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Let Mf(x)=sup|S, f(x)|, where S, f denotes the nth partial sum of the
Fourier series of f. We will show

1) we A, p>1, implies f[Mf]”w = Cf [f1% w.

Recall that a nonnegative weight function w € 4,, p>1, if there is a
constant K such that

RTI t

for all intervals I. The A4, condition, p>1, characterizes all weights w
for which the mapping of f into the Hardy-Littlewood maximal function
of fis bounded on the weighted L? space L?(w). (See Muckenhoupt [6].)
This fundamental fact leads to boundedness on L?(w) for other operators
which can be associated with the Hardy-Littlewood maximal function.
For example, the conjugate function and more general singular integrals
are of this type. Also, [|S,f—f|?w—0 (n— o) if and only if we 4,,
p>1. (See Hunt, Muckenhoupt and Wheeden [5] and Coifman [3].) It
follows that the inequality in (1) holds only if we 4, p>1.

Our proof of (1) follows closely the proof in Coifman [3]. We will
prove a Burkholder-Gundy type distribution function inequality which
relates the weighted distribution functions of modified versions of Mf
and the Hardy-Littlewood maximal function of f. (See Burkholder and
Gundy [1].) To do this we will use the boundedness of M on L7, r>1,
and an extremely useful consequence of the 4, condition which relates
the w-weighted measure and the Lebesgue measure of certain types of
sets. This useful property is closely related to the development of Mucken-
houpt [6] and was first explicitly used in connection with a distribution
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function inequality by Fefferman in an unpublished paper. The distribu-
tion function inequality implies the L?(w) norm of Mf is majorized by a
constant multiple of the L?(w) norm of the modified Hardy-Littlewood
maximal function of f. (1) then follows from Muckenhoupt’s result on
the L?(w) boundedness of the Hardy-Littlewood maximal function.

Let

1/r
H,f(x) = sup (i f If(t)I’dt) . ezl
>0 \2h Jjz—t|<n

Note that H,f is the usual Hardy-Littlewood maximal function and so
f[HyfIPw=SC [ |fI'w if we 4,, s>1. (See Muckenhoupt [6].) Since
H, f=(H,(|fI))V", it follows that

@) W€ Ay, v < p, implies | [H, fI'w = C| |f|”w.
D

We will need to use (2) for some r>1. This is possible because of the
following fundamental result of Muckenhoupt [6]:

©)) wed, p>1, implies wed,, forsomel <r < p.
Following Carleson [2], we replace Mf by

M*f = sup

n

f M) )(x — 1) dt‘ .
le—t| <w
In fact, we will use

M**f = sup sup

n &>0

L e (D))(x — 1) dt‘ )

<|e—t|<w
Standard arguments imply
(4 Mf = CH.f+ MYf) = C(H,f + M**f) = C(H.f + H(Mf)).

From (4) and (2) with r=1 we see that we may replace Mf by M**f
in (1). Also, since | [M*f1'<C [ |f|", r>1, (see Hunt [4]) we have

(5) r > 1 implies f[M**f]’ = Cf £
Given w e 4, p>1, choose r as in (3). We will prove
(6) my(M**f > 34, H,f = y2) = C(y)m(M**f > 7),

where C(y)—0 (y—0). (m,(E)=[g w.)
Given this weighted distribution function inequality it is easy to com-
plete the proof of (1). From (6) we obtain

m(M**f > 32) < my(H,f > 4y) + C(y)m(M**f > 2).
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Hence,
pf 27 my (M**f > 32) dA
0

= o[ mut g > ) 4 Cor [ my > s
0 0

and so [ [M**f]Pw=[y~?/(3-?—=C(y))] { [H,f1?w. (2) then implies (1).

To prove (6) note that the set (M**f> 1) is open, so (M**f>)=U) I,
where the intervals I;=(a;, a;+9;) are disjoint and M**f(«,)<A. It is
then sufficient to prove

Q) my(x € I;: M**f > 34, H,f = y2) = C(y)mu(I)).

We may clearly assume there is a point z; € I; with H, f(z;)SyA.

L) =f(x), xel,
=0, x ¢, and f, = f — f1.

m will denote Lebesgue measure.
Using (5) we have

m(M**f, > 7) < 1 f [M**,] < i f Ak

= CAH, f(z)I'm(1 ) = Cy'm(I).

For any x € I;, n and ¢>0,

<|z—t|<w

[ o =na~] - nal

is majorized by CoH,f(z;)SCoH, f(z;)SCyyA. It follows that xe€J;
implies
M**fy(x) = M**f(x;) + Copd = (1 + Cop)A,
and so
M*¥f(x) = M**f,(x) + M**fy(x) £ M**fi(x) + (1 + Cop)A.

Hence, M**f(x)>34, x €1;, implies M**f,(x)>4 if 14+Cpy<2. Col-
lecting results we obtain
®) m(x € I;:M*™f(x) > 34, Hf < y3) < Cy'm(I)).

(7) follows immediately from (8) and the following consequence of
the A4, condition:
(9) If w € 4,, any p, then there are positive constants C and d such that
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for any interval I and measurable set E, m(ENI)=em(I) implies
m(ENDZCem,(I).

To prove (9) we use the fact that w € 4,, any p, implies there is s>1
and a constant C such that

(10) ( fl ws)llsg C 1|91 fl w

for all intervals 1. (See Muckenhoupt [6].) If (1/s)+(1/s")=1, Holder’s
inequality and (10) imply

1/s
f w = (m(E N I))W( f ws) < C(m(E N Dim(D)* f w.
BENI I 1
This gives (9) and completes our proof.
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