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Abstract 

The Probabilistic Neural Network (PNN) algorithm represents the likeli­
hood function of a given class as the sum of identical, isotropic Gaussians. 
In practice, PNN is often an excellent pattern classifier, outperforming 
other classifiers including backpropagation. However, it. is not. robust with 
respect to affine transformations of feature space, and this can lead to 
poor performance on certain data. We have derived an extension of PNN 
called Weighted PNN (WPNN) which compensates for this flaw by allow­
ing anisotropic Gaussians, i.e. Gaussians whose covariance is not a mul­
tiple of the identity matrix. The covariance is optimized using a genetic 
algorithm, some interesting features of which are its redundant, logarith­
mic encoding and large population size. Experimental results validate our 
claims. 

1 INTRODUCTION 

1.1 PROBABILISTIC NEURAL NETWORKS (PNN) 

PNN (Specht 1990) is a pattern classification algorithm which falls into the broad 
class of "nearest-neighbor-like" algorithms. It is called a "neural network" because 
of its natural mapping onto a two-layer feedforward network. It works as follows. 
Let the exemplars from class i be the k-vectors iT} for j = 1, ... , Ni. Then, the 
likelihood function for class i is 
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Figure 1: PNN is not robust with respect to affine transformations of feature space. 
Originally (a), A2 is closer to its classmate Al than to B 1 ; however, after a simple 
affine transformation (b), A2 is closer to B1• 

and the conditional probability for class i is 

M 

Pi(i) = Li(i)/ L Lj(i) (2) 

j=l 

Note that the class likelihood functions are sums of identical isotropic Gaussians 
centered at the exemplars. 

The single free parameter of this algorithm is u, the variance of the Gaussians (the 
rest of the terms in the likelihood functions are determined directly from the training 
data). Hence, training a PNN consists of optimizing u relative to some evaluation 

criterion, typically the number of classification errors during cross-validation (see 
Sections 2.1 and 3). Since the search space is one-dimensional, the search procedure 
is trivial and is often performed by hand. 

1.2 THE PROBLEM WITH PNN 

The main drawback of PNN and other "nearest-neighbor-like" algorithms is that 
they are not robust with respect to affine transformations (i.e., transformations of 

the form x 1--+ Ax + b) of feature space. (Note that in theory affine transformations 
should not affect the performance of backpropagation, but the results of Section 3 
show that this is not true in practice.) Figures 1 and 2 depict examples of how 
affine transformations of feature space affect classification performance. In Figures 
la and 2a, the point A2 is closer (using Euclidean distance) to point A l , which is 
also from class A, than to point B 1 , which is from class B. Hence, with a training set 
consisting of the exemplars Al and B1 , PNN would classify A2 correctly. Figures 
Ib and 2b depict the feature space after affine transformations. In both cases, A2 is 
closer to Bl than to Al and would hence be classified incorrectly. For the example 
of Figure 2, the transformation matrix A is not diagonal (i.e., the principle axes 
of the transformation are not the coordinate axes), and the adverse effects of this 
transformation cannot be undone by any affine transformation with diagonal A. 

This problem has motivated us to generalize the PNN algorithm in such a way that 
it is robust with respect to affine transformations of the feature space. 
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Figure 2: The principle axes of the affine transformation do not necessarily corre­
spond with the coordinate axes. 

1.3 A SOLUTION: WEIGHTED PNN (WPNN) 

This flaw of nearest-neighbor-like algorithms has been recognized before, and there 
have been a few proposed solutions. They all use what Dasarathy (1991) calls 
"modified metrics", which are non-Euclidean distance measures in feature space. 
All the approaches to modified metrics define criteria which the chosen metric 
should optimize. Some criteria allow explicit derivation of the new metrics (Short 
and Fukunuga 1981; Fukunuga and Flick 1984) . However, the validity of these 
derivations relies on there being a very large number of exemplars in the training 
set. A more recent set of approaches (Atkeson 1991; Kelly and Davis 1991) (i) 
use criteria which measure the performance on the training set using leaving-one­
out cross-validation (see (Stone 1974) and Section 2.1), (ii) restrict the number of 
parameters of the metric to increase statistical significance, and (iii) optimize the 
parameters of the metric using non-linear search techniques. For his technique of 
"locally weighted regression", Atkeson (1991) uses an evaluation criterion which is 
the sum of the squares of the error using leaving-one-out. His metric has the form 

d2 = Wl(Xl-Yl?+ ... +Wk(Xk-Yk)2, and hence has k free parameters WI, ... , Wk. He 
uses Levenberg-Marquardt to optimize these parameters with respect to the evalu­
ation criterion. For their Weighted K-Nearest Neighbors (WKNN) algorithm, Kelly 
and Davis (1991) use an evaluation criterion which is the total number of incorrect 
classifications under leaving-one-out. Their metric is the same as Atkeson's, and 

their optmization is done with a genetic algorithm. 

We use an approach similar to that of Atkeson (1991) and Kelly and Davis (1991) 
to make PNN more robust with respect to affine transformations. Our approach, 
called Weighted PNN (WPNN), works by using anisotropic Gaussians rather than 
the isotropic Gaussians used by PNN. An anisotropic Gaussian has the form 

1 (i i) T ~ -1 (i i) Th . ~ . t' d fi . t k k 
(271')Jc/2(det ~)1/2 e- - 0 - 0 • e covarIance LJ IS a nonnega Ive- e m e x 

symmetric matrix. Note that ~ enters into the exponent of the Gaussian so as to 
define a new distance metric, and hence the use of anisotropic Gaussians to extend 
PNN is analogous to the use of modified metrics to extend other nearest-neighbor­

like algorithms. 

The likelihood function for class i is 

I N • 
. _ _ '"'" _(i_x;)TE-l(i_xj) 

L,(x) - Ni(271")kI2(det~)1/2 f;;:e (3) 
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and the conditional probability is still as given in Equation 2. Note that when E is 
a multiple of the identity, i.e. E = (J'I, Equation 3 reduces to Equation 1. Section 2 
describes how we select the value of E. 

To ensure good generalization, we have so far restricted ourselves to diagonal co­

variances (and thus metrics of the form used by Atkeson (1991) and Kelly and 
Davis (1991). This reduces the number of degrees of freedom of the covariance from 
k( k + 1) /2 to k. However, this restricted set of covariances is not sufficiently general 
to solve all the problems of PNN (as demonstrated in Section 3), and we therefore 
in Section 2 hint at some modifications which would allow us to use arbitrary co­
varIances. 

2 OPTIMIZING THE COVARIANCE 

We have used a genetic algorithm (Goldberg 1988) to optimize the covariance of the 
Gaussians. The code we used was a non-object-oriented C translation of the OOGA 
(Object-Oriented Genetic Algorithm) code (Davis 1991) . This code preserves the 
features of OOGA including arbitrary encodings, exponential fitness, steady-state 
replacement, and adaptive operator probabilities. We now describe the distinguish­
ing features of our genetic algorithm: (1) the evaluation function (Section 2.1), (2) 
the genetic encoding (Section 2.2), and (3) the population size (Section 2.3). 

2.1 THE EVALUATION FUNCTION 

To evaluate the performance of a particular covariance matrix on the training set, we 
use a technique called "leaving-one-out", which is a special form of cross-validation 
(Stone 1974). One exemplar at a time is withheld from the training set, and we 
then determine how well WPNN with that covariance matrix classifies the with­
held exemplar. The full evaluation is the sum of the evaluations on the individual 
exemplars. 

For the exemplar X}, let lq(x}) for q = 1, ... , M denote the class likelihoods obtained 

upon withholding this exemplar and applying Equation 3, and let Pq(?) be the 
probabilities obtained from these likelihoods via Equation 2. Then, we define the 
performance as 

M N, 

E = 2:2:«(1- Pi(X;»2 + 2:(Pq(X;»2) (4) 

i=l j=l q# 

We have incorporated two heuristics to quickly identify covariances which are clearly 
bad and give them a value of 00, the worst possible score. This greatly speeds up the 

optimization process because many of the generated covariances can be eliminated 
this way (see Section 2.3) . The first heuristic identifies covariances which are too 
"small" based on the condition that, for some exemplar x} and all q = 1, ... M, 

lq (x}) = 0 to within the precision of IEEE double-precision floating-point format. 

In this case, the probabilities Pq (X1) are not well-defined. (When E is this "small" , 
WPNN is approximately equivalent to WKNN with k = 1, and if such a small E is 
indeed required, then the WKNN algorithm should be used instead.) 
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The second heuristic identifies covariances which are too "big" in the sense that 
too many exemplars contribute significantly to the likelihood functions. Empirical 
observations and theoretical arguments show that PNN (and WPNN) work best 
when only a small fraction of the exemplars contribute significantly. Hence, we 
reject a particular E if, for any exemplar xJ, 

(5) 

Here, P is a parameter which we chose for our experiments to equal four. 

Note: If we wish to improve the generalization by discarding some of the degrees 
of freedom of the covariance (which we will need to do when we allow non-diagonal 
covariances), we should modify the evaluation function by subtracting off a term 
which is montonically increasing with the number of degrees of freedom discarded. 

2.2 THE GENETIC ENCODING 

Recall from Section 1.3 that we have presently restricted the covariance to be diag­
onal. Hence, the set of all possible covariances is k-dimensional, where k is the di­
mension ofthe feature space. We encode the covariances as k+l integers (ao, ... , ak), 
where the ai's are in the ranges (ao)min ::; ao ::; (ao)max and 0 ::; ai ::; amax for 
i = 1, ... , k. The decoding map is 

(6) 

We observe the following about this encoding. First, it is a "logarithmic encoding" , 
i.e. the encoded parameters are related logarithmically to the original parameters. 
This provides a large dynamic range without the sacrifice of sufficient resolution at 
any scale and without making the search space unmanageably large. The constants 
C1 and C2 determine t.he resolution, while the constants (aO)min, (ao)max, and 
amax det.ermine t.he range. Second, it. is possibly a "redundant" encoding, i.e. there 
may be multiple encodings of a single covariance. We use this redundant encoding, 
despite the seeming paradox, t.o reduce the size of t.he search space. The ao term 
encodes the size of the Gaussian, roughly equivalent to (J' in PNN. The other aj's 
encode the relative weighting of the various dimensions. If we dropped the ao term, 
the other aj terms would have to have larger ranges to compensate, thus making 
the search space larger. 

Note: If we wish to improve the generalization by discarding some of the degrees 
of freedom of the covariance, we need to allow all the entries besides ao to take on 
the value of 00 in addition to the range of values defined above. When aj = 00, its 
corresponding entry in the covariance matrix is zero and is hence discarded. 

2.3 POPULATION SIZE 

For their success, genetic algorithms rely on having multiple individuals with partial 
information in the population. The problem we have encountered is that the ratio of 
the the area of the search space with partial information to the entire search space 
is small. In fact, with our very loose heuristics, on Dataset 1 (see Section 3) about 
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90% of the randomly generated individuals of the initial population evaluated to 00. 

In fact, we estimate very roughly that only 1 in 50 or 1 in 100 randomly generated 
individuals contain partial information. To ensure that the initial population has 
multiple individuals with partial information requires a population size of many 
hundreds, and we conservatively used a population size of 1600. Note that with 
such a large population it is essential to use a steady-state genetic algorithm (Davis 
1991) rather than generational replacement. 

3 EXPERIMENTAL RESULTS 

We have performed a series of experiments to verify our claims about WPNN. To 
do so, we have constructed a sequence of four datasets designed to illustrate the 
shortcomings of PNN and how WPNN in its present form can fix some of these 
shortcomings but not others. Dataset 1 is a training set we generated during an 
effort to classify simulated sonar signals. It has ten features, five classes, and 516 
total exemplars. Dataset 2 is the same as Dataset 1 except that we supplemented the 
ten features of Dataset 1 with five additional features, which were random numbers 
uniformly distributed between zero and one (and hence contained no information 
relevant to classification), thus giving a total of 15 features. Dataset 3 is the same 
as Dataset 2 except with ten (rather than five) irrelevant features added and hence 
a total of 20 features. Like Dataset 3, Dataset 4 has 20 features. It is obtained 
from Dataset 3 as follows. Pair each of the true features with one of the irrelevant 
features. Call the feature values of the ith pair Ii and gi. Then, replace these feature 
values with the values 0.5(1i + gd and 0.5(1i - gi + 1), thus mixing up the relevant 
features with the irrelevant features via linear combinations . 

To evaluate the performance of different pattern classification algorithms on these 
four datasets, we have used lO-fold cross-validation (Stone 1974). This involves 
splitting each dataset into ten disjoint subsets of similar size and similar distribution 
of exemplars by class. To evaluate a particular algorithm on a dataset requires ten 
training and test runs, where each subset is used as the test set for the algorithm 
trained on a training set consisting of the other nine subsets. 

The pattern classification algorithms we have evaluated are backpropagation (with 
four hidden nodes), PNN (with (f = 0.05), WPNN and CART. The results of the 
experiments are shown in Figure 3. Note that the parenthesized quantities denote 
errors on the training data and are not compensated for the fact that each exemplar 
of the original dataset is in nine of the ten training sets used for cross-validation. 

We can draw a number of conclusions from these results. First, the performance of 
PNN on Datasets 2-4 clearly demonstrates the problems which arise from its lack 
of robustness with respect to affine transformations of feature space. In each case, 
there exists an affine transformation which makes the problem essentially equiva­
lent to Dataset 1 from the viewpoint of Euclidean distance, but the performance 
is clearly very different. Second, WPNN clearly eliminates this problem with PNN 
for Datasets 2 and 3 but not for Dataset 4. This points out both the progress we 
have made so far in using WPNN to make PNN more robust and the importance 
of extending the WPNN algorithm to allow non-diagonal covariances. Third, al­
though backpropagation is in theory transparent to affine transformations of feature 
space (because the first layer of weights and biases implements an arbitrary affine 
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~ 1 2 3 4 

Alaorithm 

8ackprop 11 (69) 16 (51) 20 (27) 13 (64) 

PNN 9 94 109 29 

WPNN 10 11 11 25 

CART 14 17 18 53 

Figure 3: Performance on the four datasets of backprop, CART, PNN and WPNN 
(parenthesized quantities are training set errors). 

transformation), in practice affine transformations effect its performance. Indeed, 
Dataset 4 is obtained from Dataset 3 by an affine transformation, yet backprop­
agation performs very differently on them. Backpropagation does better on the 
training sets for Dataset 3 than on the training sets for Dataset 4 but does better 
on the test sets of Dataset 4 than the test sets of Dataset 3. This implies that for 
Dataset 4 during the training procedure backpropagation is not finding the globally 
optimum set of weights and biases but is missing in such a way that improves its 
generalization. 

4 CONCLUSIONS AND FUTURE WORK 

We have demonstrated through both theoretical arguments and experiments an 
inherent flaw of PNN, its lack or robustness with respect to affine transformations 
of feature space. To correct this flaw, we have proposed an extension of PNN, called 
WPNN, which uses anisotropic Gaussians rather than the isotropic Gaussians used 
by PNN. Under the assumption that the covariance of the Gaussians is diagonal, 
we have described how to use a genetic algorithm to optimize the covariance for 
optimal performance on the training set. Experiments have shown that WPNN can 
partially remedy the flaw with PNN. 

What remains to be done is to modify the optimization procedure to allow arbitrary 

(i.e., non-diagonal) covariances. The main difficulty here is that the covariance 
matrix has a large number of degrees offreedom (k(k+l)/2, where k is the dimension 
of feature space), and we therefore need to ensure that the choice of covariance is 
not overfit to the data. We have presented some general ideas on how to approach 
this problem, but a true solution still needs to be developed. 
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