
A Weighted Probabilistic Neural Network

David Montana
Bolt Beranek and Newman Inc.

10 Moulton Street

Cambridge, MA 02138

Abstract

The Probabilistic Neural Network (PNN) algorithm represents the likeli­
hood function of a given class as the sum of identical, isotropic Gaussians.
In practice, PNN is often an excellent pattern classifier, outperforming
other classifiers including backpropagation. However, it. is not. robust with
respect to affine transformations of feature space, and this can lead to
poor performance on certain data. We have derived an extension of PNN
called Weighted PNN (WPNN) which compensates for this flaw by allow­
ing anisotropic Gaussians, i.e. Gaussians whose covariance is not a mul­
tiple of the identity matrix. The covariance is optimized using a genetic
algorithm, some interesting features of which are its redundant, logarith­
mic encoding and large population size. Experimental results validate our
claims.

1 INTRODUCTION

1.1 PROBABILISTIC NEURAL NETWORKS (PNN)

PNN (Specht 1990) is a pattern classification algorithm which falls into the broad
class of "nearest-neighbor-like" algorithms. It is called a "neural network" because
of its natural mapping onto a two-layer feedforward network. It works as follows.
Let the exemplars from class i be the k-vectors iT} for j = 1, ... , Ni. Then, the
likelihood function for class i is

1110

1 N,

Li(i) = ----_ ""' e-(x-xj)2/u

Ni(27r(j)k/2 ~
(1)

A Weighted Probabilistic Neural Network 1111

class B class A class B

(a) (b)

Figure 1: PNN is not robust with respect to affine transformations of feature space.
Originally (a), A2 is closer to its classmate Al than to B 1 ; however, after a simple
affine transformation (b), A2 is closer to B1•

and the conditional probability for class i is

M

Pi(i) = Li(i)/ L Lj(i) (2)

j=l

Note that the class likelihood functions are sums of identical isotropic Gaussians
centered at the exemplars.

The single free parameter of this algorithm is u, the variance of the Gaussians (the
rest of the terms in the likelihood functions are determined directly from the training
data). Hence, training a PNN consists of optimizing u relative to some evaluation

criterion, typically the number of classification errors during cross-validation (see
Sections 2.1 and 3). Since the search space is one-dimensional, the search procedure
is trivial and is often performed by hand.

1.2 THE PROBLEM WITH PNN

The main drawback of PNN and other "nearest-neighbor-like" algorithms is that
they are not robust with respect to affine transformations (i.e., transformations of

the form x 1--+ Ax + b) of feature space. (Note that in theory affine transformations
should not affect the performance of backpropagation, but the results of Section 3
show that this is not true in practice.) Figures 1 and 2 depict examples of how
affine transformations of feature space affect classification performance. In Figures
la and 2a, the point A2 is closer (using Euclidean distance) to point A l , which is
also from class A, than to point B 1 , which is from class B. Hence, with a training set
consisting of the exemplars Al and B1 , PNN would classify A2 correctly. Figures
Ib and 2b depict the feature space after affine transformations. In both cases, A2 is
closer to Bl than to Al and would hence be classified incorrectly. For the example
of Figure 2, the transformation matrix A is not diagonal (i.e., the principle axes
of the transformation are not the coordinate axes), and the adverse effects of this
transformation cannot be undone by any affine transformation with diagonal A.

This problem has motivated us to generalize the PNN algorithm in such a way that
it is robust with respect to affine transformations of the feature space.

1112 Montana

class~Bl

(a)

A2

class A

(b)

Figure 2: The principle axes of the affine transformation do not necessarily corre­
spond with the coordinate axes.

1.3 A SOLUTION: WEIGHTED PNN (WPNN)

This flaw of nearest-neighbor-like algorithms has been recognized before, and there
have been a few proposed solutions. They all use what Dasarathy (1991) calls
"modified metrics", which are non-Euclidean distance measures in feature space.
All the approaches to modified metrics define criteria which the chosen metric
should optimize. Some criteria allow explicit derivation of the new metrics (Short
and Fukunuga 1981; Fukunuga and Flick 1984) . However, the validity of these
derivations relies on there being a very large number of exemplars in the training
set. A more recent set of approaches (Atkeson 1991; Kelly and Davis 1991) (i)
use criteria which measure the performance on the training set using leaving-one­
out cross-validation (see (Stone 1974) and Section 2.1), (ii) restrict the number of
parameters of the metric to increase statistical significance, and (iii) optimize the
parameters of the metric using non-linear search techniques. For his technique of
"locally weighted regression", Atkeson (1991) uses an evaluation criterion which is
the sum of the squares of the error using leaving-one-out. His metric has the form

d2 = Wl(Xl-Yl?+ ... +Wk(Xk-Yk)2, and hence has k free parameters WI, ... , Wk. He
uses Levenberg-Marquardt to optimize these parameters with respect to the evalu­
ation criterion. For their Weighted K-Nearest Neighbors (WKNN) algorithm, Kelly
and Davis (1991) use an evaluation criterion which is the total number of incorrect
classifications under leaving-one-out. Their metric is the same as Atkeson's, and

their optmization is done with a genetic algorithm.

We use an approach similar to that of Atkeson (1991) and Kelly and Davis (1991)
to make PNN more robust with respect to affine transformations. Our approach,
called Weighted PNN (WPNN), works by using anisotropic Gaussians rather than
the isotropic Gaussians used by PNN. An anisotropic Gaussian has the form

1 (i i) T ~ -1 (i i) Th . ~ . t' d fi . t k k
(271')Jc/2(det ~)1/2 e- - 0 - 0 • e covarIance LJ IS a nonnega Ive- e m e x

symmetric matrix. Note that ~ enters into the exponent of the Gaussian so as to
define a new distance metric, and hence the use of anisotropic Gaussians to extend
PNN is analogous to the use of modified metrics to extend other nearest-neighbor­

like algorithms.

The likelihood function for class i is

I N •
. _ _ '"'" _(i_x;)TE-l(i_xj)

L,(x) - Ni(271")kI2(det~)1/2 f;;:e (3)

A Weighted Probabilistic Neural Network 1113

and the conditional probability is still as given in Equation 2. Note that when E is
a multiple of the identity, i.e. E = (J'I, Equation 3 reduces to Equation 1. Section 2
describes how we select the value of E.

To ensure good generalization, we have so far restricted ourselves to diagonal co­

variances (and thus metrics of the form used by Atkeson (1991) and Kelly and
Davis (1991). This reduces the number of degrees of freedom of the covariance from
k(k + 1) /2 to k. However, this restricted set of covariances is not sufficiently general
to solve all the problems of PNN (as demonstrated in Section 3), and we therefore
in Section 2 hint at some modifications which would allow us to use arbitrary co­
varIances.

2 OPTIMIZING THE COVARIANCE

We have used a genetic algorithm (Goldberg 1988) to optimize the covariance of the
Gaussians. The code we used was a non-object-oriented C translation of the OOGA
(Object-Oriented Genetic Algorithm) code (Davis 1991) . This code preserves the
features of OOGA including arbitrary encodings, exponential fitness, steady-state
replacement, and adaptive operator probabilities. We now describe the distinguish­
ing features of our genetic algorithm: (1) the evaluation function (Section 2.1), (2)
the genetic encoding (Section 2.2), and (3) the population size (Section 2.3).

2.1 THE EVALUATION FUNCTION

To evaluate the performance of a particular covariance matrix on the training set, we
use a technique called "leaving-one-out", which is a special form of cross-validation
(Stone 1974). One exemplar at a time is withheld from the training set, and we
then determine how well WPNN with that covariance matrix classifies the with­
held exemplar. The full evaluation is the sum of the evaluations on the individual
exemplars.

For the exemplar X}, let lq(x}) for q = 1, ... , M denote the class likelihoods obtained

upon withholding this exemplar and applying Equation 3, and let Pq(?) be the
probabilities obtained from these likelihoods via Equation 2. Then, we define the
performance as

M N,

E = 2:2:«(1- Pi(X;»2 + 2:(Pq(X;»2) (4)

i=l j=l q#

We have incorporated two heuristics to quickly identify covariances which are clearly
bad and give them a value of 00, the worst possible score. This greatly speeds up the

optimization process because many of the generated covariances can be eliminated
this way (see Section 2.3) . The first heuristic identifies covariances which are too
"small" based on the condition that, for some exemplar x} and all q = 1, ... M,

lq (x}) = 0 to within the precision of IEEE double-precision floating-point format.

In this case, the probabilities Pq (X1) are not well-defined. (When E is this "small" ,
WPNN is approximately equivalent to WKNN with k = 1, and if such a small E is
indeed required, then the WKNN algorithm should be used instead.)

1114 Montana

The second heuristic identifies covariances which are too "big" in the sense that
too many exemplars contribute significantly to the likelihood functions. Empirical
observations and theoretical arguments show that PNN (and WPNN) work best
when only a small fraction of the exemplars contribute significantly. Hence, we
reject a particular E if, for any exemplar xJ,

(5)

Here, P is a parameter which we chose for our experiments to equal four.

Note: If we wish to improve the generalization by discarding some of the degrees
of freedom of the covariance (which we will need to do when we allow non-diagonal
covariances), we should modify the evaluation function by subtracting off a term
which is montonically increasing with the number of degrees of freedom discarded.

2.2 THE GENETIC ENCODING

Recall from Section 1.3 that we have presently restricted the covariance to be diag­
onal. Hence, the set of all possible covariances is k-dimensional, where k is the di­
mension ofthe feature space. We encode the covariances as k+l integers (ao, ... , ak),
where the ai's are in the ranges (ao)min ::; ao ::; (ao)max and 0 ::; ai ::; amax for
i = 1, ... , k. The decoding map is

(6)

We observe the following about this encoding. First, it is a "logarithmic encoding" ,
i.e. the encoded parameters are related logarithmically to the original parameters.
This provides a large dynamic range without the sacrifice of sufficient resolution at
any scale and without making the search space unmanageably large. The constants
C1 and C2 determine t.he resolution, while the constants (aO)min, (ao)max, and
amax det.ermine t.he range. Second, it. is possibly a "redundant" encoding, i.e. there
may be multiple encodings of a single covariance. We use this redundant encoding,
despite the seeming paradox, t.o reduce the size of t.he search space. The ao term
encodes the size of the Gaussian, roughly equivalent to (J' in PNN. The other aj's
encode the relative weighting of the various dimensions. If we dropped the ao term,
the other aj terms would have to have larger ranges to compensate, thus making
the search space larger.

Note: If we wish to improve the generalization by discarding some of the degrees
of freedom of the covariance, we need to allow all the entries besides ao to take on
the value of 00 in addition to the range of values defined above. When aj = 00, its
corresponding entry in the covariance matrix is zero and is hence discarded.

2.3 POPULATION SIZE

For their success, genetic algorithms rely on having multiple individuals with partial
information in the population. The problem we have encountered is that the ratio of
the the area of the search space with partial information to the entire search space
is small. In fact, with our very loose heuristics, on Dataset 1 (see Section 3) about

A Weighted Probabilistic Neural Network 1115

90% of the randomly generated individuals of the initial population evaluated to 00.

In fact, we estimate very roughly that only 1 in 50 or 1 in 100 randomly generated
individuals contain partial information. To ensure that the initial population has
multiple individuals with partial information requires a population size of many
hundreds, and we conservatively used a population size of 1600. Note that with
such a large population it is essential to use a steady-state genetic algorithm (Davis
1991) rather than generational replacement.

3 EXPERIMENTAL RESULTS

We have performed a series of experiments to verify our claims about WPNN. To
do so, we have constructed a sequence of four datasets designed to illustrate the
shortcomings of PNN and how WPNN in its present form can fix some of these
shortcomings but not others. Dataset 1 is a training set we generated during an
effort to classify simulated sonar signals. It has ten features, five classes, and 516
total exemplars. Dataset 2 is the same as Dataset 1 except that we supplemented the
ten features of Dataset 1 with five additional features, which were random numbers
uniformly distributed between zero and one (and hence contained no information
relevant to classification), thus giving a total of 15 features. Dataset 3 is the same
as Dataset 2 except with ten (rather than five) irrelevant features added and hence
a total of 20 features. Like Dataset 3, Dataset 4 has 20 features. It is obtained
from Dataset 3 as follows. Pair each of the true features with one of the irrelevant
features. Call the feature values of the ith pair Ii and gi. Then, replace these feature
values with the values 0.5(1i + gd and 0.5(1i - gi + 1), thus mixing up the relevant
features with the irrelevant features via linear combinations .

To evaluate the performance of different pattern classification algorithms on these
four datasets, we have used lO-fold cross-validation (Stone 1974). This involves
splitting each dataset into ten disjoint subsets of similar size and similar distribution
of exemplars by class. To evaluate a particular algorithm on a dataset requires ten
training and test runs, where each subset is used as the test set for the algorithm
trained on a training set consisting of the other nine subsets.

The pattern classification algorithms we have evaluated are backpropagation (with
four hidden nodes), PNN (with (f = 0.05), WPNN and CART. The results of the
experiments are shown in Figure 3. Note that the parenthesized quantities denote
errors on the training data and are not compensated for the fact that each exemplar
of the original dataset is in nine of the ten training sets used for cross-validation.

We can draw a number of conclusions from these results. First, the performance of
PNN on Datasets 2-4 clearly demonstrates the problems which arise from its lack
of robustness with respect to affine transformations of feature space. In each case,
there exists an affine transformation which makes the problem essentially equiva­
lent to Dataset 1 from the viewpoint of Euclidean distance, but the performance
is clearly very different. Second, WPNN clearly eliminates this problem with PNN
for Datasets 2 and 3 but not for Dataset 4. This points out both the progress we
have made so far in using WPNN to make PNN more robust and the importance
of extending the WPNN algorithm to allow non-diagonal covariances. Third, al­
though backpropagation is in theory transparent to affine transformations of feature
space (because the first layer of weights and biases implements an arbitrary affine

1116 Montana

~ 1 2 3 4

Alaorithm

8ackprop 11 (69) 16 (51) 20 (27) 13 (64)

PNN 9 94 109 29

WPNN 10 11 11 25

CART 14 17 18 53

Figure 3: Performance on the four datasets of backprop, CART, PNN and WPNN
(parenthesized quantities are training set errors).

transformation), in practice affine transformations effect its performance. Indeed,
Dataset 4 is obtained from Dataset 3 by an affine transformation, yet backprop­
agation performs very differently on them. Backpropagation does better on the
training sets for Dataset 3 than on the training sets for Dataset 4 but does better
on the test sets of Dataset 4 than the test sets of Dataset 3. This implies that for
Dataset 4 during the training procedure backpropagation is not finding the globally
optimum set of weights and biases but is missing in such a way that improves its
generalization.

4 CONCLUSIONS AND FUTURE WORK

We have demonstrated through both theoretical arguments and experiments an
inherent flaw of PNN, its lack or robustness with respect to affine transformations
of feature space. To correct this flaw, we have proposed an extension of PNN, called
WPNN, which uses anisotropic Gaussians rather than the isotropic Gaussians used
by PNN. Under the assumption that the covariance of the Gaussians is diagonal,
we have described how to use a genetic algorithm to optimize the covariance for
optimal performance on the training set. Experiments have shown that WPNN can
partially remedy the flaw with PNN.

What remains to be done is to modify the optimization procedure to allow arbitrary

(i.e., non-diagonal) covariances. The main difficulty here is that the covariance
matrix has a large number of degrees offreedom (k(k+l)/2, where k is the dimension
of feature space), and we therefore need to ensure that the choice of covariance is
not overfit to the data. We have presented some general ideas on how to approach
this problem, but a true solution still needs to be developed.

Acknowledgements

This work was partially supported by DARPA via ONR under Contract N00014-
89-C-0264 as part of the Artifical Neural Networks Initiative.

A Weighted Probabilistic Neural Network 1117

Thanks to Ken Theriault for his useful comments.

References

C.G. Atkeson. (1991) Using locally weighted regression for robot learning. Proceed­

ings of the 1991 IEEE Conference on Robotics and Automation, pp. 958-963. Los
Alamitos, CA: IEEE Computer Society Press.

B.V. Dasarathy. (1991) Nearest Neighbor (NN) Norms: NN Pattern Classification

Techniques. Los Alamitos, CA: IEEE Computer Society Press.

L. Davis. (1991) Handbook of Genetic Algorithms. New York: Van Nostrand Rein­
hold.

K. Fukunaga and T.T. Flick. (1984) An optimal global nearest neighbor metric.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6,
No.3, pp. 314-318.

D. Goldberg . (1988) Genetic Algorithms in Machine Learning, Optimization and

Search. Redwood City, CA: Addison-Wesley.

J.D. Kelly, Jr. and L. Davis. (1991) Hybridizing the genetic algorithm and the k
nearest neighbors classification algorithm. Proceedings of the Fourth Internation

Conference on Genetic Algorithms, pp. 377-383. San Mateo, CA: Morgan Kauf­
mann.

R.D. Short and K. Fukunaga. (1981) The optimal distance measure for nearest
neighbor classification. IEEE Transactions on Information Theory, Vol. IT-27, No.
5, pp. 622-627.

D.F. Specht. (1990) Probabilistic neural networks. Neural Networks, vol. 3, no. 1,
pp.109-118.

M. Stone. (1974) Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, vol. 36, pp. 111-147.

