Machine Learning, 10, 57-78 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Weighted Nearest Neighbor Algorithm for
Learning with Symbolic Features

SCOTT COST COST@CS.JHU.EDU
STEVEN SALZBERG SALZBERG@CS.JHU.EDU
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

Editor: Richard Sutton

Abstract. In the past, nearest neighbor algorithms for learning from examples have worked best in domains in
which all features had numeric values. In such domains, the examples can be treated as points and distance metrics
can use standard definitions. In symbolic domains, a more sophisticated treatment of the feature space is required.
We introduce a nearest neighbor algorithm for learning in domains with symbolic features. Our algorithm calculates
distance tables that allow it to produce real-valued distances between instances, and attaches weights to the instances
to further modify the structure of feature space. We show that this technique produces excellent classification
accuracy on three problems that have been studied by machine learning researchers: predicting protein secondary
structure, identifying DNA promoter sequences, and pronouncing English text. Direct experimental comparisons
with the other learning algorithms show that our nearest neighbor algorithm is comparable or superior in all
three domains. In addition, our algorithm has advantages in training speed, simplicity, and perspicuity. We con-
clude that experimental evidence favors the use and continued development of nearest neighbor algorithms for
domains such as the ones studied here.

Keywords. Nearest neighbor, exemplar-based learning, protein structure, text pronunciation, instance-based learning

1. Introduction

Learning to classify objects is a fundamental problem in artificial intelligence and other
fields, one which has been attacked from many angles. Despite many successes, there are
some domains in which the task has proven very difficult, due either to the inherent diffi-
culty of the domain or to the lack of sufficient data for learning. For example, instance-
based learning programs (also called exemplar-based (Salzberg, 1990) or nearest neighbor
(Cover & Hart, 1967) methods), which learn by storing examples as points in a feature
space, require some means of measuring distance between examples (Aha, 1989; Aha &
Kibler, 1989; Salzberg, 1989; Cost & Salzberg, 1990). An example is usually a vector of
feature values plus a category label. When the features are numeric, normalized Euclidean
distance can be used to compare examples. However, when the feature values have sym-
bolic, unordered values (e.g., the letters of the alphabet, which have no natural inter-letter
“distance”), nearest neighbor methods typically resort to much simpler metrics, such as
counting the features that match. (Towell et al. (1990) recently used this metric for the
nearest neighbor algorithm in their comparative study.) Simpler metrics may fail to capture
the complexity of the problem domains, and as a result may not perform well.

In this paper, we present a more sophisticated instance-based algorithm designed for
domains in which some or all of the feature values are symbolic. Our algorithm constructs

58 S. COST AND S. SALZBERG

modified “value difference” tables (in the style of Stanfill & Waltz (1986)) to produce a
non-Euclidean distance metric, and we introduce the idea of “exception spaces” that result
when weights are attached to individual examples. The combination of these two techniques
results in a robust instance-based learning algorithm that works for any domain with sym-
bolic feature values. We describe a series of experiments demonstrating that our algorithm,
PEBLS, performs well on three important practical classification problems. Comparisons
given below show that our algorithm’s accuracy is comparable to back propagation, deci-
sion trees, and other learning algorithms. These results support the claim that nearest neigh-
bor algorithms are powerful classifiers even when all features are symbolic.

L1. Instance-based learning versus other models

The power of instance-based methods has been demonstrated in a number of important
real world domains, such as prediction of cancer recurrence, diagnosis of heart disease,
and classification of congressional voting records (Aha & Kibler, 1989; Salzberg, 1989).
Our experiments demonstrate that instance-based learning (IBL) can be applied effectively
in three other domains, all of which have features with unordered symbolic values: (1) predic-
tion of protein secondary structure, (2) word pronunciation, and (3) prediction of DNA
promoter sequences. These domains have received considerable attention from connectionist
researchers who employed the back propagation learning algorithm (Sejnowski & Rosenberg,
1986; Qian & Sejnowski, 1988; Towell et al., 1990). In addition, the word pronunciation
problem has been the subject of a number of comparisons using other machine learning
algorithms (Stanfill & Waltz, 1986; Shavlik et al., 1989; Dietterich et al., 1990). All of
these domains represent problems of considerable practical importance, and all have sym-
bolic feature values, which makes them difficult for conventional nearest neighbor algo-
rithms. We will show how our nearest neighbor algorithm, PEBLS, which is based on Stanfill
and Waltz’s (1986) “‘value difference” method, can produce highly accurate predictive models
in each of these domains.

Our intent is to compare IBL to other learning methods in three respects: classification
accuracy, speed of training, and perspicuity (i.e., the ease with which the algorithm and
its representation can be understood). Because of its comparable performance in the first
respect, and its superiority in the latter two, we argue that IBL is often preferable to other
learning algorithms for the types of problem domains considered in this paper. Instance-
based learning has been shown to compare favorably to other algorithms (e.g., decision
trees and rules) on a wide range of domains in which feature values were either numeric
or binary (e.g., Aha, 1989; Aha & Kibler, 1989; Aha et al., 1991; Salzberg, 1989). This
paper presents similar evidence in terms of classification accuracy for domains with sym-
bolic feature values. However, before describing these domains, we should consider other
advantages that instance-based learning algorithms can provide.

Training time. Most neural net learning algorithms require vastly more time for training
than other machine learning methods. Training is normally performed by repeatedly present-
ing the network with instances from a training set, and allowing it gradually to converge
on the best set of weights for the task, using (for example) the back propagation algorithm.

LEARNING WITH SYMBOLIC FEATURES 59

Weiss and Kapouleas (1989), Mooney et al. (1989), and Shavlik et al. (1989) report that
back propagation’s training time is many orders of magnitude greater than training time
for algorithms such as ID3, frequently by factors of 100 or more. In addition, neural net
algorithms have a number of parameters (e.g., the “momentum” parameter) that need to
be tweaked by the programmer, and may require much additional time. The Weiss and
Kapouleas experiments required many months of the experimenters’ time to produce results
for back propagation, while the other algorithms typically required only a few hours. The
only parameter that might be adjusted for our algorithm is the value of r in our distance
metric (see below), and we only consider two possible values, » = 1 and r = 2.

Our nearest neighbor algorithm requires very little training time, both in terms of experi-
menter’s time and processing time. Below we present two versions of the PEBLS algorithm,
one slightly more complex than the other. The simpler version, which is called the
“unweighted” version in our experimental section below, requires O(dn + dv*) time for
training, where n is the number of examples, 4 is the number of features (dimensions)
per example, and v is the number of values that a feature may have. (In general » is much
larger than +*; hence the complexity is usually O(dn).) The more complex version of
PEBLS incrementally computes weights for exemplars, and requires O(dn®) time for n
training instances.! After training, classification time for a nearest neighbor system is at
worst O(dn), which is admittedly slow compared to other algorithms.

Nearest neighbor methods lend themselves well to parallelization, which can produce
significantly faster classification times. Each example can be assigned to a separate proc-
essor in a parallel architecture, or, if there are not enough processors, the examples can
be divided among them. When the number of processors is as large as the training set,
classification time may be reduced to O(d log n). We implemented our system on a set
of four loosely-coupled transputers as well as on a conventional architecture, and other
recent efforts such as FGP (Fertig & Gelernter, 1991) use larger numbers of parallel proc-
essors. The MBRtalk system of Waltz and Stanfill (1986) implemented a form of k-nearest-
neighbor learning using a tightly-coupled massively parallel architecture, the 64,000-
processor Connection Machine™.

Perspicuity. Our instance-based learning algorithm is also more transparent in its operation
than other learning methods. The algorithm itself is nothing if not straightforward: define
a measure of distance between values, compare each new instance to all instances in memory,
and classify according to the category of the closest. Decision tree algorithms are perhaps
equally straightforward at classification time—just pass an example down through the tree
to get a decision. Neural net algorithms are fast at classification time, but are not as trans-
parent—weights must be propagated through the net, summed, and passed through a filter
(e.g., a threshold) at each layer. The only complicated part of our method is the computa-
tion of our distance tables, which are computed via a fixed statistical technique based on
frequency of occurrence of values. However, this is certainly no more complicated than the
entropy calculations of decision tree methods (e.g., Quinlan (1986)) or the weight adjust-
ment routines used in back propagation. The tables themselves provide some insight into
the relative importance of different features—we noticed, for instance, that several of the
tables for the protein folding data were almost identical (indicating that the features were
very similar). The instance memory of an IBL system is readily accessible, and can be

60 S. COST AND S. SALZBERG

examined in numerous ways. For example, if a human wants to know why a particular clas-
sification was made, the system can simply present the instance from its memory that was
used for classification. Human experts commonly use such explanations; for example, when
asked to justify a prediction about the economy, experts typically produce another, similar
economic situation from the past. Neural nets do not yet provide any insight into why they
made the classification they did, although some recent efforts have explored new methods
for understanding the content of a trained network (Hanson & Burr, 1990). It is also relatively
easy to modify our algorithm to include domain specific knowledge: if the relative impor-
tance of the features is known, the features may be weighted accordingly in the distance
formula (Salzberg, 1989).

Taken together, the advantages listed above make it clear that IBL algorithms have a number
of benefits with respect to competing models. However, in order to be considered a realistic
practical learning technique, IBL must still demonstrate good classification accuracy. When
the problem domain has symbolic features, the obvious distance metric for IBL, counting
the number of features that differ, does not work well. (This metric is called the “overlap”
metric.) Our experimental results show that a modified value-difference metric can proc-
ess symbolic values exceptionally well. These results, taken together with other results on
domains with numeric features (e.g., Aha, 1990; Aha et al., 1991), show that IBL algo-
rithms perform quite well on a wide range of problems.

2. Learning algorithms

Back propagation is the most widely used and understood neural net learning algorithm,
and will be used as the basis of comparison for the experiments in this paper. Although
earlier approaches, most notably the perceptron learning model, were unable to classify
groups of concepts that are not linearly separable, back propagation can overcome this
problem. Back propagation is a gradient descent method that propagates error signals back
through a multi-layer network. It has been described in many places (e.g., Rumelhart et
al., 1986; Rumelhart & McClelland, 1986), and readers interested in a more detailed descrip-
tion should look there. We will use the decision tree algorithm ID3 (Quinlan, 1986) as
the basis for comparison with decision tree algorithms. In addition, we have compared
the performance of our algorithm to other methods used on the same data for each of the
domains described in section 3. Where appropriate, we present results from domain-specific
classification methods.

2.1. Instance-based learning

Our instance-based learning algorithm, like all such algorithms, stores a series of training
instances in its memory, and uses a distance metric to compare new instances to those stored.
New instances are classified according to the closest exemplar from memory. Our algorithm
is implemented in a program called PEBLS, which stands for Parallel Exemplar-Based
Learning System 2 For clarity, we use the term “‘example” to mean a training or test exam-
ple being shown to the system for the first time. We use the term “exemplar” (following

LEARNING WITH SYMBOLIC FEATURES 61

the usage of Salzberg (1991)) to refer specifically to an instance that has been previously
stored in computer memory. Such exemplars may have additional information attached to
them (e.g., weights). The term “‘instance” covers both examples and exemplars.

PEBLS was designed to process instances that have symbolic feature values. The heart
of the PEBLS algorithm is the way in which it measures distance between two examples.
This consists of essentially three components. The first is a modification of Stanfill and
Waltz’s (1986) Value Difference Metric (VDM), which defines the distance between differ-
ent values of a given feature. We call our method MVDM, for Modified Value Difference
Metric. Our second component is a standard distance metric for measuring the distance
between two examples in a multi-dimensional feature space. Finally, the distance is modified
by a weighting scheme that weights instances in memory according to their performance
history (Salzberg, 1989; 1990). These components of the distance calculation are described
in sections 2.2 and 2.3.

PEBLS requires two passes through the training set. During the first pass, feature value
difference tables are constructed from the instances in the training set, according to the
equations for the Stanfill Waltz VDM. In the second pass, the system attempts to classify
each instance by computing the distance between the new instance and previously stored
ones. The new instance is then assigned the classification of the nearest stored instance.
The system then checks to see if the classification is correct, and uses this feedback to
adjust a weight on the old instance (this weight is described in detail in section 2.3). Finalily,
the new instance is stored in memory. During testing, examples are classified in the same
manner, but no modifications are made to memory or to the distance tables.

2.2, The Stanfill-Waltz VDM

In 1986, Stanfill and Waltz presented a powerful new method for measuring the distance
between values of features in domains with symbolic feature values. They applied their
technique to the English pronunciation problem with impressive initial results (Stanfill &
Waltz, 1986). Their Value Difference Metric (VDM) takes into account the overall similarity
of classification of all instances for each possible value of each feature. Using this method,
a matrix defining the distance between all values of a feature is derived statistically, based
on the examples in the training set. The distance & between two values (e.g., two amino
acids) for a specific feature is defined in Equation 1:

¢y

In the equation, V; and ¥, are two possible values for the feature, e.g., for the protein
data these would be two amino acids. The distance between the values is a sum over all
n classes. For example, the protein folding experiments in section 4.1 had three categories,
so n = 3 for that data. C,_ is the number of times V; was classified into category i, C,
is the total number of times value 1 occurred, and k is a constant, usually set to 1.

62 S. COST AND S. SALZBERG

Using Equation 1, we compute a matrix of value differences for each feature in the input
data. It is interesting to note that the value difference matrices computed in the experiments
below are quite similar overall for different features, although they differ significantly for
some value pairs.

The idea behind this metric is that we wish to establish that values are similar if they
occur with the same relative frequency for all classifications. The term C, /C; represents
the likelihood that the central residue will be classified as i given that the feature in ques-
tion has value V;. Thus we say that two values are similar if they give similar likelihoods
for all possible classifications. Equation 1 computes overall similarity between two values
by finding the sum of the differences of these likelihoods over all classifications.

Consider the following example. Say we have a pool of instances for which we examine
a single feature that takes one of three values, A, B, and C. Two classifications, « and
8, are possible. From the data we construct Table 1, in which the table entries represent
the number of times an instance had a given feature value and classification. From this
information we construct a table of distances as follows. The frequency of occurrence of
A for class « is 57.1%, since there were 4 instances classified as o out of 7 instances with
value A. Similarly, the frequencies of occurrence for B and C are 28.6% and 66.7%, respec-
tively. The frequency of occurrence of A for class 3 is 42.9%, and so on. To find the distance
between A and B, we use Equation 1, which yields |4/7 — 2/7| + |3/7 — 5/7] = 0.571.
The complete table of distances is shown in Table 2. Note that we construct a different
value difference table for each feature; if there are 10 features, we will construct 10 tables.

Equation 1 defines a geometric distance on a fixed, finite set of values—that is, the prop-
erty that a value has distance zero to itself, that it has a positive distance to all other values,
that distances are symmetric, and that distances obey the triangle inequality. We can sum-
marize these properties as follows:

i. 6a, b) >0, a #0b

ii. &8(a, b) = &b, a)

iii. 6(a, a) = 0

iv. 6(a, b) + &b, ¢) = ¥(a, ©)

Stanfill and Waliz’s original VDM also used a weight term wf, which makes their version
of § non-symmetric; e.g., (a, b) # 6(b, a). A major difference between their metric (VDM)
and ours (MVDM) is that we omit this term, which makes & symmetric.

The total distance A between two instances is given by:

N
AKX, Y) = wywy 2 8, y) 2)

i=1

where X and Y represent two instances (e.g., two windows for the protein folding domain),
with X being an exemplar in memory and Y a new example. The variables x; and y; are
values of the ith feature for X and ¥, where each example has N features. wy and wy are
weights assigned to exemplars, described in the following section. For a new example Y,
wy = 1. (In domains with numeric features, r = 1 yields Manhattan distance and r = 2

LEARNING WITH SYMBOLIC FEATURES 63

Table 1. Number of occurrences of each
value for each class.

Classes
Feature Values o B8
A 4 3
B 2 5
C 4 2

Table 2. Value difference table.

Feature Values

A B C
A 0.000 0.571 0.191
B 0.571 0.000 0.762
C 0.191 0.762 0.000

produces Euclidean distance.) For most of our experiments, we used r = 2; however, we
used r = 1 for the protein secondary structure task.

In summary, there are four major differences between our MVDM and the Stanfill-
Waltz VDM.

1. We omit the weight term wg, which makes the Stanfill-Waltz VDM non-symmetric.
In our formulation, § and A are symmetric.

2. Stanfill and Waltz (1986) used the value of & = 2 in their version of Equation 1. Our
preliminary experiments indicated that equally good performance is achieved when
k = 1, so we chose that value for reasons of simplicity.

. We have added exemplar weights to our distance formula, as described in section 2.3.

4. Stanfill and Waltz used the 10 closest exemplars for classification, whereas PEBLS uses

only the nearest neighbor. (This is really a difference between the learning algorithms
rather than the value difference metrics.)

w

2.3. Weighted exemplars and exception spaces

Some stored instances are more reliable classifiers than others. Intuitively, one would like
these trustworthy exemplars to have more “drawing power” than others. The final difference
between our MVDM metric and the original VDM is a capacity in the metric for treating
more reliable instances differently. We accomplish this with the weight wy in our distance
formula: reliable exemplars are given smaller weights, making them appear closer to a
new example. Our weighting scheme was first adopted in the EACH system (Salzberg, 1989;
1990), which assigned weights to exemplars according to their performance history. wy
is the ratio of the number of uses of an exemplar to the number of correct uses of the
exemplar; thus, accurate exemplars will have wy = 1. Unreliable exemplars will have

64 S. COST AND S. SALZBERG

wx > 1, making them appear further away from a new example. These unreliable exem-
plars may represent either noise or “exceptions’*—small areas of feature space in which
the normal rule does not apply. The more times an exemplar is incorrectly used for classifica-
tion, the larger its weight grows. An alternative scheme for handling noisy or exceptional
instances in the IBL framework is discussed by Aha and Kibler (1989), and elaborated fur-
ther in Aha (1990). In their scheme, an instance is not used in the nearest-neighbor com-
putation until it has proven itself to be an “‘acceptable” classifier. Acceptable instances are
those whose classification accuracies exceed the baseline frequency for a class by a fixed
amount. (For example, if the baseline frequency of a class is 30%, an instance that was
correct 80% of the time would be acceptable, whereas if the baseline frequency was 90%,
the same instance would not be acceptable.) We should note that our technique is not designed
primarily to filter out noisy instances, but rather to identify exceptional instances. The dif-
ference is that noisy instances should probably be ignored or discarded, whereas excep-
tional instances should be retained, but used relatively infrequently.

We differ from Salzberg’s original exemplar weighting scheme in one significant aspect:
the way in which exemplars (points) are weighted initially. The original scheme stored points
with initial weights of 1/1. The effect which this has on the feature space is significant.
Consider an instance space containing two points, classified as « and 5. Unweighted, these
two points define a hyperplane that divides the n-dimensional space into an « and a (3 region,
as shown in Figure 1. Any point located on the left side of the plane will be classified as
«, and likewise for 8.

‘When PEBLS computes distance from a new instance to a weighted exemplar, that distance
is multiplied by the exemplar’s weight. Intuitively, that makes it less likely for a new in-
stance to appear near an exemplar as the exemplar’s weight grows. Figure 2 shows that,
geometrically, the use of weights creates a circular envelope around the exemplar with the
larger weight, defining an “‘exception space” that shrinks as the weight difference increases.
Only points inside the circle will match the point with the larger weight.

When the weights are equal, we have the special case of the hyperplane given above.
More generally, given a space with many exemplars, the exemplars with the smallest weights
(or best classification performance) partition the space with a set of hyperplanes. If the
weights of these “best” exemplars are not identical, the partitioning uses very large circles.
Each exemplar is effectively the “rule” for its region of space. Exemplars with larger weights

Figure 1. Two unweighted points in instance space.

LEARNING WITH SYMBOLIC FEATURES 65

Exception space
L/ P P

Figure 2. Two weighted points in instance space.

Figure 3. Partition with exception spaces.

define exception spaces around themselves. Figure 3 shows that within each exception space,
this process may recur if other groups of exemplars have approximately equal weights.

The ability to partition space into large, general “rules” with pockets of exceptions is
important in domains that contain many exceptions. Without this capability, many more
points are required for learning, as it is necessary to surround exceptions with a set of
non-exception points to define the edge of the space. Here, only two points are required
to define a rule and an exception. The capability becomes even more important for IBL
models that store only a subset of the training examples, because it further reduces the
number of points which must be stored (Cost & Salzberg, 1990).

Given the above discussion, it should be clear that all instances should not be initialized
with weights of 1. Consider a system trained on n — 1 instances, now training on the nth.
A hierarchy of instance weights has already been constructed through training to represent
the structure of the domain. An instance entered with a weight of 1 would immediately
become one of the most influential classifi >rs in the space. We have found that a better
strategy is to initialize a new instance with a weight equal to that of its matching exemplar.
We have adopted this weighting strategy in the experiments described below. This weighting
scheme completes the Modified Value Difference Metric.

66 S. COST AND S. SALZBERG

3. Domains

We chose for our comparisons three domains that have received considerable attention from
the machine learning research community: the word-pronunciation task (Sejnowski &
Rosenberg, 1986; Shavlik et al., 1989), the prediction of protein secondary structure (Qian
& Sejnowski, 1988; Holley & Karplus, 1989), and the prediction of DNA promoter se-
quences (Towell et al., 1989). Each domain has only symbolic-valued features; thus, our
MVDM is applicable whereas standard Euclidean distance is not. Sections 3.1-3.3 describe
the three databases and the problems they present for learning.

3.1. Protein secondary structure

Accurate techniques for predicting the folded structure of proteins do not yet exist, despite
increasingly numerous attempts to solve this problem. Most techniques depend in part on
prediction of the secondary structure from the primary sequence of amino acids. The secon-
dary structure and other information can then be used to construct the final, tertiary struc-
ture. Tertiary structure is very difficult to derive directly, requiring expensive methods of
X-ray crystallography. The primary sequence, or sequence of amino acids which constitute
a protein, is relatively easy to discover. Attempts to predict secondary structure involve
the classification of residues into three categories: « helix, 8 sheet, and coil. Three of the
most widely used approaches to this problem are those of Robson (Garnier et al., 1978),
Chou and Fasman (1978), and Lim (1974), which produce classification accuracies ranging
from 48% to 58%. Other, more accurate techniques have been developed for predicting
tertiary from secondary structure (e.g., Cohen et al., 1986; Lathrop et al., 1987), but the
accurate prediction of secondary structure has proven to be an extremely difficult task.
The learning problem can be described as follows. A protein consists of a sequence of
amino acids bonded together as a chain. This sequence is known as the primary structure.
Each amino acid in the chain can be one of twenty different acids. At the point at which
two acids join in the chain, various factors including their own chemical properties deter-
mine the angle of the molecular bond between them. This angle, for our purposes, is char-
acterized as one of three different types of “fold”: « helix, 8 sheet, or coil. In other words,
if a certain number of consecutive acids (hereafter residues) in the chain join in a manner
which we call «, that segment of the chain is an « helix. This characterization of fold
types for a protein is known as the secondary structure. The learning problem, then, is:
given a sequence of residues from a fixed length window from a protein chain, classity
the central residue in the window as « helix, 8 sheet, or coil. The setup is simply:

window
A

s \
....TDYGNDVEYXGQVT E GTPGKSFNLNFDTG....

Nt
central residue

LEARNING WITH SYMBOLIC FEATURES 67

Qian and Sejnowski (1988) and Holley and Karplus (1989) formulated the problem in ex-
actly the same manner. Both of these studies found the optimal window size to be approx-
imately 17 residues (21 was the largest window tested in either study). In a separate statistical
study, Cost (1990) found that a window of size five or six is nearly sufficient for uniquely
identifying all residues in our data set, as is indicated by Table 3. This table shows the
percentage of sequences of a given size which unambiguously (for the entire data set) deter-
mines a fold classification for a protein segment. For example, if we consider a window
size of 6 centered on the residue being classified, we found that 99.41% of the patterns
in the data set were unique. In addition, we found that there is slightly more information
contained in residues to the left of the point of prediction than to the right. (The point
of prediction is the residue for which the secondary structure must be predicted.) The “skew”
at the top of each column in the table indicates the left or right shift of the pattern with
respect to the center of the window; e.g., a skew of —2 means the pattern was centered
two positions to the left of the point of prediction. The table shows quite clearly that, if
one stored all patterns of length 6 in the data set, one could then classify the data set with
better than 99% accuracy.

Some of the obstacles to good performance in this domain include under-sampling and
non-local effects. Considering only a window of size 5 and the database that we are using,
at most only about 21,618 of 3.2 million possible segments are represented in the database,
or 0.68%. Also, proteins in solution form globular structures, the net result of which is
that residues which are sequentially very far from each other may be physically quite close,

Table 3. Percent unique patterns by window size.

Skew
Window Size -3 -2 -1 0 1 2 3
1 00.00 00.00 04.76 00.00 04.76 00.00 00.00
2 01.43 02.38 03.09 00.25 04.77 01.67 00.71
3 45.44 45.64 47.33 48.81 47.69 46.06 45.62
4 91.39 91.75 91.95 92.01 92.11 91.90 91.61
5 98.73 98.78 98.78 98.75 98.69 98.65 98.53
6 99.35 99.41 99.41 99.41 99.36 99.29 99.23
7 99.50 99.53 99.54 99.52 99.48 99.42 99.36
8 99.55 99.58 99.60 99.59 99.59 99.54 99.49
9 99.62 99.63 99.63 99.64 99.62 99.58 99.54
10 99.63 99.65 99.65 99.67 99.66 99.64 99.60
11 99.66 99.68 99.69 99.68 99.67 99.65 99.62
12 99.68 99.68 99.70 99.70 99.69 99.68 99.68
13 99.71 99.71 99.71 99.70 99.69 99.70 99.69
14 99.72 99.73 99.72 99.72 99.71 99.71 99.71
15 99.75 99.74 99.72 99.72 99.73 99.72 99.73
16 99.75 99.74 99.73 99.74 99.74 99.74
17 99.76 99.75 99.75 99.74 99.75
18 99.76 99.76 99.75 99.75
19 99.76 99.76 99.75
20 99.76 99.76
21 99.77

68 S. COST AND S. SALZBERG

and have significant effects on each other. For this reason, secondary structure probably
cannot be completely determined from primary structure. Qian and Sejnowski (1988) claim
that no method incorporating only local information will perform much better than current
results in the 60%-70% range (for non-homologous proteins).

3.2. Promoter sequences

The promoter sequence database was the subject of several recent experiments by Towell et
al. (1990). Related to the protein folding task, it involves predicting whether or not a given
subsequence of a DNA sequence is a promoter—a sequence of genes that initiates a process
called transcription, the expression of an adjacent gene. This data set contains 106 examples,
53 of which are positive examples (promoters). The negative examples were generated from
larger DNA sequences that are believed to contain no promoters. See Towell et al. (1990)
for more detail on the construction of the data set. An instance consists of a sequence of
57 nucleotides from the alphabet a, ¢, g, and ¢, and a classification of + or —. For learn-
ing, the 57 nucleotides are treated as 57 features, each with one of four symbolic values.

3.3. Pronunciation of English text

The word-pronunciation problem presents interesting challenges for machine learning, al-
though effective practical algorithms have been developed for this task. Given a relatively
small sequence of letters, the objective is to learn the sound and stress required to pro-
nounce cach part of a given word. Sejnowski and Rosenberg (1987) introduced this task
to the learning community with their NETtalk program. NETtalk, which used the back
propagation learning method, performed well on this task when pronouncing both words
and continuous spoken text, although it could not match the performance of current speech
synthesis programs.

The instance representation for text pronunciation is very similar to the previous prob-
lems. Instances are sequences of letters which make up a word, and the task is to classify
the central letter in the sequence with its correct phoneme. We used a fixed window of
seven characters for our experiments, as did Sejnowski and Rosenberg. (Stanfill and Waltz
(1986) used a window of size 15.) The classes include 54 phonemes plus 5 stress classifica-
tions. When phoneme and stress are predicted, there are 5 X 54 = 270 possible classes,
although only 115 actually occur in the dictionary. Our experiments emphasized prediction
of phonemes only.

The difficulties in this domain arise from the irregularity of natural language, and the
English language in particular. Few rules exist that do not have exceptions. Better perfor-
mance on the same data set can be obtained with (non-learning) rule-based approaches
{Kontogiorgios, 1988); however, learning algorithms have trouble finding the best set of rules.

4. Experimental results

In this section, we describe our experiments and results on each of the three test domains.
For comparison, we use previously published results for other learning methods. In order

70 S. COST AND S. SALZBERG

Table 5. Classification accuracy (%) by window size.

Window Size Unweighted PEBLS PEBLS Holley & Karplus Qian & Sejnowski
3 57.5 57.6 60.0 57.7
5 60.9 61.4 60.6 60.5
7 62.7 63.8 59.6 61.9
9 64.7 65.6 62.3 62.3

11 66.0 67.2 61.6 62.1
13 66.5 68.1 62.7 62.7
15 67.6 70.0 62.9 62.2
17 68.0 70.8 63.2 61.5
19 69.2 71.0 62.6 —

21 69.1 69.8 62.9 61.6

67.8% . The best conventional technique, as reported by Holley and Karplus, produced accu-
racies of only 55 %. We also performed experiments using the overlap metric, which pro-
duced accuracies in the 55%-60% range for different window sizes.

A matched pairs analysis reveals that the weighted version of PEBLS performs significantly
better than the unweighted version. In particular, a #-test shows the weighted version to
be better at the 99.95% confidence level (t = 5.48, d.f. = 9). Thus the exemplar weights
did improve performance significantly.

Another frequently used measure of performance in this domain are the correlation coef-
ficients, which provide a measure of accuracy for each of the categories. They are defined
by the following equation, from Mathews (1975):

_ Do X Hy — Uy X 04
Y Ny F)y T 0)(Pa T U)(Py + 0)

where p,, is the number times « was correctly predicted, n,, is the number of times « was
correctly rejected, o, is the number of false positives for o, and #,, is the number of misses
(o was correct but not predicted). Similar definitions were used for Cg and C,;. These
coefficients for PEBLS and for the two back propagation experiments appear in Table 6.

Table 6. Comparison of correlation coefficients.

Algorithm % Correct C, Cg Coi
PEBLS 71.0 0.47 0.45 0.40
Qian and Sejnowski 64.3 0.41 0.31 0.41

Holley and Karplus 63.2 0.41 0.32 0.46

LEARNING WITH SYMBOLIC FEATURES 69

to make the comparisons valid, we attempted to duplicate the experimental design of earlier
studies as closely as possible, and we used the same data as was used by those studies.

4.1. Protein secondary structure

The protein sequences used for our experiments were originally from the Brookhaven
National Laboratory. Secondary structure assignments of «-helix, 3-sheet, and coil were
made based on atomic coordinates using the method of Kabsch and Sander (1983). Qian
and Sejnowski (1988) collected a database of 106 proteins, containing 128 protein segments
(which they called ““subunits”). We used the same set of proteins and segments that they
used. A parallel experiment by Sigillito (1989), using back propagation on the identical
data, reproduced the classification accuracy results of Qian and Sejnowski.

For our initial experiment, we divided the data into a training set containing 100 protein
segments and a test set containing 28 segments. There was no overlap between the two
sets. Table 4 shows the composition of the two sets. Table 4 shows that the percentages
of the three categories were approximately the same in the test set as in the training set.?
Protein segments were not separated for the main experiments; i.e., all instances drawn
from one segment resided together either in the training or the testing set.

PEBLS was trained as described above on the training set, using r = 1 for Equation 2.
(We found in preliminary experiments that this produced slightly improved accuracy for
this domain.) We repeated the main experiment for a variety of different window sizes,
ranging from 3 to 21. For this domain, PEBLS included a post-processing algorithm based
on the minimal sequence length restrictions used by Holley and Karplus (1989). These restric-
tions stated that a §-sheet must consist of a contiguous sequence of no fewer than two such
residues, and an «-helix no fewer than four. Where subsequences were predicted that did
not conform to these restrictions, the individual residues were re-classified as coil. Qian
and Sejnowski (1989) used a different form of post-processing, which they called a “cas-
caded” neural net. They fed the output of one net into another network, which then attempted
to re-classify some of the residues. The second network was designed to “‘take advantage
of ... correlations between neighboring secondary structure assignments.”

Our results on classification accuracy are given in Table 5. The “unweighted” PEBLS
column shows results using PEBLS without the weights wy on exemplars. The entries in
Table 5 are the percentages of correct predictions for the test set. As the table shows, the
highest accuracy was produced by PEBLS, which achieved 71.0% with a window of size
19. Qian and Sejnowski obtained their best result, 64.3 %, using a cascaded network archi-
tecture. When they used a single network design (similar to that of Holley and Karplus),
their best result was 62.7% . The best performance of PEBLS without post-processing was

Table 4. Composition of training and test sets.

Number of Protein Segments Number of Residues % o % B % Coil

Train 100 17142 26.1 19.5 54.4
Test 28 4476 21.8 23.1 55.1

LEARNING WITH SYMBOLIC FEATURES 71

Table 7. Training PEBLS on varying percentages of the data set.

Training Set Size (%) Percent Correct on Test Set
10 56.1
20 57.1
30 58.7
40 59.7
50 60.2
60 60.9
70 62.3
80 63.4
90 65.1

Variations in training set size. A third measure of classification performance involves
repeated testing of randomly selected test sets. Table 7 shows the performance of PEBLS
(weighted) when trained on varying percentages of randomly selected instances from the
entire data set, using a window of size 19. In each trial here, a set of examples was chosen
at random for training, and these examples were removed from the data set. The test phase
then used the remaining examples. (Since each protein comprises many examples, different
parts of a single protein could appear in both the training and test set on a given trial.)
Classification accuracy in Table 7 is averaged over ten runs for each training set size. Note
that the numbers reported in Table 7 reflect the classification performance of PEBLS without
the post-processing for minimal sequence length restrictions (as explained above, this post-
processing was part of our experiments and of Holley and Karplus’ experiments). Thus,
the performance should not be compared with the weighted algorithm using the same win-
dow size and no post-processing. For weighted PEBLS, this figure was 67.8% (with post-
processing the accuracy improves to 71.0%). Thus we see that the particular composition
of the training and testing sets in the earlier experiment—which was constructed to mimic
the design of earlier experiments—improved the accuracy of the learning algorithm *

4.2. Promoter sequences

The experiments run by Towell et al. (1990) on the promoter sequence database were leave-
one-out trials. This methodology involves removing one element from the data, training
on all the remaining data, and testing on the one element. Thus, with 106 instances in the
database, PEBLS was trained on 105, and tested on the remaining 1. This was performed
for each instance in the database, and the entire procedure was repeated 10 times, each
time using a different random order of the instances. (Towell et al. also repeated the entire
leave-one-out experiment 10 times, using different randomized initial states of their neural
nets each time.)

The results are shown in Table 8, which compares PEBLS to Towel et al.’s KBANN algo-
rithm. In addition, we report numbers obtained by Towell et al. for several other machine
learning algorithms, including back propagation, ID3, nearest neighbor with the overlap
metric, and the best method reported in the biological literature (O’Neill, 1989). Recall
that the overlap metric measures distance as the number of features with different values.

72 S. COST AND S. SALZBERG

Table 8. Promoter sequence prediction.

Algorithm Error Rate
PEBLS 4/106
KBANN 4/106
PEBLS (unweighted) 6/106
Back propagation 8/106
ID3 19/106
Nearest Neighbor (overlap) 13/106
O'Neill 12/106

It is also worth noting that in each of the 10 test runs of PEBLS, the same four instances
caused the errors, and that three of these four were negative instances. Towell notes that
the negative examples in his database (the same data as used here) were derived by selecting
substrings from a fragment of E. coli bacteriophage that is ‘‘believed not to contain any
promoter sites” (Towell et al., 1990). We would suggest, based on our results, that four
of the examples be re-examined. These four examples might be interesting exceptions to
the general patterns for DNA promoters.

4.3. English text pronunciation

For the English pronunciation task, we used the training set defined by Sejnowski and
Rosenberg (1987) for their NETtalk program. This set consists of all instances drawn from
the Brown Corpus, or the 1000 most commonly used words of the English language. We
were unable to discern a difference between that training set and the somewhat more
restricted set of Shavlik (Shavlik et al., 1989), so only one experimental design was used.
After training on the Brown Corpus, PEBLS was tested on the entire 20,012-word Merriam
Webster Pocket Dictionary. Results are presented in Table 9 for weighted and unweighted
versions of the PEBLS algorithm. For comparison, we give results from the NETtalk pro-
gram, which used the back propagation algorithm.

Shavlik et al. (1989) replicated Sejnowski and Rosenberg’s methodology aspart of their
work, and although their results differ from Sejnowski and Rosenberg’s (not surprisingly,
since back propagation networks require much tuning), they make for easier comparison
with ours. This property follows from the fact that the original Sejnowski and Rosenberg
study used a distributed output encoding; that is, their system produced a 26-bit sequence
(rather than one bit for each of the 115 phoneme/stress combinations). The first 21 bits
were a distributed encoding of the 51 phonemes, and the remaining 5 bits were a local

Table 9. English text pronunciation.

Algorithm Phoneme Accuracy Phoneme/Stress
PEBLS 78.2 69.2
PEBLS (unweighted) 79.1 67.2

Back propagation — 77.0

LEARNING WITH SYMBOLIC FEATURES 73

Table 10. Phoneme/stress accuracy and output encoding.

Local Encoding Distributed Encoding
Algorithm (% Correct) (% Correct)
PEBLS 69.2 —
Back propagation 63.0 72.3
D3 64.2 69.3
Perceptron 49.2 42.1

Table 11. PEBLS performance on varying training

set sizes.
Percentage of Brown % Phonemes Correct
Corpus for Training in Full Dictionary
5 60.1
10 66.2
25 72.1
50 75.8
75 71.4
100 78.2

encoding of the stress types. The 21-bit output vector is then matched to the closest of the
descriptive vectors for the 51 phonemes. Shavlik et al. explicitly compared this encoding
to a purely local encoding. Since the output of PEBLS was always local (i.e., the output
was a specific phoneme or phoneme/stress combination), it is more appropriate to compare
it to other methods that produced the same output. Table 10 shows our results® compared
to back propagation, perceptron, and ID3 (Quinlan, 1986), where the latter three results
are all from Shavlik et al. (1989). The table shows that PEBLS performed slightly better
than the other learning methods when the output was a local encoding. Distributed encoding
improved the results of both ID3 and back propagation, but comparable experiments with
PEBLS, which would require significant changes to the output function, have not yet been
performed.

Shavlik et al. also tested performance of back propagation, ID3 and perceptron learning
as a function of the size of the training set. We performed a similar experiment; our results
are shown in Table 11, and graphically in Figure 4 for comparison. Results are averaged
over 10 runs, with different randomly-chosen training sets on each run. Not surprisingly,
performance improves steadily as the size of the training set increases. What was surpris-
ing, though, was how good performance was with even very small training sets.

5. Discussion

5.1. Classification accuracy

Our studies show that the classification accuracy of PEBLS is, in general, equal or slightly
superior to that of other learning methods for domains with symbolic features. Most notably,

74 S. COST AND S. SALZBERG

80 —

60— C/Q/Q——————'——'@———’_e
% correct

ontestdata »q __|

o-- PEBLS
20 — x -- back propagation
*--ID3
I I O
100 200 300 500 700

Number of training examples

Figure 4. Classification accuracy as a function of training set size.

on the protein structure prediction task, PEBLS gives considerably better classification
results than back propagation, both with and without weighted exemplars. It should be
noted that in what should be considered the most fair test of performance, the random
selection of residues for varying percentages of the data set, the performance figures for
our algorithm are slightly worse, albeit still quite good. It would be informative to see
a similar experiment run with a neural network learning algorithm. Recently, Zhang and
Waltz have investigated a hybrid learning method for protein structure prediction, combin-
ing nearest neighbor with neural net learning and statistical information. Figures have not
yet been published, but their method also outperforms previous methods (Waltz, 1990),
although its accuracy does not exceed that of PEBLS.

For the DNA promoter sequence prediction, Towell et al. (1990) report that KBANN,
a technique that integrates neural nets and domain knowledge, is superior to standard back
propagation with 99.95% certainty (r = 5.29, d.f. = 18). KBANN was designed specifically
to show how adding domain knowledge could improve the performance of a neural net
learning algorithm. In addition, KBANN outperformed ID3 and nearest neighbor, when
nearest neighbor was using the overlap metric. Using the same experimental design, PEBLS
exactly matched the performance of KBANN, and by the same measures was superior to
back propagation, ID3, and the O’Neill method on this data. The strong performance of
PEBLS on this data set demonstrates that nearest neighbor can perform well using both
large (protein folding) and small (promoter sequences) training sets. It is especially significant
that PEBLS, using a “weak” general method, was able to match the performance of
KBANN’s knowledge-rich approach.

In the English pronunciation domain, the results are mixed. The best result of Sejnowski
and Rosenberg, 77 %, is superior to the phoneme/stress accuracy of PEBLS, 69.2%. How-
ever, when Shavlik et al. replicated the experiment, their best result was 72.3%, and as
we note above, both the neural net results reflect a distributed output encoding. With a
local encoding—which is what PEBLS produces—back propagation’s classification accuracy
is 63.0%. and ID3 is 64.2%, both somewhat lower than PEBLS. Our conclusion is that

LEARNING WITH SYMBOLIC FEATURES 75

all techniques perform similarly, and that no learning technique yet comes close to the
performance of good commercial systems, much less native speakers of English. Clearly,
there is still room for considerable progress in this domain.

Shavlik et al. concluded, based on their experiments with classification accuracy versus
number of training examples (see Figure 4 on the NETtalk data), that for small amounts
of training data, back propagation was preferable to the decision trees constructed by ID3.
However, our results indicate that nearest neighbor algorithms also work well when the
training set is small. Our performance curve in Figure 4 shows that PEBLS needs very
few examples to achieve relatively good performance.

5.2. Transparency of representation and operation

Once trained on a given domain, PEBLS contains in its memory a set of information that
is relatively perspicuous in comparison to the weight assignments of a neural network.
The exemplars themselves provide specific reference instances, or “case histories™ as it
were, which may be cited as support for a particular decision. Other information may easily
be gathered during the training or even the testing phase that can shed additional light on
the domain in question. For instance, consider attaching a counter to each exemplar and
incrementing it each time the exemplar is used as an exact match. By comparing this with
the number of times an exemplar was used, we can get a good idea as to whether the ex-
emplar is a very specific exception, or part of a very general rule. By examining the weight
wy we attach to exemplars, we can determine whether the instance is a reliable classifier.
The distance tables reveal an order on the set of symbolic values that is not apparent in
the values alone. On the other hand, the derivation of these distances is not perspicuous,
being derived from global characteristics of the training data.

For the English pronunciation task, distributed output encodings have been shown to
produce superior performance to local encodings (Shavlik et al, 1989). This result points
out a weakness of PEBLS, and of the I-nearest-neighbor method, in that they do not allow
for distributed output encodings. Neural nets can handle such encodings quite easily, and
decision trees can handle them with some difficulty. (Shavlik et al. built a separate decision
tree for each of the 26 bits in the distributed encoding of the phoneme/stress pairs in this
task.) This raises the question of whether nearest neighbor methods can handle such encod-
ings. One possibility is to use k-nearest neighbor, which would allow more than one exemplar
to determine each of the output bits. E.g., if each exemplar contained the 26-bit encoding,
the predicted value of each bit i for a new example would be determined by the majority
vote of the & nearest neighbors for that bit. Further experiments are required to determine
if such a strategy would be advantageous in general.

As for transparency of operation, the learning and classification algorithms of the nearest
neighbor algorithm are very simple. The basic learning routine simply stores new examples
in memory. In PEBLS, the computation of exemplar weights is nothing more than simple
record-keeping based on the classification performance of the existing exemplars. Adding
exemplars and changing weights change the way nearest neighbor algorithms partition a
feature space, as we have illustrated above with our exception spaces. Although this may
be hard to visualize in more than three dimensions, it is nonetheless straightforward.

76 S. COST AND S. SALZBERG

One minor drawback is that the PEBLS method is nonincremental, unlike back propaga-
tion and some versions of decision tree methods. An incremental extension to PEBLS would
probably be quite expensive, since the value difference tables might have to be recomputed
many times. On the other hand, extending PEBLS to handle mixed symbolic and numeric
data is quite straightforward: the algorithm could use simple differences for numeric features,
and value difference tables for symbolic ones.

Finally, our experiments in the protein domain demonstrated that the use of weights at-
tached to exemplars can improve the accuracy of nearest neighbor algorithms. In other
domains, such as English pronunciation, weights did not make a significant difference.
Based on these results, and our earlier results on real-valued domains (Salzberg, 1990;
1991), we conclude that exemplar weights offer real potential for enhancing the power of
practical learning algorithms.

6. Conclusion

We have demonstrated, through a series of experiments, that an instance-based learning
algorithm can perform exceptionally well on domains in which features values are sym-
bolic. In direct comparisons, our implementation (PEBLS) performed as well as (or better
than) back propagation, ID3, and several domain-specific learning algorithms on several
difficult classification tasks. In addition, nearest neighbor offers clear advantages in that
it is much faster to train and its representation relatively easy to interpret. No one yet knows
how to interpret the networks of weights learned by neural nets. Decision trees are somewhat
easier to interpret, but it is hard to predict the impact of a new example on the structure
of the tree. Sometimes one new example makes no difference at all, and at other times
it may radically change a large portion of the tree. On the other hand, neural nets have
a fixed size, and decision trees tend to be quite small, and in this respect both methods
compress the data in a way that nearest neighbor does not. In addition, classification time
is fast (dependent only on the depth of the net or tree, not on the size of the input). Based
on classification accuracy, though, it is not clear that other learning techniques have an
advantage over nearest-neighbor methods.

With respect to nearest neighbor learning per se, we have shown how weighting exemplars
can improve performance by subdividing the instance space in a manner that reduces the
impact of unreliable examples. The nearest neighbor algorithm is one of the simplest learn-
ing methods known, and yet no other algorithm has been shown to outperform it consistently.
Taken together, these results indicate that continued research on extending and improving
nearest neighbor learning algorithms should prove fruitful.

Acknowledgments

Thanks to Joanne Houlahan and David Aha for numerous insightful comments and sugges-
tions. Thanks also to Richard Sutton and three anonymous reviewers for their detailed
comments and ideas. This research was supported in part by the Air Force Office of Scien-
tific Research under Grant AFOSR-89-0151, and by the National Science Foundation under
Grant IRI-9116843.

LEARNING WITH SYMBOLIC FEATURES 77

Notes

1. For reference, the system takes about 30 minutes of real time on a DECstation 3100 to train on 17,142 instances.
The experimenter’s time is limited to a few minutes defining the data set.

2. The parallelization of the algorithm was developed to speed up experimentation, and is of no theoretical impor-
tance to our learning model.

3. Qian and Sejnowski carefully balanced the overall frequencies of the three categories in the training and test
sets, and we attempted to do the same. In addition, they used a training set with 18,105 residues, while ours
was slightly smaller. Although our databases were identical, we did not have access to the specific partitioning
into training and test sets used by Qian and Sejnowski.

4. One likely source of variation in classification accuracy is homologies between the training and test sets. Homo-
logous proteins are structurally very similar, and an algorithm may be much more accurate at predicting the
structure of a protein once it has been trained on a homologous one.

5. In our preliminary experiments, we used the overlap metric on this database, with abysmal results. Our desire
to improve these results was one of the reasons we developed the MVDM.

References

Aha, D. (1989). Incremental, instance-based learning of independent and graded concept descriptions. Proceedings
of the Sixth International Workshop on Machine Learning (pp. 387-391). Ithaca, NY: Morgan Kaufmann.
Aha, D. & Kibler, D. (1989). Noise-tolerant instance-based learning algorithms. Proceedings of the Eleventh Inter-

national Joint Conference on Artificial Intelligence (p. 794-799). Detroit, MI: Morgan Kaufmann.

Aha, D. (1990). A study of instance-based algorithms for supervised learning tasks. Doctoral dissertation, Department
of Information and Computer Science, University of California, Irvine. Technical Report 90-42.

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6(1) 37-66.

Chou, P. & Fasman, G. (1978). Prediction of the secondary structure of proteins from their amino acid sequence.
Advanced Enzymology, 47 , 45-148. Biochemistry, 13, 222-245.

Cohen, F., Abarbanel, R., Kuntz, I., & Fletterick, R. (1986). Turn prediction in proteins using a pattern match-
ing approach. Biochemistry, 25, 266-275.

Cost, S. (1990). Master’s thesis, Department of Computer Science, Johns Hopkins University.

Cost, S. & Salzberg, S. (1990). Exemplar-based learning to predict protein folding. Proceedings of the Symposium
on Computer Applications to Medical Care (pp. 114-118). Washington, DC.

Cover, T. & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory,
13(), 21-27.

Crick, F. & Asanuma, C. (1986). Certain aspects of the anatomy and physiology of the cerebral cortex. In I.
McClelland, D. Rumelhart, & the PDP Research Group (Eds.), Parallel distributed processing: Explorations
in the microstructure of cognition (Vol. II). Cambridge, MA: MIT Press.

Dietterich, T., Hild, H., & Bakiri, G. (1990). A comparative study of ID3 and backpropagation for English text-
to-speech mapping. Proceedings of the 7th International Conference on Machine Learning (pp. 24-31), San
Mateo, CA: Morgan Kaufmann.

Fertig, S. & Gelernter, D. (1991). FGP: A virtual machine for acquiring knowledge from cases. Proceedings of
the 12th International Joint Conference on Artificial Intelligence (pp. 796-802). Los Altos, CA: Morgan Kaufmann.

Fisher, D. & McKusick, K. (1989). An empirical comparison of ID3 and backpropagation. Proceedings of the
International Joint Conference on Artificial Intelligence (pp. 788-793) San Mateo, CA: Morgan Kaufmann.

Garnier, J., Osguthorpe, D., & Robson, B. (1978). Analysis of the accuracy and implication of simple methods
for predicting the secondary structure of globular proteins. Journal of Molecular Biology, 120, 97-120.

Hanson, S. & Burr, D. (1990). What connectionist models learn: Learning and representation in connectionist
networks. Behavioral and Brain Sciences, 13 471-518.

Holley, L. & Karplus, M. (1989). Protein secondary structure prediction with a neural network. Proceedings
of the National Academy of Sciences USA, 86, 152-156.

Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-
bonded and geometric features. Biopolymers, 22, 2577-2637.

78 S. COST AND S. SALZBERG

Kontogiorgis, S. (1988). Automatic letter-to-phoneme transcription for speech synthesis (Technical Report
JHU-88/22). Department of Computer Science, Johns Hopkins University.

Lathrop, R., Webster, T., & Smith, T. (1987). ARIADNE: Pattern-directed inference and hierarchical abstraction
in protein structure recognition. Communications of the ACM, 30(11), 909-921.

Lim, V. (1974). Algorithms for prediction of alpha-helical and beta-structural regions in globular proteins. Journal
of Molecular Biology, 88, 873-894.

Mathews, BW. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochimica et Biophysica Acta, 405, 442-451.

McClelland, J. & Rumelhart, D. (1986). A distributed model of human learning and memory. In J. McClelland,
D. Rumelhart, & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstruc-
ture of cognition (Vol. II). Cambridge, MA: MIT Press.

Medin, D. & Schaffer, M. (1978). Context theory of classification learning. Psychological Review, 85(3) 207-238.

Mooney, R., Shavlik, J., Towell, G., & Gove, A. (1989). An experimental comparison of symbolic and connec-
tionist learning algorithms. Proceedings of the International Joint Conference on Artificial Intelligence (pp.
775-780). San Mateo, CA: Morgan Kaufmann.

Nosofsky, R. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology:
Learning, Memory, and Cognition 10(1), 104-114.

O’Neill, M. (1989). Escherichia coli promoters: 1. Consensus as it relates to spacing class, specificity, repeat
substructure, and three dimensional organization. Journal of Biological Chemistry, 264, 5522-5530.

Preparata, F. & Shamos, M. (1985). Computational geometry: An introduction. New York: Springer-Verlag.

Qian, N. & Sejnowski, T. (1988). Predicting the secondary structure of globular proteins using neural network
models. Journal of Molecular Biology, 202, 865-884.

Reed, S. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382-407.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by backpropagating errors. Natre,
323(9), 533-536.

Rumelhbart, D., Smolensky, P., McClelland, J., & Hinton, G. (1986). Schemata and sequential thought processes
in PDP models. In J. McClelland, D. Rumelhart, & the PDP Research Group (Eds.), Parallel distributed proc-
essing: Explorations in the microstructure of cognition (Vol. II). Cambridge, MA: MIT Press.

Rumelhart, D., McClelland, J., & the PDP Research Group (1986). Parallel distributed processing: Explorations
in the microstructure of cognition (Vol. I). Cambridge, MA: MIT Press.

Salzberg, S. (1989). Nested hyper-rectangles for exemplar-based learning. In K. P. Jantke (Ed.), Analogical and
Inductive Inference: International Workshop AIl ’89. Berlin: Springer-Verlag.

Salzberg, S. (1990). Learning with nested generalized exemplars. Norwell, MA: Kluwer Academic Publishers.

Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning, 6(3), 251-276.

Sejnowski, T. & Rosenberg, C. (1987). NETtalk: A parallel network that learns to read aloud. Complex Systems,
1 145-168. (Also Technical Report JHU/EECS-86/01. Baltimore, MD: John Hopkins University.

Shavlik, J., Mooney, R., & Towell, G. (1989). Symbolic and neural learning algorithms: an experimental com-
parison (Technical Report #857). Madison, WI: Computer Sciences Department, University of Wisconsin.

Sigillito, V. (1989). Personal communication.

Stanfill, C. & Waltz, D. (1986). Toward memory-based reasoning. Communications of the ACM, 29(12), 1213-1228.

Towell, G., Shavlik, J., & Noordewier, M. (1990). Refinement of approximate domain theories by knowledge-
based neural networks. Proceedings Eighth National Conference on Artificial Intelligence (pp. 861-866). Menlo
Park, CA: AAAI Press.

Waltz, D. (1990). Massively parallel Al. Proceedings Eighth National Conference on Artificial Intelligence (pp.
1117-1122). Menlo Park, CA: AAAI Press.

Weiss, S. & Kapouleas, 1. (1989). An empirical comparison of pattern recognition, neural nets, and machine
learning classification methods. Proceedings of the International Joint Conference on Artificial Intelligence
(pp- 781-787). San Mateo, CA: Morgan Kaufmann.

Received Qctober 9, 1990
Accepted June 14, 1991
Final Manuscript January 21, 1992

