits division by 

0 in regions in which g is constant. Let us investigate a 

relationship between a value of λ parameter and degree of 

smoothening to finalise the exposition of Weighted Least 

Squares related operator. Doubling a spatial help of kernel 

prepares the filter in a frequency domain approximately 

twice narrower by utilizing the linear invariant smoothing 

filter, i.e. a Gaussian filter. We further want to know in 

what way the similar effect can be accomplished through 

adjusting a value of λ. Equation (3) inform us that using 

a nonlinear operator F
�
 , that rely on g, u is obtained from 

g as:

While this operator is spatially variant its frequency 

response is difficult for evaluation. Hence, as in Fattel 

et al.[57], our evaluation is restricted to the areas of an 

image which does not have important edges. In particular, 

(2)(u − g)T(u − g) + �

(

uTDT

x
AxDxu + uTDT

y
AyDyu

)

.

(3)
(

I + �Lg

)

u = g,

(4)

a
x,p(g) =

(
|
|
|
|

��

�x
(p)

|
|
|
|

�

+ �

)−1

a
y,p(g) =

(
|
|
|
|

��

�y
(p)

|
|
|
|

�

+ �

)−1

.

(5)u = F
�
(g)=(I + �Lg)

−1g.

the weights of smoothness a
x
 and a

y
 are approximately 

equal in areas while g is approximately constant, i.e. a
x
 ≈ 

a
y
 ≈ a, and, therefore,

While the ordinary (homogeneous) Laplacian matrix 

L = DT

x
D

x
 + DT

y
Dy . Oppenheim and Schafer [58] then give 

the frequency response of F
�
,

In frequency domain, therefore, scaling by the factor of c 

which is similar to multiplying λ by the factor of c2:

While the image areas of approximately constant slope, 

in which each of a
x
 and a

y
 is constant, the same conclu-

sion may be reached (but not necessarily equally to each 

other). It should be noted that the resultant operator is not 

rotationally invariant while the smoothness coefficients in 

Eq. (4) split between gradients in x and y directions, having 

a small tendency for retaining axis aligned edge, moreover, 

than diagonal ones. Although, in our experiments, this did 

not consequence in any observable artefacts; it must also 

be noted that a discrete representation of image in a regular 

grid, therefore, is a rotational variant in itself.

Multiscale edge‑preserving decompositions

A multiscale edge-preserving decompositions, modelled fol-

lowing the notable Laplacian pyramid in Burt and Adelson 

[59] is simple to create utilizing an edge-preserving operator 

mentioned above. A decomposition comprises of a smooth, 

coarse, piece-wise model, together with a series of differ-

ent image, capturing information on increasingly fine scale. 

Further precisely, let g represent an original image in which 

we want to build a decomposition level of (k + 1). Then u1,…

u
k gradually indicate a coarser category of g. uk will act as 

base layer b of a coarsest of these versions, together with a 

k detail layer is define by

While simple addition of base and detail layer, the origi-

nal image g is easily recovered from this decomposition,

Note that the smoothed image ui , is not down sampled 

since it is obtained from edge-preserving smoothing and 

is not band limited in a usual sense. Therefore, our multi-

scale decomposition a full detail of original image. We had 

(6)F
�
(g) ≈ (I + �aL)−1g.

(7)F
�
(�) = 1∕

(

1 + a��
2
)

.

(8)F
�
(c�) = 1∕

(

1 + ac
2
��

2
)

= F
c2λ(�).

(9)di
= ui−1

− ui, while i = 1, . . . k and u0
= g.

(10)g = b +

k
∑

i=1

di
.
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evaluated the progressive coarsening sequence u1,… ., u
k 

with two methods of computing. The first is to resolve a 

linear system in Eq. (3) k times, incrementing the value of a 

λ component each time. In other expressions, that is

Considering a certain foremost value of λ and a certain 

value of c. We observed that the resulting decompositions 

are well-suited (using α = 1.2 –.4) for high dynamic range 

(HDR) compression and multiscale details enhancement. 

The second approach is to use an operator iteratively,

Similar to the mean shift filtering in Comaniciu and Meer 

[60] along with a multiscale bilateral transform in Fattel 

et al. [57], the images are frequently smoothed in this pro-

cess, and a resultant coarsened image prefer more firmly 

towards piecewise constant areas separated by edges. At 

each iteration, we still increase λ by a c factor, since this 

results in a further notable increase in smoothness in every 

iteration. Considering applications which attenuate or dis-

card some of the information, i.e. image abstraction with 

α = 1.8 or 2.0, we considered the iterative system to be bet-

ter suited.

The proposed SR method

Multiscale tone manipulation via WLS

A simple iterative tool has been introduced to manipulate the 

contrast and tone of information at varying scale. Consider-

ing an image, we initially create the three level decomposi-

tions of the CIELAB lightness channel, i.e. coarse base level 

b and two detail levels d1, d
2 . This achieved utilizing the 

initial, i.e. non-iterative construction provided in Eq. (12). 

A collection of sliders to control the exposure η of a base 

is then provided to the user, along with the boosting fac-

tors, �
0
 for base and �1, �2 for a median and fine detail layer. 

At each pixel p, the output of the manipulation ĝ is further 

provided by

While µ is a lightness range mean, and S is the sigmoid 

curve, S (a, x) = 1∕(1 + exp (−ax)), i.e. shifted and normal-

ised approximately. A purpose of this sigmoid is to avert 

the difficult clipping which could otherwise appear when a 

detail layer is increased. The contrast and the exposure of 

a base layer is managed by a term S ( �0, η bp − � ), where 

the remaining expressions check the increase in fine and 

(11)ui+1 = Fct�
(g).

(12)u
i+1

= F
ct�

(

u
i
)

.

(13)ĝp = � + s
(

�0, �bp − �
)

+ S
(

�1, d1
p

)

+ S
(

�2, d2
p

)

,

medium details. Consider that Eq. (13) is evaluated in real-

time once the decomposition has been computed. We found 

that this simple tool is already very successful in managing 

contrast of local quantities at varying scales. The efficient 

manipulation range is very large: usually, a very severe 

manipulation is required to make artifacts appear. For the 

fine scale filtering, the decomposition for whole outcomes 

is made with the parameters α = 1.2 and λ = 0.1.

Multiscale convolutional neural networks [33]

This section explains how to train multiscale CNNs to char-

acterize different scales of cultural variance and how to 

restore a medical image through trained multiscale convo-

lutional neural networks.

I. The wavelet representation of HR Medical image as 

multiscale regression features

Wavelet decomposition is used to multiscale analysis of 

the medical images. For filter banks, we introduce wave-

let decomposition comprising of bio-orthogonal high fre-

quency pass filters and low frequency pass filters. Here, L 

indicates a LF pass filter matrix where columns represent LF 

pass filter coefficients, similarly H indicates a HF pass filter 

matrix where columns depicts HF pass filter coefficients. 

By referring to [61] for clarifications of matrices L and H 

for particular wavelet decompositions. As the initial level 

representation C
o
 , here utilize one original HR image and 

do a wavelet decomposition as follows:

where j denotes the level of decomposition and s↓ indicates 

the downsampling operation to 1∕s of initial resolution. In 

relation to multiple spatial ratios, the recursive downsam-

pling decomposition (14) characterises a medical image that 

favours complete remote observations related to medical 

image. Cj, Dh
j
, Dv

j
, Dd

j
 , representing the entire LF, horizontal 

HF together with LF, vertical HF together with horizontal 

LF, and entire HF features of the final level representations 

Cj−1
 appropriately. A wavelet decomposition, therefore, leads 

to multiscale representations with regards to spatial ratio, 

frequency range and orientation for a medical image. In the 

next sub section, here we utilize wavelet multiscale presenta-

tions as regressing features to train numerous convolutional 

neural networks for SR.

II. Based on CNNs; regress wavelet multiscale features 

through LR image

Figure  1 illustrates the different types of medical 

modalities obtained from open sources. Multiple CNNs 

are trained to regress wavelet multiscale feature through 

LR image. Figure 2 illustrates training architecture related 

(14)
Cj =

(

L†Cj−1 L)s↓,Dh
j
=
(

L†Cj−1 H)s↓,

Dv
j
=
(

H†Cj−1 L)s↓,Dd
j
=
(

L†Cj−1 L)s↓,
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to 1-level wavelet decomposition. Four CNNs are trained 

by the exemplary architecture. The LR images layer-by-

layer are processed by each CNN along with last layer 

pursue to regress one of the multiscale presentations of 

HR images defined above in 4.2 − I. The layout of the 

existing SRCNN [5] was adopted for each individual CNN 

construction. Considering a LR I
L
 medical images down 

sampled out of HR images as input, a n-th convolutional 

layer output is

where W
n
 , b

n
 represent weights of network and training 

biases, subsequently. δ represents rectified linear function, 

i.e. max (0, x) that allows CNNs to converge rapidly (e.g. 

max (0, x)). Each CNN is penalised by a loss function to 

calculate the distant in-between the representations created 

through convolutional neural network through LR image 

and the representations through wavelet decomposition of 

corresponding HR images to generate characteristics that 

mostly regress wavelet multiscale representation. The loss 

(15)fn
(

IL, Wn,bn

)

= �
(

Wn × fn−1

(

IL

)

+ bn

)

,

function in Fig. 2 for a top convolutional neural network is 

represented by

where k is the wavelet multiscale representation’s pixel 

index, and C represents wavelet multiscale presentation 

which conserves a high-resolution medical image’s two-

direction smoothing features, Ĉ defines a representation cre-

ated by a convolutional neural network through a LR image 

I
L
 . In Fig. 2, one convolutional neural network produced 

representation for regression of C is a top patch. Whereas 

for remaining three convolutional neural networks, the loss 

functions could be set through replacing C in Eq. (16) with 

Dh
, Dv and Dd , separately. Using back propagation, the mul-

tiple CNNs are trained separately to reduce a loss function, 

therefore, each CNN is trained for learning features charac-

terised through a corresponding wavelet representation. A 

numerous convolutional neural network trained, therefore, 

(16)� =
1

2K

K
∑

k=1

C(k) − Ĉ(k)
2

2
,

Fig. 2  The proposed SR framework
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captures the multiscale image characteristics in various 

directions along with different frequency bands.

III. SR via wavelet multiscale CNNs.

We begin SR by separately inserting a LR image into 

the different convolutional neural networks. Then execute 

wavelet synthesis from j-th level to (j – 1)-th level on the 

CNN generated representations as follows:

The tidal symbol denotes that Čj,
�Dh

j
,
�Dv

j
,
�Dd

j
 are repre-

sentations generated by CNN from the low-resolution 

image I
L
 , which differ from those representations obtained 

from wavelet decomposition in Eq. (14). A wavelet syn-

thesis intrinsically ensemble a structural information along 

with diversity of object through multiscale frequency 

bands together with directions, since one convolutional 

neural network produced representation is provided with 

an image feature characterised in one-frequency band hav-

ing fixed orientation defined by a wavelet decomposition 

and achieves efficient super resolution. The last level in 

Fig. 2 indicates a super-resolution one-level wavelet syn-

thesis sample that four convolutional neural networks pro-

duced representation is synthesised, reconstructing a HR 

medical images.

IV. Observations

Local processing and multiscale analysis are two main 

factors facilitating the efficacy of convolutional neural 

networks, which are somewhat resemble to human brain 

receptive fields. Train the network weights which employ 

local filtering on one entire image influence a local pro-

cessing. The sampling down of multiscale analysis as the 

key manipulation. Existing CNN SR techniques such as 

SRCNN, however, prefer to provide local processing, how-

ever, neglect multiscale analysis due to SR works strive for 

upscaling image features representation in comparison to 

features condensation needed for appropriate patter recog-

nition. Therefore, the upscaling purpose of super resolu-

tion is explicitly contradicted by simple downsampling 

operations. We suggest training multiple convolutional 

neural networks lacking pooling-based in image wavelet 

representations for the purpose of completely leverage the 

representation capacity of convolutional neural networks 

related to both multiscale analyses along with local pro-

cessing. The weights of the convolutional neural network 

are retrieved by training along with supervised filtering 

of medical images representation by convolutional neural 

networks. A wavelet decompositions and synthesis alterna-

tively use the shelf wavelet filter and execute un-supervised 

(17)

Čj−1
= L

(

Čj

)

s↑
L† + H

(

�Dh
j

)

s↑
L†

+L
(

�Dv
j

)

s↑
H† + H

(

�Dd
j

)

s↑
H†

.

filtering on a multiscale representation. Additionally, to fil-

tering executed by convolutional neural network weights, 

they thus enrich the results of local processing, therefore, 

improved local processing prefers to capture additional 

detailed land covering together with object features. In 

wavelet decomposition, downsampling operations are an 

efficient replacement for pooling operations discarded 

from current super-resolution methods based on CNN. In 

addition, different frequency bands filtering having multi-

ple orientations is involved in the wavelet analysis, form-

ing the additional general multiscale synthesis. In addi-

tion, multiscale representation not only enhance precise 

visible features, further favour comprehensive medical 

image details. Lastly, with filtering updates, the wavelet 

synthesis upscale a multiple representation along with the 

wavelet decomposition, resulting in super resolution. The 

four convolutional neural networks trained at one-level 

could be reutilized recursively to regress wavelet multi-

scale representations at different stages for multilevel anal-

ysis. Therefore, this recursive employment will upscale a 

medical image to high-resolutions. However, this allows 

to one drawback where a resolution of one medical image 

could only be increased through multiples of two. This is 

due to with reference to filter banks, a wavelet analysis 

specifically includes down sampled and up sampled should 

be scaled by two. In addition, a computing complexity of 

various approaches are analysed. In contrast to SR meth-

ods related to deep learning, our method is successful in 

both training and testing operations. It is clear that the 

complexity of proposed model is four times as compares 

to SRCNN, since it follows four convolutional neural net-

works, each having similar SRCNN structure. Although 

the complexity of proposed model is greater as compares 

to super-resolution convolutional neural network, it is 

appropriate since it is complexness adopts a liner growth 

in the no. of convolutional neural networks and do not suf-

fer exponentially raised overheads. Alternatively, unlike 

the deeper SR methods that have 20 weight layers, such 

as very deep resolution [18], our three-layered models are 

not very deep. We enhance the SR capability of the con-

volutional neural network, unlike the very deep structure 

by avoiding deep network, however, expending wider, i.e. 

train multiple three layers convolutional neural networks 

in parallel in decomposed frequency sub-bands.

Experimental results and analysis

A set of experiments are presented in this section to dem-

onstrate the efficiency and robustness of our proposed SR 

algorithm.
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Experimental setup details

We developed an experimental evaluation with other super-

resolution algorithms on the medical imaging datasets [53, 

54] and performed overall empirical assessment on our 

proposed framework. Open source medical datasets [53, 

54] have been taken for training and validation purposes. 

We have considered 850 medical images for both training 

and validation purposes. We utilized 70% of the images, 

i.e. 595 images, to train the proposed model and the rest 

30%, i.e. 255 images, to validate the performance of the 

trained model. We have conducted numerous experiments 

for obtaining better results by varying the value of differ-

ent parameters. In the end, by performing numerous experi-

ments in terms of datasets, parameters and performance 

metrics, we have considered eight experimental results of 

eight datasets mentioned in Fig. 1 for demonstration of the 

experimental results. The quantitative results along with 

visual performance are demonstrated in the paper to indicate 

the effectiveness and efficiency of the proposed method. The 

dataset consists of ultrasound (US) image (Dataset1), four 

sets of magnetic resonance imaging (MRI) images (Data-

set2,4, 6 and 7) and three sets of computed tomography (CT) 

images (Dataset3, 5 and 8).

We compare our proposed weighted least squares optimi-

sation strategy via wavelet multiscale CNNs based SR algo-

rithm with bicubic interpolation and seven state-of-the-art 

SR methods: CCR_SISR [64], Dual_Dic_SR [63], HT_SR 

[65], SR_ALS [62], SRCNN [5], WMCNN [33], QSIM [50]. 

For verifying the reliability of our method, we performed an 

experiment through adding different Gaussian noise to the 

input image to produce LR-HR image pairs. A pixel value is 

normalised to [0,1] along with Gaussian noise with a mean 

vale of 0.05, 0.1, 0.15 & 0.2 is applied to normalised image. 

To validate the quality of SR results with different prevailing 

methods, we employed peak-signal-to-noise ratio (PSNR, 

dB) and structural similarity index measure (SSIM) in our 

experiments. All of these evaluation metrics are carried out 

between the original HR image and the reconstructed image.

Experimental procedures

At initial, we employed weighted least squares optimization 

operation, which uses an edge-preserving smoothing opera-

tor that is especially suitable for progressive image coarsen-

ing and multiscale information extraction which smoothes 

the image while retaining the edges. Our multiscale con-

volutional neural networks improve previous method by 

training multiple convolutional neural networks to char-

acterize wavelet multiscale representations. We compare 

their speed of convergence for training. The experiments 

are performed with the same network configuration and 

computation environment. The previous CNN approaches 

directly restore single whole medical image. In comparison, 

our method regresses the wavelet multiscale representations 

of the whole medical image. A wavelet-based divide (i.e. 

multiple orientations and frequency bands) and conquer (via 

training convolutional neural networks) approach renders a 

powerful representation than the single comprehensive rep-

resentations. Our method’s successful training convergence 

displays that convolutional neural networks learn medical 

images intrinsic faster from wavelet multiscale representa-

tions from the whole images. A proposed approach exploits 

wavelet multiscale analysis to capture spackle invariable 

statistics of medical images compared to traditional spatial 

domain-based super-resolution techniques. These properties 

contribute to noise removal and preserve vital information of 

the images. The efficient performance of our method shows 

that CNNs more effectively remove the effect of noise by 

learning the nature of multiscale wavelet representations that 

from the whole images. As one CNN generated representa-

tion is endowed with the image features characterized in 

one-frequency band with certain orientations specified the 

wavelet decomposition, the wavelet synthesis intrinsically 

ensembles the structural information and object diversity 

from multiscale frequency bands and the directions and 

achieves effective super-resolution. The right dash box of 

Fig. (1) describes a one-level wavelet synthesis for super-

resolution, in which four CNN generated representations 

are synthesized, restoring a high-resolution medical image. 

Experiments are carried out with upscaling factors two and 

four.

Quantitative and qualitative assessments

Tables 1 and 2 indicate the experimental SR results based 

on SSIM and PSNR for upscale factor two and four. As 

in case of all datasets, bicubic interpolation, CCR_SSIR, 

Dual_Dic_SR, SRCNN loses bone structure information, 

however, HT_SR, SR_ALS, WMCNN, QISM and proposed 

method shows better contrast. However, the output gener-

ated by SRCNN and WMCNN losses details of soft tissues 

(see in Figs. 3 and 4). Paying attention to the SR results of 

dataset1-8, we can observe that the HT_SR, WMCNN con-

serves an information precisely, however, the low contrast 

still remains. Furthermore, by focusing on the closeup in 

datasets 3 and 4, the bone structures are distinctly present 

in the proposed method. Tables 1 and 2 provide the quan-

titative measurement of the various SR methods on eight 

datasets of ultrasound, MRI and CT datasets. Looking after 

an experimental result, the output obtained by our method 

demonstrates high efficiency in terms of objective metrics, 

however, small improvements were seen in the case of other 

algorithms. In Tables 1 and 2, we could observe that nearly 

in both performance metrics of our approach gets good result 

comparing to the state-of-the-art methods. Even though in 



3098 Complex & Intelligent Systems (2022) 8:3089–3104

1 3

few metrics are high with small margins than other methods, 

but the differences in most of the terms are higher than other 

methods. Further, to have an additional intuitive understand-

ing of quantitative evaluations comparing to different meth-

ods, the average results of these objective  metrics are dem-

onstrated in Tables 1 and 2. In summarization, the SR result 

of the proposed algorithm outperforms other seven methods. 

The effectiveness of SR image is optimal when the above 

proposed performance metrics possesses high value.The key 

role of the SR is to improve overall, appropriate and accu-

rate information in resultant image such that the SR result 

is highly adequate for human interpretation. Similarly, the 

visual analysis is also highly essential in addition to objec-

tive/quantitative performance. To represent performance 

Table 1  Summary of PSNR (dB) and SSIM performance of eight medical datasets for 2 × magnification via various methods

For each image, we have two rows:  1st row → PSNR and  2nd row → SSIM

Images Upscaling 

factor

Bicubic Dual_Dic_SR HT_SR CCR_SISR SR_ALS SRCNN WMCNN QISM Proposed

[63] [65] [64] [62] [5] [33] [50]

Dataset1  × 2 PSNR 34.8209 39.1227 38.8131 35.2353 40.3492 40.4189 40.4195 40.3983 40.4213

SSIM 0.8626 0.893 0.9726 0.9526 0.9816 0.9808 0.9804 0.98 0.982

Dataset2 PSNR 27.0946 32.836 33.2861 30.7061 35.3247 34.8226 35.4009 35.5636 35.6382

SSIM 0.8261 0.7896 0.9747 0.9562 0.961 0.9812 0.9814 0.9808 0.9823

Dataset3 PSNR 30.6711 33.7724 35.0183 34.8822 35.2672 35.2535 36.3922 36.4255 36.6113

SSIM 0.7543 0.7768 0.9137 0.8122 0.9276 0.9219 0.933 0.9387 0.9402

Dataset4 PSNR 29.8629 34.5615 35.5206 31.7076 37.5818 38.1734 38.7145 38.6713 38.8344

SSIM 0.8017 0.8199 0.973 0.8672 0.9767 0.9843 0.9823 0.9825 0.9853

Dataset5 PSNR 35.3551 40.3294 40.4405 37.2475 41.6209 41.5041 41.3411 41.428 41.8839

SSIM 0.8561 0.867 0.9847 0.9661 0.9776 0.9808 0.9812 0.9801 0.9892

Dataset6 PSNR 34.4527 40.9462 40.9911 38.1544 41.2434 42.4725 44.0771 44.0983 44.1539

SSIM 0.8971 0.9092 0.9892 0.9671 0.9774 0.9908 0.9912 0.9899 0.9939

Dataset7 PSNR 25.5777 30.4003 31.6663 28.1514 32.9458 33.6092 33.8233 33.5536 33.9037

SSIM 0.8189 0.8229 0.939 0.9322 0.9507 0.9557 0.9508 0.9513 0.9594

Dataset8 PSNR 28.5725 32.5711 33.8129 30.5379 36.1153 35.701 35.5627 35.4797 35.7767

SSIM 0.8435 0.8425 0.963 0.9453 0.9661 0.9709 0.9712 0.9715 0.9752

Table 2  Summary of PSNR (d B) and SSIM performance of eight medical datasets 4 × magnification via various methods

For each image, we have two rows: 1st row → PSNR and 2nd row → SSIM

Images Upscaling 

factor

Bicubic Dual_Dic_SR HT_SR CCR_SISR SR_ALS SRCNN WMCNN QISM Proposed

[63] [65] [64] [62] [5] [33] [50]

Dataset1  × 4 PSNR 35.2353 30.2954 31.7686 31.8273 32.272 32.2166 32.4183 32.4527 32.5343

SSIM 0.6241 0.6192 0.8686 0.8782 0.9002 0.8858 0.8911 0.8923 0.9021

Dataset2 PSNR 23.1061 23.4039 24.8119 24.8286 27.2322 27.1827 27.2441 27.3012 27.3904

SSIM 0.6102 0.6205 0.85 0.8562 0.8435 0.8752 0.8869 0.8783 0.8886

Dataset3 PSNR 27.5433 28.5738 29.8997 29.6637 30.007 30.0239 31.1882 31.2633 31.3233

SSIM 0.5322 0.4922 0.7596 0.5653 0.7994 0.7894 0.7928 0.8063 0.8205

Dataset4 PSNR 26.1076 26.2484 27.8275 28.9282 29.162 29.2507 29.1115 29.1912 29.3181

SSIM 0.5278 0.5328 0.8459 0.8672 0.8827 0.8817 0.8809 0.8812 0.8894

Dataset5 PSNR 30.2475 30.4356 32.3635 32.7272 32.7558 32.8607 33.0116 33.0024 33.0553

SSIM 0.6072 0.6279 0.913 0.9271 0.9314 0.9314 0.9346 0.9299 0.936

Dataset6 PSNR 30.1544 30.4167 31.3692 33.7282 34.3786 34.0441 34.8119 34.9833 35.1052

SSIM 0.7812 0.7838 0.9045 0.9162 0.9328 0.9418 0.942 0.9431 0.9471

Dataset7 PSNR 22.1514 22.3935 23.8149 25.1482 25.2585 25.27 25.2464 24.9937 25.4699

SSIM 0.3782 0.3388 0.7349 0.7792 0.7883 0.7914 0.7859 0.7898 0.7926

Dataset8 PSNR 24.5379 25.4584 26.5125 27.2338 27.5837 27.6146 27.6775 27.6733 27.722

SSIM 0.6936 0.6846 0.8302 0.8473 0.8599 0.8666 0.8648 0.8653 0.8691



3099Complex & Intelligent Systems (2022) 8:3089–3104 

1 3

Fig. 3  Qualitative comparison of proposed method with other SR algorithms (scale factor → 2)
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Fig. 4  Visual analysis of proposed method with other SR algorithms (scale factor → 2)
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visually, the respective SR image is demonstrated in Figs. 3 

and 4. It has demonstrated better visualization compares to 

other modalities. It also makes for the easy process of check-

ing the other modalities which is comparatively very low in 

measured parameters. The wavelet multiscale analysis gains 

huge improvement over other CNN models, which not only 

gives a solution for a missing pooling task in previous meth-

ods, however, also improves its local filtering operations 

with wavelet filter. In addition, the proposed approach that 

is built based on concatenating four versions of the original 

SRCNN frameworks is compared empirically. The empiri-

cal findings in Tables 1 and 2 and visual analysis in Figs. 3 

and 4 demonstrate that our model surpasses other models 

over upscaling factor two and four in terms of performance 

measurements. The experimental comparison suggests that 

a wavelet synthesis is, however, the secret for our model 

success rather than the larger size of the model. It can be 

note that other models have more weight layers, however, 

proposed structure comprises of four three-layered convo-

lutional neural networks, leading to a complete compact 

twelve-layered framework. The examination shows that 

proposed approach bear far less complex structure as com-

pares to other SR methods, however, still obtains comparable 

efficiency with them. One explanation for the positive results 

is that some of the CNN models take whole images as an 

input to complete model for training and proposed system 

train the convolutional neural networks to reconstruct vari-

ous frequency sub-bands by ensuring that each frequency 

representation is properly reconstructed. The overall output 

of the upscaling factor four is lower than that of two, since 

greater upscaling restoration creates greater uncertainty of 

super resolution. Some comparative methods and our pro-

posed method display comparable performance for certain 

groups in this scenario. Our proposed method, however, still 

performs better than other techniques. We have only used 

SRCNN in our work as fundamental model for multiscale 

learning. Since multiscale representation generate holistic 

features subspace, it is expected that wavelet learning related 

to alternative SR model. As compares to a method proposed 

by Tenne et al. using quantum image scanning microscopy 

(QISM) and other methods, our method demonstrates higher 

efficiency in both objective matrices, i.e. PSNR and SSIM. 

The proposed method possesses 0.1–0.5 higher PSNR rate 

and 0.05–0.2 higher SSIM rate for all medical image datasets 

as compares to other methods as demonstrated in Tables 1 

and 2. Also, from the Figs. 3 and 4, it observed that, the vis-

ual representation of our method is much better than QSIM 

and other methods. From Fig. 3, it can be seen that the super-

resolved images of HT_SR, Dual_Dic_SR preserve proper 

information, but the details in the dark regions are not very 

clear and overall show low global contrast. Comparatively, 

the results of SR_ALS, WMCNN obtain the good contrast, 

but the information of soft tissues is disproportional. QSIM 

can preserve the details of the source images, but the visual 

appearance is slightly low quality. The super-resolved image 

generated by the proposed method presents better visual 

performance and the details are abundant. Tables 1 and 2 

show the evaluation metrices of different methods for eight 

medical images. We can see that the values of PSNR and 

SSIM of the proposed method are highest in all datasets. In 

Fig. 4, Bicubic, CCR_SISR have low contrast. The QSIM 

and WMCNN and the proposed method can maintain the 

details well, and the contrast of these approaches is better 

than the other methods. Additionally, the brightness of the 

proposed method in some regions is higher than the most of 

the comparative methods (as is shown in the color blocks). 

In case of all medical images produced by our method pre-

sent the proper global brightness and texture. We can notice 

that, our model reconstructs the clear and accurate textures 

as compares to other comparative methods. The SR out-

comes of various quantitative measurement metrices and 

respective visual performance are demonstrated for valida-

tion. The detailed information can be preserved well in the 

results of our method. So, this indicates that the proposed 

method can effectively extract the features of source images. 

It is noticeable that nearly all the performance metric values 

of the proposed method are higher than the other methods.

Conclusion

In this paper, we have proposed a weighted least squares 

optimization-based image SR framework using multiscale 

CNNs. A WLS set-up used in our method performs an edge-

preserving operation, that smoothes the image while pre-

serving the edges simultaneously thus strengthen the edges 

by having the balance between blurring and sharpening in a 

better manner. It has been extended to several image process-

ing applications, such as multi-resolution system construc-

tion and tone mapping. In addition, we built a SR model by 

training CNNs based on wavelet analysis. We use wavelet 

filters that increase the local processing power of CNNs. The 

absence of CNN-based SR pooling operations in previous 

techniques is compensated by the downsampling in wavelet 

decomposition. Our model combines the representational 

capacity of CNNs to learn basic features along with mul-

tiscale potential of wavelet synthesis to acquire multiple 

orientations and frequency representation. The efficiency 

of our super-resolution method has been validated by both 

visual interpretation and experimental evaluations. The SR 

results obtained by the proposed method demonstrated bet-

ter performance in terms of both quantitative and qualita-

tive analyses for all medical images. Our method helps to 

retained information of the medical images precisely and 

also the bone structures are distinctly present in the pro-

posed method. Similarly, our method demonstrates high 
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performance in both objective metrics in terms of PSNR 

and SSIM. The proposed method demonstrates 0.1–0.5 

increment in PSNR value and 0.05–1.0 more SSIM value 

for all medical datasets as compares to other methods that 

indicate improvement in image restoration approach for all 

the medical images. The standardized SR evaluation tech-

niques are on the basis of difference between reconstructed 

HR image and original HR image, and the actual HR image 

is unfeasible to obtained in practical. However, we shall 

explore to establish a visual interpretation and no reference 

quality indexes as measurement metrics in our future work. 

To enhance perceptual performance, we will also explore 

to integrate visual interpretation and more reference quality 

indexes in the objective features.
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