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A Weighted Optimization Approach
to Time-of-Flight Sensor Fusion

Sebastian Schwarz, Graduate Student Member, IEEE, Mårten Sjöström, Member, IEEE,

and Roger Olsson, Member, IEEE

Abstract—Acquiring scenery depth is a fundamental task in computer vision, with many applications in manufacturing, surveillance,

or robotics relying on accurate scenery information. Time-of-Flight cameras can provide depth information in real-time and overcome

short-comings of traditional stereo analysis. However, they provide limited spatial resolution and sophisticated upscaling algorithms

are sought after. In this paper, we present a sensor fusion approach to Time-of-Flight super resolution, based on the combination of

depth and texture sources. Unlike other texture guided approaches, we interpret the depth upscaling process as a weighted energy

optimization problem. Three different weights are introduced, employing different available sensor data. The individual weights address

object boundaries in depth, depth sensor noise and temporal consistency. Applied in consecutive order, they form three weighting

strategies for Time-of-Flight super resolution. Objective evaluations show advantages in depth accuracy and for depth image based

rendering compared to state-of-the-art depth upscaling. Subjective view synthesis evaluation shows a significant increase in viewer

preference by a factor of four in stereoscopic viewing conditions. To our knowledge, this is the first extensive subjective test performed on

Time-of-Flight depth upscaling. Objective and subjective results proof the suitability of our approach to Time-of-Flight super resolution

approach for depth scenery capture.

Index Terms—Sensor fusion, range data, time-of-flight sensors, depth map upscaling, three-dimensional video, stereo vision.

✦

1 INTRODUCTION

MANY image processing applications in manufac-
turing, security and surveillance, product quality

control, robotic navigation, and three-dimensional (3D)
media entertainment rely on accurate scenery depth
data. Acquiring this depth information is a fundamental
task in computer vision, yet complex and error-prone.
Dedicated range sensors, such as the Time-of-Flight cam-
era (ToF), can simplify the scene depth capture process
and overcome short-comings of traditional solutions.

Stereo analysis is a common approach to scene depth
extraction. Feature and area analysis between two cam-
era views allows for the reconstruction of depth in-
formation based on the camera geometry. However, if
parts of the scene are occluded in one view or areas
have low or repetitive texture, stereo matching produces
erroneous results [1]. Other depth capture solutions,
such as structural lighting, e.g. the Microsoft Kinect,
can provide reliable scene depth in such cases, but has
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a limited depth range and suffers from strong inaccu-
racies at object boundaries [2]. Continuous-wave ToF
cameras can overcome most of these shortcomings [3].
They capture scene depth in real-time, independent from
texture structure and occlusions. Admittedly, current ToF
cameras can only deliver limited spatial resolution and
can suffer from sensor noise. Therefore sophisticated
depth upscaling algorithms are sought-after.

In 2007 Kopf et al. [4] showed that traditional im-
age upscaling, e.g. value interpolation, yields limited
results for depth upscaling. Better results are achieved
by adding texture information to the upscaling process.
They introduced the Joint Bilateral Upscaling (JBU) filter,
combining a spatial filter on depth information with a
range filter on texture information. JBU soon became
popular for fusing data from sensors with different reso-
lution, e.g. video and ToF, alongside an earlier proposal
utilizing Markov Random Fields (MRF) by Diebel and
Thrun [5]. Combining low-resolution ToF cameras with
high-resolution video cameras brings two advantages:
Not only does the texture information improve the depth
upscaling process, but it also provides auxiliary data in
follow-up processing steps, e.g. texturizing reconstructed
objects or depth image based rendering (DIBR) for three-
dimensional television (3DTV).

We recently proposed a new concept to ToF sen-
sor fusion, interpreting the depth upscaling problem
as an energy minimization problem [6]. Focused on
typical 3DTV capture scenarios, i.e. scene depth infor-
mation accompanied by corresponding texture frames,
we introduced the Edge Weighted Optimization Con-
cept (EWOC). Low resolution ToF data is treated as
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sparse representation of a full resolution depth map. The
missing depth values are then filled by employing error
energy minimization, weighted by texture edges. Our
results showed an increase in objective quality compared
to competing proposals. In this present paper, we extend
EWOC with additional weights to address the special
characteristics of ToF cameras, introducing three weight-
ing strategies for ToF super resolution (TSR). The first
additional weight is based on the reliability of the depth
readings to reduce ToF sensor noise. With the second
weight we encourage temporal consistency to decrease
flickering in depth values, a possible source for eye-
strain in 3DTV viewing scenarios. Objective evaluation
states an increase in depth accuracy compared to the pre-
vious implementation. Extensive subjective evaluation
in stereoscopic viewing conditions shows an increased
viewer preference by a factor of four over state-of-the-
art depth upscaling.

The remainder of this paper is organized as follows: At
first we address the characteristics of ToF cameras in Sec.
2 and related work on ToF depth upscaling in Sec. 3. Our
concept for weighted Time-of-Flight super resolution is
presented in Sec. 4. Methodology and evaluation criteria
are addressed in Sec. 5, followed by our experimental
results in Sec. 6. Finally, the paper is concluded in Sec.
7.

2 THE TIME-OF-FLIGHT CAMERA

As the name suggests, a Time-of-Flight (ToF) camera
measures the travel time ttravel for a reflected light beam
from the sender to an object and back to the receiver. ToF
cameras are predestined for real-time scene depth cap-
ture. They can deliver accurate depth maps at the point
of capture, without any time intensive stereo matching
in post production. Also, unlike stereo analysis, they
deliver reliable and accurate depth information in low
or repetitively texturized areas and do not suffer from
occlusions. Two different camera categories are distin-
quished between, based on their depth sensor concept:

1) Pulse Runtime Sensors: A pulsed wave is sent out
and a clock measures the time which has passed
until the reflected signal is received again (Fig.
1(a)). Such sensors deliver depth accuracy between
10-20mm for distances of up to a few hundred
meters, but have low temporal resolution due to
the pulsed nature.

2) Continuous Wave Sensors: A cosine modulated
wave signal s(t) is sent out and the phase shift
Φ between s(t) and the reflected signal r(t) is
measured (Fig. 1(b)). Such sensors have a depth
accuracy of around ten millimeters and a maximum
distance of about ten meters. They can capture in
real-time with sixty frames per second and more
[7].

Due to their high temporal resolution, continuous
wave ToF cameras are predestined for real-time scene
depth capture. A detailed description of the continuous

(a) Pulse Runtime (b) Continuous Wave

Fig. 1. Classification of different ToF systems.

wave concept can be found in [3]. For this article, it is
sufficient to be aware of some of the error sources.

2.1 Error Sources

ToF cameras are affected by several different noise
sources, categorized into internal and external sources.
Internal effects relate to the sending photodiodes and
the receiving charge-coupled device (CCD) sensors. They
include thermal noise, quantization noise, reset noise
and photon shot noise. Most of these noise sources are
already addressed by the camera manufacturer with
signal processing and cooling, with the exception of
photon shot noise [3]. Photon shot noise is inversely
proportional to the number of collected photons on the
sensor and is the main reason for the limited spatial
resolution of ToF cameras, since the single capturing
pixel elements on the CCD must be of adequate size
to collect a sufficient number of photons for a reliable
depth reading. Photon shot noise is theoretically Poisson
distributed [8], but Frank et al. [9] showed that it can be
sufficiently approximated as a zero-mean Gaussian, with
variance σd, defined by the active brightness A.

σd =
1

A2
(1)

The active brightness A is the received optical power
of signal r(t) [3]. Eq. 1 is leading to the assumption
that best results are achieved with the highest active
brightness. Unfortunately this is not completely true. At
high active brightness levels, photo-generated electrons
flood the capturing pixel element, causing erroneous
depth readings [8]. Therefore it is beneficial to adjust
the exposure time carefully for good active brightness
saturation [10]. However, this might not be feasible in
every scenario, e.g. a moving camera or scene, and
external effects might influence the saturation during the
capture process.

External effects are harder to generalize, since they
depend on the captured scenery. Dark or distant surfaces
lead to low active brightness levels, equivalent to a
high photon shot noise. Close or highly reflective objects
lead to over saturated active brightness, resulting in
erroneous depth values. Other problems arise from non-
lambertian surfaces, where light reflection and scattering
leads to erroneous depth readings due to inadequate
active brightness saturation.
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(a) Capture Setup

CI

a

CD

DL

D

P

b

d
n

m

x

y

D
L

(b) Projection

Fig. 2. Combined ToF and video capture setup (a) and
projective geometry (b).

2.2 ToF and Video Combination

Since a ToF camera produces only depth readings, it is
often combined with a video camera for (color) texture
information. The texture information can be used for
colorizing reconstructed 3D object or as guidance infor-
mation in a depth upscaling process. Such a combination
is shown in Fig. 2 (a), with a Basler acA1300-30gc ma-
chine vision camera [11] on top of a Fotonic B70 ToF
camera [7]. Both cameras vary in extrinsic parameters,
i.e. camera position and orientation, as well as intrinsic
parameters, such as spatial resolution, focal length and
pixel dimensions. In order to combine the two cameras, it
is necessary to know the projective relationship between
the two cameras. This relationship is expressed in the
projection matrix P, a 3 × 4 full rank matrix containing
the rotation matrix R, translation vector t between the
two cameras, and the intrinsic parameters of the video
camera in the calibration matrix KI ,

P = KI [R|t]. (2)

With the projection matrix P it is possible to fuse
the two viewing angles into one, as shown in Fig. 2
(b). The ToF camera at central point CD captures the
depth of 3D point a as depth value d = DL(m,n). This
value is projected onto pixel position b. The sum of all
projected points results in the depth map D, as seen from
a video camera at central point CI . Details are described
as follows.

For the mathematical context, images are represented
as two-dimensional matrices of pixel values, e.g. I =
{I(x, y);x = 1, ..., X; y = 1, ..., Y } with X and Y as the
maximum indices. The combined video plus ToF capture
setup delivers a high resolution texture frame I and a low
resolution depth map DL = {DL(m,n);m = 1, ...,M ;n =
1, ..., N}. The coordinates x,m and y, n are Euclidean
pixel coordinates in 2D space with M < X and N < Y .
The homogeneous pixel coordinates (m,n, 1)T can be
translated to world coordinates by means of the ToF
camera calibration matrix KD. Together with the depth
value d = DL(m,n), the world coordinates of point a in

3D space are:

a = [m′, n′, d, 1]T = KD · [m,n, d, 1]T (3)

With the projection matrix P from Eq. 2, the depth
value d is mapped on the corresponding pixel coordi-
nates [x, y]T for point b:

d · b = d ·
[x

d
,
y

d
, 1
]T

= P · a (4)

Performing the projection for every known value in
DL on an empty frame with an equal size as I gives the
depth map D = {D(x, y);x = 1, ..., X; y = 1, ..., Y } from
the same viewing angle as the video camera. Since D

has a sparse and irregular value distribution, some kind
of filling algorithm is required.

D(x, y) =

{

DL(m,n), ∀ b from Eq. 4

not defined, otherwise
(5)

In practice this process will not result in an exact
alignment. Even with ideal camera calibration, the large
resolution difference between video and ToF camera,
usually 8:1 or higher, will lead to mapping errors in
the depth map. However, this is not a problem since
we use texture data as ground-truth to align the depth
map during the upscaling process.

3 RELATED WORK

The previous section explained how to project low
resolution ToF depth for spatial correspondences with
a high resolution video frame. However, the resulting
depth map has a sparse value distribution and many
applications require pixel dense depth values. Therefore
it is essential to have some means of filling in the
missing values, i.e. depth map upscaling. Depth map
upscaling approaches can be classified into two major
groups: Guided algorithms which apply additional in-
formation, e.g. texture, and unguided algorithms based
on the depth map alone. However, unguided approaches
are only suitable if there is no additional information
available to improve the depth upscaling results. Depth
maps are a gray scale representation of the acquired
scenery, describing the distance to the viewer in 8 Bit
values. It has a piece-wise linear distribution with large
gradually changing areas and sharp depth transitions at
object boundaries. Such transitions are very important
for the visual perception of depth [12]. Texture from
corresponding video frames can provide guidance to
preserve these depth transitions in the upscaling process.
Early research in this area includes the use of Markov
Random Fields (MRF) to fuse high-resolution texture
data with low-resolution depth data [5], and joint fil-
tering of depth and texture based on the bilateral filter
presented by Tomasi and Manduchi [13]. Joint bilateral
filtering gained a lot of attention with the introduction
of joint bilateral upscaling (JBU) for depth maps by Kopf
et al. in 2007.
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The bilateral filter is an edge-preserving blurring filter,
based on a nonlinear combination of the surrounding
pixel values I(x, y) in an image I. The filter blends
pixel values based on geometric distance (spatial) and
photometric similarity (range). The bilateral filter has
a symmetric spatial filter kernel h(·) and a symmetric
range filter kernel g(·). h : ℜ → ℜ uses the Euclidean
distance and g : ℜ → ℜ the absolute value difference
between two pixel values as input. It is not necessary
that the filter kernel inputs come from the same source.
If the range kernel is applied to a second image, this
process is called a joint or cross bilateral filter. The
second image can be used as guidance for an upscaling
process. Applying the spatial filter kernel h(·) on pixel

I ′(m,n) at position [m,n]T =
[

x
γ
, y
γ

]T

of low resolution

source I
′ and the range filter kernel g(·) on pixel I(x, y)

of a full resolution guidance I, yields the joint bilateral
upscaling result Ĩ(x, y):

Ĩ(x, y) =
1

k

∑

[x
′

y′]∈Ω

I ′(x′, y′) · h

(
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[x
γ
y
γ

]

−

[

x′

y′

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

)

· g (|I(x, y)− I(γx′, γy′)|)

(6)

where γ is the upscaling factor between I
′ and I, Ω is

the spatial support of the kernel, centered at (x, y)T , and
k is the number of all pixels in Ω. Since I ′(m,n) takes
only integer coordinates, the guidance image I is only
sparsely sampled.

Kopf et al. demonstrated the benefit of JBU for upscal-
ing low resolution depth maps with high resolution tex-
ture guidance. Their results show high resolution depth
maps with accurate, sharp edges at object boundaries.
However, solving the edge blurring problem with a
range filter kernel introduced a new problem, namely,
texture copying. Highly structured texture, especially
letters, will be transferred into the depth map, since
they are regarded as edges that should be preserved.
This problem motivated several variations of JBU depth
upscaling for video plus ToF combinations.

Yang et al. [14] presented their bilateral filtering espe-
cially focused on 3D volume reconstruction. Chan et al.
[15] suggested a noise-aware filter for depth upscaling
(NAFDU), switching between bilateral and joint-bilateral
filtering, depending on a pre-filtered depth map. Gar-
cia et al. [16] introduced the pixel weighted averaging
strategy (PWAS), extending the JBU depth upscaling
process with a two-dimensional credibility map based
on the absolute gradient of the low resolution source.
Kim et al. [17] attenuated the effects of texture copying
by assuming a piece-wise linear world geometry, and
Riemens et al. [18] looked into real-time processing,
presenting an incremental JBU approach.

Recent years have also shown variations of the MRF
approach, such as the use of dynamic MRFs for high
accuracy ToF depth [19], improved MRF data term
construction [20], and added nonlocal means (NLM)
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Error 
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Fig. 3. Overview of the TSR algorithm for depth map
upscaling including the different weighting strategies.

filtering to preserve depth structure [21]. Other novel
approaches include an adopted NLM filter for range and
color fusion [22], weighted mode filtering based on a
global depth and texture histogram [23], and our recently
proposed edge-weighted energy minimization for depth
map upscaling [6].

4 WEIGHTED OPTIMIZATION FOR TIME-OF-
FLIGHT SUPER-RESOLUTION

The previous section showed that a lot of the work on
texture guided ToF depth map upscaling is based on
image filtering. In [6], we proposed a different view on
the problem of ToF Super-Resolution, the Edge Weighted
Optimization Concept (EWOC). Low resolution ToF
depth is seen as a sparse representation of the target
resolution depth. Missing values are filled by diffusion
in an optimization process weighted with edges from the
high resolution video frame. Additionally, these edges
are validated with the low resolution depth to accentuate
correlated data.

In this section, we revisit the original edge weight-
ing concept and introduce two additional weights. One
weight for sensor noise reduction, one for temporal
consistency in depth. The three weights can be applied
consecutively and form our three strategies to Time-of-
Flight Super-Resolution (TSR):

1) Upscale with edge weighting only for (S)ingle-
weighted TSR, similar to EWOC.

2) Upscale with edge and error weighting for
(D)ouble-weighted TSR.

3) Upscale with edge, error and temporal weighting
for (T)riple-weighted TSR.

Our ToF super-resolution approach and its interaction
between the different weights is shown in Fig. 3. There
exist three sets of input sources: The video source, the
ToF camera and the upscaling result of the previous
frame. The low resolution depth map DL from the ToF
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camera is mapped on a frame corresponding to the
texture resolution, using the value projection presented
in Sec. 2.2. The mapping results in a sparse depth map D.
The texture frame I is filtered to identify edges, masked
with low resolution depth information and used for
the edge weighting. Active brightness A from the ToF
camera is used for the error weighting. The temporal
weighting utilizes upscaling results from the previous
frame D(t − 1) together with the difference between
current and previous texture frame. The weights are
used in an optimization process to fill the missing values
in D, giving a dense full resolution depth map. The
different weights, their creation and the optimization
concept are described in more detail below.

4.1 Edge Weighting

As mentioned before, depth maps consist of large uni-
form areas with gradual depth changes, and sharp depth
transitions at object boundaries. These characteristics al-
low for assuming spatial similarity between neighboring
depth pixels. This assumption can be expressed as the
horizontal error ǫh and the vertical error ǫv for a depth
pixel D(x, y) at position (x, y)T and its spatial neighbors:

ǫh(x, y) = D (x, y)−D (x+ 1, y) (7)

ǫv(x, y) = D (x, y)−D (x, y + 1) (8)

Of course, the similarity assumption alone would blur
the sharp depth transition at object borders. Therefore
the edge weighting function WE(x, y) is introduced,
relaxing the spatial similarity constraints of Eq. 7 and
8 at the object boundaries. The edge weighting allows
for sharp depth transitions between objects by reducing
the requirement for the neighboring pixels to be similar.
Describing the errors in terms of energy leads to the
horizontal and vertical error energies QH and QV , and
the overall spatial error energy QS :

QH =
∑

x

∑

y

WE(x, y)ǫ
2
h(x, y) (9)

QV =
∑

x

∑

y

WE(x, y)ǫ
2
v(x, y) (10)

QS = QH +QV (11)

The employed weighting function WE(x, y) is ob-
tained by a combination of texture and depth infor-
mation, based on two assumptions: First, since depth
maps describe the scene geometry for a video sequence,
object boundaries should correspond to edges in the
corresponding video frame. Second, since a thorough
edge detection on a video frame will result in many more
edges than there are actual objects, edge information
from the low resolution ToF depth can be utilized to
validate edges which comply with actual depth transi-
tions. Based on these two assumptions, the edge weight
WE(x, y) is gained as shown in Fig. 4: An edge filter
on the resolution texture frame I yields the edge map

Edge Filter

EI

I(x,y)DL(m,n)

Edge 

Weight

WE

ED

Edge 

Masking

Edge Filter 

& Upscaling

Full Res TextureLow Res Depth

Fig. 4. Example for the edge weight generation.

EI . The low resolution depth map DL is also edge
filtered and the result is upscaled to the corresponding
texture frame to form the edge mask ED. The edge map
upscaling is performed in a nearest-neigbor fashion to
preserve the binary values and widen the edge mask by
the upscaling factor. The wider edge mask is important
to compensate for minor texture-depth misalignments.
Depending on the capturing setup, it might be necessary
to widen the mask further. Multiplying EI element-
wise with ED masks out redundant edges in areas with
uniform depth and gives the edge weighting function
WE(x, y).

WE(x, y) = 1− EI(x, y) · ED(x, y) (12)

This masking process is necessary, since the quality
of the upscaling results is highly dependent on cohesive
edges from texture. Missing or porous edges (Fig. 5(a))
can lead to “depth leakage” where erroneous depth
values spread into the wrong areas as shown in Fig. 5(b).
However, thorough edge detection on a video frame will
result in many more edges than there are actual objects
Fig. 5(c)) and will lead to an unwanted structurization
effect in the upscaled depth map as shown in Fig.
5(d). A higher threshold for the edge detector reduces
the amount of unnecessary edges. However it increases
the risk of ”depth leakage”. Finding the correct edge
threshold for each sequence is difficult. Therefore it is
more practical to use a lower edge detector threshold,
i.e. a higher sensitivity leading to more edges being de-
tected, and validate the resulting edge map with actual
transitions in depth.

Different edge detectors, pre-processing steps and
color spaces were investigated, including the possibility
of continuous edge weights [25]. However, continuous
edge weights did not improve the depth upscaling pro-
cess and a standard Canny edge detector [26] on the
video luminance channel yields one of the best results.
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(a) (b)

(c) (d)

Fig. 5. Details from test sequences ’Ballet’ and ’Break-
dancing’ [24]: Missing edges (a) lead to depth leakage
seen in (b). Too many edges (c) lead to depth structuriza-
tion, seen in (d).

4.2 Error Weighting

As mentioned in Sec. 2.1, ToF cameras are subject to
sensor noise inversely proportional to the received active
brightness A. Additionally, there are over saturation
effects leading to erroneous depth values [10]. Usually
ToF camera manufacturers provide an active brightness
value range, within which the depth readings are re-
liable. In the case of the Fotonic B70 [7], the range is
between α1 = 200 and α2 = 3000 of the 16 Bit active
brightness value range. Any depth values DL(m,n) out-
side this range are considered unreliable and removed
from the new depth map D

′

L.

D′

L(m,n) =

{

DL(m,n), ∀ α1 < A(m,n) < α2

not defined, otherwise

(13)

Within the value range, the reliability of each depth
value is defined by the active brightness map A, pro-
jected from the ToF camera plane, similar to Eq. 5.

A(x, y) =

{

A(m,n), ∀ b from Eq. 4

not defined, otherwise
(14)

Assuming a higher active brightness is equal to a
higher reliability, the depth error weight is defined as

WA(x, y) = 1−
A(x, y)

max(A)
, (15)

thus stating depth readings with a low active brightness
value as less reliable. Multiplied with the edge weighting
function WE(x, y) from the previous section, pixels with
low active brightness values have a lower influence

on neighboring depth values. The new, error weighted
spatial error energy Q′

S is again the sum of the error
weighted horizontal and vertical error energies Q′

H and
Q′

V

Q′

H =
∑

x

∑

y

WE(x, y)WA(x, y)ǫ
2
h(x, y) (16)

Q′

V =
∑

x

∑

y

WE(x, y)WA(x, y)ǫ
2
v(x, y) (17)

Q′

S = QH +QV (18)

It is important to clarify that the active brightness
value restriction from Eq. 13 should be limited to allow
as many valid depth readings as possible. Therefore
the active brightness levels should be carefully adjusted
prior to capturing a scene. Restricting the active bright-
ness range during the capture process helps then to
reduce the influence of external error sources, such as
non-lambertian reflectance, as mentioned in Sec. 2.1.

4.3 Temporal Weighting

Similar to the spatial similarity defined in Eq. 7 and Eq.
8, we can assume a temporal similarity between depth
values for the same pixel at different time instances.
Temporal inconsistency in depth maps leads to disturb-
ing ”flickering artifacts” [27], [28] and visual discomfort
for 3D viewing [29]. A temporal similarity restriction
can align depth variations in time and reduce flickering
artifacts. The temporal error ǫt between two depth values
at the time instances t and t− 1 is expressed as

ǫt(x, y) = D (x, y, t)−D (x, y, t− 1) (19)

Again, some kind of weighting for temporal similarity
is required to take moving objects or global motion
into account. This weight could, for example, be gener-
ated from the optical flow [30] of the texture sequence.
However, pixel-dense optical flow algorithms are very
computational heavy. For the sake of simplicity, the
current temporal weighting defines temporal similarity
as a function of luminance difference, though optical
flow could be very well considered in later stages. Based
on the luminance channel Y of the texture frame I, the
temporal weight WT (x, y) is expressed as

WT (x, y) = 1−

∣

∣

∂
∂t
Y (x, y)

∣

∣

max( ∂
∂t

Y)
. (20)

Transfering the temporal error ǫt from Eq. 19 into
energy terms and weighing it with the temporal weight
WT (x, y) yields the temporal error energy QT

QT =
∑

x

∑

y

WT (x, y)ǫ
2
t (x, y). (21)

The combined error energy Q generated from all avail-
able weights yields

Q = c1Q
′

S + c2QT , (22)
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where c1 and c2 are weighting parameters to control
the effect of the spatial and temporal weighting. In the
current implementation, both energies were weighted
equally at c1 = c2 = 0.5.

4.4 Optimization

The three different error energies described in the pre-
vious sections, form the three different weighting strate-
gies of the proposed ToF super resolution approach:

1) S-TSR with error energy QS from Eq. 11.
2) D-TSR with error energy Q′

S from Eq. 18.
3) T-TSR with error energy Q from Eq. 22.

The original depth readings are fixed. S-TSR uses DL,
D- and T-TSR use D’L as given values in D. The remain-
ing empty depth values in D are computed by diffusion,
minimizing each energy term in a weighted non-linear
least squares fashion. For this implementation, we use
a block-active solver [31], implemented in MATLAB by
Adlers [32]. Although the different weights for edges,
errors and temporal consistency are applied consecu-
tively to form the three different weighting strategies,
each individual strategy has its own error energy, based
on the original depth map, and does not rely on previous
upscaling results.

5 TEST ARRANGEMENTS AND EVALUATION

The evaluation of the proposed approach for ToF super
resolution is divided in four parts. In the first part,
objective evaluations of S-TSR depth quality and pro-
cessing time are shown to verify it as an improvement
to previous proposals. The second part presents the ob-
jective evaluation of D-TSR as proof of concept for active
brightness error weighting. In the third part we evaluate
the effects of temporal weighting. Finally, we performed
an extensive subjective evaluation of all three weighting
strategies in stereoscopic 3D viewing conditions. The
test arrangements, material generation and evaluation
criteria for all four parts are described in this section.

5.1 Objective S-TSR Evaluation

The first weighting strategy of the TSR approach was
published and evaluated as EWOC in [6]. Our results
showed a reduction of 50% or more in the mean
square depth error for 8x upscaling, compared to the
approaches presented in [4], [5], [15] and [16]. This article
adds further, more recent depth upscaling approaches
to our evaluation: The 3D cost volume joint bilateral
filtering (3D-JBU) presented in [14], and the weighted
mode filtering (WMF) approach introduced in [23], in-
cluding its multiscale color measure extension (MCM)
to joint bilateral filtering introduced. The evaluation is
based on the Middlebury Stereo Vision data sets [1] to
provide ground-truth references. Simulated ToF data, i.e.
downscaled depth maps, was generated from the given
references by a windowed averaging with downscaling
factor s = 8,

DL(m,n) =
1

s2

s·m+s
∑

x=s·m

s·n+s
∑

y=s·n

D(x, y). (23)

The upscaling result was submitted to the automatic
Middlebury Stereo Evaluation, to assess the percentage
of ”bad” pixels. A pixel is considered as ”bad” when
its disparity value is different from the reference pixel
and a lower percentage of ”bad” pixels is considered
a better result. The evaluation method considers the
overall percentage of bad pixels (all), as well as the
percentage of pixels in disoccluded areas (disc) only. The
accuracy in disoccluded areas is interesting for stereo
matching application, however it has no significant value
for ToF upscaling based on downsampled references.
In addition to the objective quality evaluation, Min et
al. provided some example runtimes for different depth
upscaling approaches [23], including JBU. Processing
time is based on many different factors and is usually
hard to compare. With the given JBU references we can
normalize our own results to their evaluation and get an
idea of the complexity of the different approaches.

5.2 Objective D-TSR Evaluation

The previous evaluation simulated the low resolution
ToF depth maps by subsampling available high resolu-
tion sources. The D-TSR weighting strategy introduces
active brightness, a specific ToF signal. Therefore the
objective D-TSR evaluation utilizes actual captured ToF
data.

We used the fixed ToF and video combination shown
in 2(a). A Basler acA1300-30gc machine vision camera
on top of a Fotonic B70 ToF camera. The ToF camera
has a resolution of 160x120 pixels [7]. The machine
vision camera is set to a 1280x960 pixels resolution and
equipped with 3.5mm focal length lens to match the ToF
camera viewing angle [11]. Prior to capturing, the ToF
camera was kept running for approximately 20 minutes
for a stable working temperature of around 42 ◦C.

The extrinsic and intrinsic parameters for both cam-
eras were estimated with the camera calibration toolbox
for MATLAB available from [33], using a set of 40 cali-
bration images. The estimated lens distortion coefficients
were used to correct lens distortions in the video and
ToF camera. With the estimated rotation matrix R and
the translation vector t between the two cameras and
the individual camera calibration matrices KI and KD,
the ToF depth values are mapped on the corresponding
pixel positions for the video camera view, following the
principles explained in Sec. 2.2. The resulting sparse
depth map can then be filled using our TSR concept.

We assess the accuracy of the D-TSR result compared
to upscaling without active brightness weighting (S-
TSR) in terms of distance and angular error between
two planes in 3D space. Fig. 6(a) shows our testing
environment. We capture a flat surface with a gray and
white checkerboard. The gray boxes reflect less light
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than the white boxes and lead therefore to a lower
active brightness, equal to more depth sensor noise,
as mentioned in Sec. 2.1. The effect of sensor noise
on the ToF depth readings is clearly visible. The low
active brightness values in Fig. 6(b) translate to depth
variations on a flat surface in the upscaled depth maps in
Fig. 6(c) and (d). To evaluate the sensor noise error, we fit
two planes in 3D space. The white plane is defined by 3D
coordinates captured from white boxes, the gray plane
by 3D coordinates captured from gray boxes, shown in
Fig. 6(a). Four points are chosen from the upscaled depth
maps for each plane to fit the planes in a least squares
manner. If the 3D coordinates are taken from different
upscaling strategies of the same depth map, as shown
in Fig. 6(c) and (d), the difference between the fitted
planes in Fig. 6(e) and (f) gives a measurement for the
depth upscaling accuracy. We use the distance between
the fitted planes at the image center (x=640, y=320) and
the angle between the two planes as accuracy metrics.
Since a flat surface is captured, lower distance and lower
angle differences are equal to higher depth accuracy.

The plane fitting procedure was performed on a set of
20 test images, differing in camera distance and orien-
tation. Each test image was captured with four different
ToF exposure times (5ms, 10ms, 20ms and 40ms) to vary
the influence of active brightness. Before capturing, it
was made sure that the active brightness values for
all four exposure times lie within the value range of
α1 = 200 and α2 = 3000 mentioned in Sec. 4.2. The
low resolution ToF depth maps were upscaled using S-
TSR and D-TSR strategies to show the influence of error
weighting.

5.3 Objective T-TSR Evaluation

In preparation of the subjective tests, we performed a
proof-of-concept evaluation for our temporal weighting
implementation. We used the test sequences ”Hall2”
and ”Street” from Poznan University of Technology, two
photographic sequences with 1920x1088 pixel resolution
and estimated depth maps [34].These two sequences
represent a high (”Street”) and a low (”Hall2”) temporal
activity case. The provided depth map sequences were
subsampled by a factor of 8 to simulate a ToF to video
resolution ratio of 1:8. The low resolution depth maps
were upscaled with JBU, S-TSR and T-TSR to generate a
virtual view using the ”View Synthesis Reference Soft-
ware” (VSRS) [35] of the Moving Picture Expert Group
(MPEG). For the case of ”Hall2” we upscaled depth
maps for the views 5 and 7 to synthesize view 6, for
”Street” view 4 was generated from the views 3 and
5. Since downsampled references were used, no error
weighting was applied for T-TSR, i.e. WA(x, y) = 1. We
also evaluated three different weighting factors c2 for
the temporal error energy QT : c2 = 0.25; 0.5; 1 for Eq. 22
with constant c2 = 0.5.

As evaluation metric, we chose the National Telecom-
munications and Information Administration (NTIA)

(a) Texture with planes (b) Active brightness

(c) S-TSR depth (d) D-TSR depth

(e) S-TSR planes (f) D-TSR planes

Fig. 6. D-TSR objective evaluation: Captured texture
(a) and active brightness (b). Depth upscaling results for
S-TSR (c) and D-TSR (d) and the corresponding fitted
planes in 3D space (e,f). Please note the clearly visible
checkerboard pattern if no error-weighting is applied (c).

General Model, also known as video quality metric
(VQM) [36]. Standard image quality metrics, like the
peak signal-to-noise ratio (PSNR), are considered unreli-
able [37] and do not include the temporal characteristic
of video. VQM combines the perceptual effects of video
artefacts such as blurring, unnatural motion, flicker,
noise, and block or color distortions into a single metric.
Lately, VQM was evaluated based on the subjective test
results for the recent MPEG call for proposals (CfP) on
3D Video Coding Technology [38] and showed good cor-
relation with the subjective mean opinion scores (MOS)
[39]. To avoid the influence of the DIBR algorithm on the
evaluation, we assess the objective quality compared to
view syntheses with the full resolution depth map, in-
stead to the actual view from the virtual camera position.

5.4 Subjective Evaluation

A major application for a video and ToF combination is
the capture of scene information for DIBR view synthesis
in 3DTV systems. Reliable objective quality metrics for
this scenario are still under consideration [37]. Therefore
we performed an extensive subjective quality assessment
for all three TSR weighting strategies compared to state-
of-the-art depth map upscaling. In this context, quality
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TABLE 1
Middlebury evaluation for depth map upscaling by factor 8.

Algorithm Tsukuba Venus Teddy Cones
all [%] time [s] all [%] time [s] all [%] time [s] all [%] time [s]

Bilinear upscaling 10.40 3.26 11.90 14.70
2D JBU [4] 9.04 0.61 2.04 0.94 14.00 0.95 14.70 0.95
2D JBU + MCM 9.71 0.23 2.01 0.33 16.10 0.34 16.70 0.34

3D JBU [14] 7.89 143.00 1.67 215.50 10.70 220.60 12.10 219.20
3D JBU + MCM 4.46 43.30 0.66 65.20 8.88 65.80 10.60 65.60
WMF [23] 4.35 0.36 0.61 0.54 9.51 0.55 9.43 0.55
S-TSR 3.29 0.30 0.42 0.63 6.08 0.57 4.81 0.63

is defined as the viewer’s preference of view syntheses
based on depth maps from different upscaling algo-
rithms.

A key problem for the subjective evaluation of up-
scaled ToF depth is the lack of reference, ruling out a
subjective quality assessment using the double stimulus
continuous quality scale (DSCQS) or double stimulus
impairment scale (DSIS). This motivated the choice of
a pair comparison (PC) scheme. The test participants
were presented two versions of a test sequence, A and
B, and were asked to pick their preferred version. The
sequences in each pair comparison were presented twice:
A-B-A-B-’vote’. Between each version was a 1s interval
with 60% gray level, the voting interval was 6s long.

Four different test sources (SRC) were captured using
the setup explained in the previous section, each 10s long
at a frame rate of 25fps. Again, it was made sure that the
starting active brightness levels were within the value
range of α1 = 200 and α2 = 3000. The four different
SRCs addressed the following user cases:

• SRC 1: Video conferencing, little depth transition.
• SRC 2: -”-, large depth transition (slow).
• SRC 3: -”-, large depth transition (fast).
• SRC 4: Global camera movement on a still scene.

The captured low resolution depth was upscaled with
four algorithms, forming the separate error condition
or hypothetical reference circuits (HRC): JBU, as quality
reference, S-TSR, D-TSR and T-TSR. For each HRC the
resulting depth map was used to synthesize virtual
views 50mm to the left and right of the captured center
view using MPEG VSRS [35], resulting in stereo view
pairs with 100mm baseline. This slightly wider baseline
(typically value around 65mm) was chosen to accentuate
the impression of depth in the scenery.

The tests were performed in stereoscopic 3D viewing
conditions on a DLP-projector (Acer H5360) in combina-
tion with active shutter glasses (Nvidia 3D Vision). The
testing environment followed the ITU recommendations
for subjective quality assessment [40]. The test subjects
were placed at 4 meters viewing distance, equal to four
times the display height. The setup allowed two test
subjects simultaneously, with viewing angles between
80-100◦.

The subjective evaluation was performed with 24 sub-
jects, aged between 20 and 62. All subjects were screened
for their ability to perceive stereo depth, as well as

color vision and visual acuity. Visual acuity, stereo and
color vision were checked positively for all subjects. The
participants were distributed equally over four groups.
Each group had a different randomized arrangement of
sequences to remove contextual effects and each arrange-
ment started with four training sequences to train the
viewers for the given task and accommodate to stereo
vision. The PC results were statistically analysed using
the Bradley-Terry-Luce (BTL) model [41], a probability
model for pair wise comparisons. The BTL model calcu-
lates the probability that one HRC is preferred over other
HRCs. A higher BTL score relates to an higher probabil-
ity that this HRC is preferred. The BTL probability scores
and confidence intervals for each HRC were calculated
using a BTL MATLAB implementation [42].

6 RESULTS AND ANALYSIS

In this section we present and discuss the results for the
four different evaluation arrangements.

6.1 Objective S-TSR Results

The objective S-TSR evaluation addressed the distortion
in depth introduced by the upscaling process. The results
of the automatic Middlebury evaluation are shown in
Tab. 1. The top six rows are taken from Min et al.
[23], where an identical evaluation was performed. The
bottom row shows our results. The S-TSR processing
time is normalized with respect to a JBU implementation
on our system to allow a comparision between the
different approaches. The evaluation results clearly favor
our approach in terms of objective quality, while the
processing time is about equal to the best competing
approach (WMF). The only faster implementation (2D
JBU + MCM) is between 2.5-5 times worse in objective
quality. Fig. 7 shows S-TSR upscaling results for the
Middlebury test set for visual comparison with the
results presented in [23]. Together with our previous
assessment presented in [6], S-TSR has proven itself as
one of the leading approaches to texture guided depth
map upscaling.

6.2 Objective D-TSR Results

Fig. 8 shows increased depth accuracy due to the error
weighting introduced in D-TSR, compared to S-TSR.
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(a) Tsukuba (b) Venus

(c) Teddy (d) Cones

Fig. 7. S-TSR depth map upscaling results for the Mid-
dlebury test set. Competing results are presented in [23].
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Fig. 8. Angular and distance error with standard deviation
for S-TSR and D-TSR at different exposure times.

Both, the angular (a) and the distance error (b) between
the two planes for gray and white boxes are decreased
in terms of mean value and standard deviation. The
effect of low active brightness values is shown in a
larger error at faster exposure time, while at a slower
exposure time, active brightness over-saturation leads
to less depth accuracy. The increased error for D-TSR
at 5ms and 40ms exposure time points to a possibly
too loose active brightness value range. A more limited
range would address this problem. However, the effects
of both error sources, active brightness over- and under-
saturation, are significantly reduced with D-TSR error
weighting.

6.3 Objective T-TSR Results

Fig. 9 illustrates the effects of temporal weighting on
low and high temporal activity content, as well as the
influence of different weights c2 for the temporal error
energy QT . Again, it is clearly visible how our TSR ap-
proaches outperform JBU. However, temporal weighting
does barely affect low activity content, as shown for the
test sequence ”Hall2” in Fig. 9(a). High activity content
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Fig. 9. VQM results for Poznan test sequences. Upscal-
ing by factor 8 with JBU, S-TSR and T-TSR with varying
c2. Lower VQM score equal to better visual quality.
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Fig. 11. BTL scores and 95% confidence intervals for the
four different HRCs. Normalized with respect to JBU (a).
Comparison between D-TSR and T-TSR divided over the
different SRCs. Normalized with respect to D-TSR (b).

like ”Street” (b), benefits more from temporal weighting.
Evaluating the interaction of temporal and spatial error
energies in Eq. 22, we can assess that a 1:1 weighting
with c1 = c2 = 0.5 yields the best results for both cases.

6.4 Subjective Evaluation Results

Fig. 10 gives examples of depth upscaling and view
synthesis results for SRC 2. The top row shows depth
maps from different upscaling approaches. Here, the
effects of the error weighting are especially prominent.
Depth readings with low active brightness (e.g. in the
black areas) are considered unreliable and are removed
from the upscaling process, leading to the improvements
shown in Fig. 10(c) and (d). The middle row shows
view synthesis examples, using the depth maps above.
The bottom row shows details from these syntheses to
highlight the effects of the different depth upscaling
strategies. Here, the quality difference between JBU (i)
and TSR based strategies (j-l) is clearly visible. However,
this did not translated into our subjective evaluation
results, while the effect of error weighting is reflected
clearly in Fig. 11(a). On our website, we provide videos
to follow the subjective evaluation alongside all neces-
sary source material [43]. The videos show a clear effect
of T-TSR on the depth map, however it is less visible in
the resulting view syntheses.

For the statistical evaluation of Fig. 11(a), it is impor-
tant to mention that the calculated BTL model accounts
well for the data, with a with a [χ2(3) = 1.33, p = 0.72]
model fit. A BTL model should be rejected if the p value
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(a) JBU depth (b) S-TSR depth (c) D-TSR depth (d) T-TSR depth

(e) JBU synthesis (f) S-TSR synthesis (g) D-TSR synthesis (h) T-TSR synthesis

(i) JBU synthesis details (j) S-TSR synthesis details (k) D-TSR synthesis details (l) T-TSR synthesis details

Fig. 10. Examples for the four HRCs. Depth upscaling results for SRC 2 (a-d), resulting synthesized right view (e-h),
and synthesis distortion details in fore- and background (i-l).

is below 0.1 [42]. The subjective evaluation shows a
strong significant preference of around 1:4 for D- and
T-TSR. For both cases give a significant improvement
in subjective quality. The preference scores for JBU and
S-TSR are almost identical. We assume that the jump
in quality due to error weighting is so large, that any
minor quality differences are masked out by the HVS.
This assumption also gives a possible explanation for the
similarity between D- and T-TSR. To assess the influence
of temporal weighting further, Fig. 11(b) shows the BTL
scores for a direct pair comparison between D- and T-
TSR, divided in the four different SRCs. It is interesting
to note that for SRC 3, a sequence with large and fast
depth transitions, temporal weighting in T-TSR gives
an increase in viewer preference. This increase points
in the same direction as the objective T-TSR evaluation
in Fig. 9, with advantages of T-TSR for higher activity
content. However, since this pair comparison is based
on a sub-set of the whole subjective evaluation, the
confidence intervals are rather large and no statistical
verified conclusion can be drawn.

7 CONCLUSIONS

In this paper we presented an approach to simplify scene
depth capture for applications relying on accurate depth
data, e.g. in manufacturing, quality control, robotics
and 3D media. Time-of-Flight cameras can overcome
the short-comings of traditional scene depth from stereo
analysis and their limited spatial resolution can be over-
come with texture guided depth map upscaling.

Within this context, we proposed a sensor fusion
approach for ToF super resolution. Unlike competing
proposals, we interpreted the ToF depth upscaling pro-
cess as a weighted energy optimization problem. Three
different weighting functions were addressed: The first
weight was generated by a combination of low res-
olution ToF depth and corresponding high resolution
texture information from a video source, to ensure sharp
transitions in depth at object boundaries. The second
weight was generated from the received ToF active
brightness signal, a measure for depth reading accuracy,
to reduce the effects of ToF sensor noise. The last weight
was generated from the previous upscaling result of
a depth map sequence, to reduce temporal artifacts in
depth. The weights can be applied in consecutive order,
forming the three weighting strategies of our proposal:
(S)ingle-, (D)ouble-, and (T)riple-weighted ToF super
resolution (TSR).

The separate strategies of our approach were evalu-
ated with special focus on 3D entertainment applica-
tions. Objective results show advantages in terms of
depth accuracy and view synthesis quality, compared
to state-of-the-art texture guided depth map upscaling.
It was further shown that error-weighting, introduced
in D-TSR, increases the depth accuracy compared to S-
TSR. In addition to the objective evaluation, we assessed
the depth upscaling quality subjectively for DIBR view
synthesis in stereoscopic viewing conditions. To our
knowledge, this was the first extensive subjective test
performed on texture guided ToF depth upscaling. The
test was conducted with 24 test subjects and our results
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showed a significantly increase in viewer preference
of a factor of four due to error weighting. Additional
temporal weighting did not lead to significant changes in
viewer preference. Nonetheless, objective and subjective
results point at an advantage for high temporal activity
content with fast depth transitions. However, at this
point there is no statistical proof and this assumption
will be addressed in future research.

Concerning the subjective quality assessment, it would
be very interesting to evaluate further parameters in the
context of stereo vision. Some subjects reported severe
eye strain and dizziness during the test, especially for
the two lower performing HRCs. Future research should
include more criteria, such as visual comfort, depth
experience or naturalness, for a more holistic Quality of
Experience (QoE) evaluation. Other future topics include
the fusion of more than one video and ToF combination
with additional depth map cross-verification.
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[8] B. Büttgen, T. Oggier, M. Lehmann, R. Kaufmann, and F. Lusten-
berger, “CCD/CMOS lock-in pixel for range imaging : Challenges,
limitations and state-of-the-art,” Measurement, vol. 103, 2005.

[9] M. Frank, M. Plaue, H. Rapp, U. Köthe, B. Jähne, and F. A.
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