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A Weighted Sum Validity Function for Clustering
With a Hybrid Niching Genetic Algorithm
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Abstract—Clustering is inherently a difficult problem, both
with respect to the construction of adequate objective functions
as well as to the optimization of the objective functions. In this
paper, we suggest an objective function called the Weighted Sum
Validity Function (WSVF), which is a weighted sum of the several
normalized cluster validity functions. Further, we propose a
Hybrid Niching Genetic Algorithm (HNGA), which can be used
for the optimization of the WSVF to automatically evolve the
proper number of clusters as well as appropriate partitioning of
the data set. Within the HNGA, a niching method is developed to
preserve both the diversity of the population with respect to the
number of clusters encoded in the individuals and the diversity
of the subpopulation with the same number of clusters during
the search. In addition, we hybridize the niching method with the

-means algorithm. In the experiments, we show the effectiveness
of both the HNGA and the WSVF. In comparison with other
related genetic clustering algorithms, the HNGA can consistently
and efficiently converge to the best known optimum corresponding
to the given data in concurrence with the convergence result. The
WSVF is found generally able to improve the confidence of clus-
tering solutions and achieve more accurate and robust results.

Index Terms—Cluster validity, clustering, evolutionary compu-
tation, genetic algorithms, niching methods.

I. INTRODUCTION

CLUSTER analysis is a tool that attempts to assess the rela-
tionships among objects of the data set by organizing the

objects into groups or clusters such that objects within a cluster
are similar to each other but dissimilar from objects in other
clusters. Many clustering algorithms [3], [5], [12], [21], [23],
[27] have been developed to accomplish this. Generally, clus-
tering methods can be divided into two main categories [25]: hi-
erarchical and partitional. In hierarchical clustering, the number
of clusters need not be specified a priori, and problems due to
initialization and local optima do not arise. However, hierar-
chical methods consider only local neighbors in each step. The
global shape and size of clusters are always ignored. Moreover,
they are static methods, and objects committed to a given cluster
in the early stages cannot move to a different cluster.

The methods for considering the global shape and size of
clusters are the well-known partitional clustering algorithms.
Partitional clustering algorithms can be divided into two classes
[31]: hard (or crisp) clustering, where each data point belongs to
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only one cluster, and overlapping clustering, where every data
point belongs to every cluster with a certain degree. Partitional
algorithms are dynamic, and objects can move from one cluster
to another. However, most partitional approaches are based on
objective functions, which assume that the number of clusters
is known a priori. Moreover, they use the alternating optimiza-
tion technique, whose iterative nature makes them sensitive to
initialization and susceptible to local optima.

Since a priori knowledge is generally not available, estima-
tion of the number of clusters from the observed data set is re-
quired. This problem is related to the cluster validity and is es-
sentially not resolved. The classical approach of determining the
number of clusters has been to apply a given clustering algo-
rithm for a range of values and to evaluate a certain validity
function of the resulting partitioning in each case [3], [16], [29].
The partitioning exhibiting the optimal validity is chosen as the
true partitioning. This method for searching an optimal cluster
number depends on the selected clustering algorithm, whose
performance may depend on the initial cluster centers. Further-
more, the validity measures may be unreliable because the per-
formance of the validity function may be sensitive to structures
of different problem instances. Different validity functions may
result in rather different solutions on the same set of resulting
partitionings and there is no clear indication which of the dif-
ferent solutions is the best. Some other techniques of estimating
the number of clusters in a data set are based on the idea of
cluster removal and/or merging. In progressive clustering [9],
[29], [30], the number of clusters is overspecified. After conver-
gence, spurious clusters are eliminated, compatible clusters are
merged, and “good” clusters are identified. An alternative ver-
sion of the progressive clustering technique is to seek one cluster
at a time until no more “good” clusters can be found [26], [46],
[48]. These techniques may be more efficient than the classical
approach; however, they are also dependent on the validity func-
tions, which are used to evaluate the individual clusters.

Since the global optimum of the validity functions would
correspond to the most “valid” solutions with respect to the
functions, stochastic clustering algorithms based on Genetic
Algorithms (GAs) have been reported to optimize the validity
functions to determine the cluster number and partitioning of a
data set simultaneously [14], [34], [35]. Other than evaluating
the static clusters generated by a specific clustering algorithm,
the validity functions in this approach are used as clustering
objective functions for computing fitness, which guides the
evolution to search for the “valid” solution. As a result, this
approach does not depend on the specific clustering algo-
rithm. However, it is still dependent on the validity functions.
Additionally, this approach is also dependent on the genetic
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clustering algorithms. The genetic clustering algorithms used in
[14], [34], and [35] may have difficulty in identifying the best
known optimum corresponding to the given data set because
they employ either the Simple GA (SGA) [22] or its variants,
which may suffer from premature convergence to local optima.
Furthermore, they may take a large amount of time to converge.

Since there is no “perfect” validity function that is likely
to provide consistently reliable results across structures of dif-
ferent problem instances, in this paper, we address this dilemma
by suggesting a function called Weighted Sum Validity Function
(WSVF), which is a weighted sum of the several normalized va-
lidity functions, to conduct some sort of voting among its com-
ponent functions about the best solution. Using more than one
validity function via a weighted sum approach tends to increase
the confidence of clustering solutions. A related motivation of
using the WSVF is to build a robust function that can perform
well over a wide range of data sets. Further, we propose a Hy-
brid Niching Genetic Algorithm (HNGA), which can be used to
optimize the WSVF to automatically evolve the proper number
of clusters and appropriate partitioning of the data set. Within
the HNGA, a niching method is developed to prevent premature
convergence by preserving both the diversity of the population
with respect to the number of clusters encoded in the individuals
and the diversity of the subpopulation with the same number of
clusters during the search. Additionally, in order to improve the
computational efficiency, we hybridize the niching method with
the computationally attractive -means.

The organization of the paper is as follows. After reviewing
some cluster validity functions related to our work, we sug-
gest the Weighted Sum Validity Function in Section II. Then,
in Section III, we present the Hybrid Niching Genetic Algo-
rithm. Section IV describes the six data sets employed in this
work, followed by the discussion of the parameter settings of
the HNGA. In the experiments in Section V, we show the ef-
fectiveness of both the HNGA and the WSVF. We finalize the
paper with summaries and results in Section VI.

II. VALIDITY FUNCTIONS AND THE WSVF

In this section, we describe several cluster validity functions
that have been chosen as components of the Weighted Sum Va-
lidity Function (WSVF). This is followed by the explanation of
the WSVF.

Cluster validity is concerned with checking the quality of
clustering results. At the partitional level, cluster validity eval-
uates the groupings of data into clusters: does any grouping
reflect the “actual structure” of the data? Which grouping is
“better”? It has been mainly used to estimate the number of clus-
ters presented in the data set. Less commonly, cluster validity
has been used for other purposes. In [2], a validity function is
used in synergy with the fuzzy -means objective function to
guide the clustering process toward improved partitioning. In
[14], [34], and [35], the validity functions are used as clustering
objective functions to determine the cluster number and parti-
tioning of the data set simultaneously. In this paper, we also use
the validity functions to generate partitioning as well. However,
unlike [14], [34], and [35], which is based on a certain validity
function whose performance may be sensitive to structures of

different problem instances, we suggest the WSVF, which is a
weighted sum of the several normalized validity functions.

A number of validity functions have been proposed in
the literature. Two decades ago Hubert and Arabie said in a
paper on this topic “We will not try to review this literature
comprehensively since that task would require the length of a
monograph” [24]. In general, methods developed to validate
partitioning can be classified into two categories: fuzzy cluster
validity and hard cluster validity to evaluate fuzzy partitioning
and hard partitioning, respectively. We concentrate on hard
cluster validity, among which five well-known validity func-
tions, namely, Davies–Bouldin (DB) [10], Silhouette statistic
(SIL) [27], Dunn’s function [13], a version of Generalized
Dunn’s function [4], and Calinski Harabasz (CH) [6], as well
as a recently developed PBM index (also called index) [39],
have been chosen as the components of the WSVF in this paper.
These six functions have rather different properties and ratio-
nales and should serve as an adequate basis for our purpose.
However, the choice of the component functions for WSVF is
flexible, and its performance can be improved by using other
more effective combinations of validity functions. Intuitively,
the component functions of a good combination should have
different properties and rationales and favor different data
distributions.

A. Six Validity Functions

DB: This function is the ratio of the sum of within-cluster
scatter to between-cluster separation. Since scatter matrices de-
pend on the geometry of the clusters, this function has both a
statistical and geometric rationales. The scatter within the th
cluster is defined as , and
the distance between cluster and is defined as

. Here, is the number of objects in cluster ,
and represents the th cluster center. The distance measure
between the centers of clusters and is based on the squared
Euclidean metric (the squared Euclidean metric is used to mea-
sure the dissimilarity or distance in this work unless otherwise
mentioned). Then, we define . Now,

the DB is defined as

DB (1)

where is the number of clusters. Data partitioning that mini-
mizes the DB function will be treated as proper clustering result.

SIL: Let denote the average distance between and all
other observations in the cluster to which belongs. For any
other cluster , let denote the average distance of to
all objects of and denote the smallest of these . The
silhouette width of object is Sil ,
and the overall average silhouette width is simply the average
of over all objects

SIL
Sil

(2)

Intuitively, objects with large silhouette width Sil are well clus-
tered, whereas those with small Sil tend to lie between clusters.
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Kaufman and Rousseeuw [27] suggested estimating the parti-
tioning by that which gives the largest average silhouette width
SIL.

: Let and be two nonempty subsets of . Then, the
diameter of and set distance between and are

and , respectively,

where is the distance between objects and . For any
partitioning, Dunn’s function is defined as

(3)

: Bezdek et al. [4] presented a generalized Dunn’s
function, which may have 18 different forms depending
on the functional forms used to select and . Here,
we use the combination of and , which is recom-
mended as one of the most reliable forms. The and

are defined as and
, respectively,

where . Then, the generalized Dunn’s
function is defined as

(4)

Large values of and correspond good partitioning.
CH: This function performed the best in Milligan and

Cooper’s [37] simulation comparison of 30 different proce-
dures. For data objects and clusters, it is defined as

CH
trace

trace (5)

where trace and trace are the between and within
cluster sums of squares. They can be written as trace

and trace ,
where is the number of objects in cluster , and is the
center of entire data set. Large value of CH corresponds good
partitioning.

PBM: The PBM index is defined as follows:

PBM (6)

where is constant for a given data set. Here,

, and , where

is the number of objects in cluster , and is the center of
the th cluster. The best partitioning occurs at the maximum
value of this function.

B. Weighted Sum Validity Function

The WSVF consists of adding all the above functions together
using a weighting coefficient for each one. This means that the

optimization problem of the above functions can be transformed
into a combinational optimization problem of the form

WSVF (7)

where is the number of component functions, specifically
used in this paper, are the non-negative weighting co-

efficients representing the relative importance of the functions
such that , and are component functions cor-
responding to the 1/DB, SIL, , , CH, and PBM, respec-
tively. Note that maximization of the 1/DB will ensure mini-
mization of the DB function. Since there is no a priori informa-
tion about the relative importance of any individual function, we
set the weighting coefficients as .

Note that the values of different functions may have different
order of magnitude. Using a weighted sum approach to cal-
culate the WSVF, it may be dominated by the functions with
large values. For example, if represents the value with

and represents the value with
, then ) may be dominated

by ). Therefore, if we want to closely reflect the impor-
tance of the functions, all functions should be expressed in units
of approximately the same numerical value.

III. HNGA

In this section, we propose the Hybrid Niching Genetic Al-
gorithm (HNGA), which can be used to optimize the WSVF to
automatically evolve the proper number of clusters as well as
appropriate partitioning of the data set. In the literature, there
have been many attempts to use GAs for data clustering. In gen-
eral, these attempts fall into one of the two categories. Most
genetic clustering methods generally optimize the -means or
fuzzy -means objective function [20], [28], [44]. Accordingly,
these approaches assumed that the number of clusters is known
a priori. Others developed without such assumption are to op-
timize validity functions [14], [34], [35]. In both categories,
methods employ either the SGA or their variants, which may
suffer from premature convergence. Furthermore, they may take
a large amount of time to converge. In the HNGA, we develop a
niching method for clustering. Additionally, in order to improve
the computational efficiency, we hybridize the niching method
with the computationally attractive -means. In the following
sections, we describe how the clustering solutions are initially
created, how they evolve during the optimization process, how
the niching method and -means hybridization works, and how
the process terminates.

A. Representation and Initialization

In most of the genetic clustering applications, binary and real
parameter representations [8], [43], [47] are commonly used.
In the binary representation, a binary string is usually used to
represent the membership or permutation of data objects, and
cluster assignment is done explicitly based on the value of the
binary string. In most cases, binary representation suffers from
the problems of redundancy and context insensitivity with tradi-
tional crossover and mutation operators [15]. Furthermore, they
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are not a scalable representation for clustering large data sets
due to the length of the chromosomes. In this paper, we use a
real parameter representation, which represents the cluster cen-
ters. Cluster assignment is done implicitly based on distance. In
this context, Michalewicz [36] showed that a real parameter rep-
resentation moves the problem closer to the problem represen-
tation and offers higher precision with more consistent results
across replications.

Our representation for individual consists of a vector of
real numbers, where is the number of dimensions in the data,

and is the number of clusters encoded in the individual. The
first positions represent the centroid of first cluster, the next

positions represent that of the second cluster, and so on. For
example, in two-dimensional space, the individual’s chromo-
some (1.56, 2.11, 23.20, 20.90, 7.85, 6.99) encodes three cluster
centers (1.56, 2.11), (23.20, 20.90), and (7.85, 6.99). Each indi-
vidual in the population is constructed by random assignment
of real numbers to each of the attributes of the cluster cen-
ters. The initial values are constrained to be in the range (de-
termined from the data set) of the attribute to which they are
assigned but are otherwise random. The initial cluster number

is calculated according to RandInt . Here,
RandInt is a function returning a natural number, and
is the upper bound of the number of clusters and is taken to be

, which is a rule of thumb used by many investigators in the
literature [40]. The number of clusters in the population will
therefore range from 2 to .

B. Niching Method

Traditional GAs with elitist selection are suitable for locating
the optimum of unimodal functions as they converge to a single
solution of the search space. Real optimization problems such
as clustering, however, often lead to many local optima. In such
case, traditional GAs cannot maintain controlled competitions
among the competing niches corresponding to different peaks
and cause the population to converge to one alternative or an-
other [42]. One of the key features to find the optimum of a
difficult optimization problem with genetic algorithm approach
is the preservation of the population diversity during the search.
Diversity prevents GAs being trapped by local optima or con-
verging prematurely. Therefore, various procedures [11], [17],
[33], [41] have been developed to reduce the effect of genetic
drift in the traditional GAs. They maintain the population diver-
sity and permit the GAs to investigate many peaks in parallel.
On the other hand, they prevent the GAs from being trapped in
local optima of the search space.

In general, niching methods can be classified into two groups.
The first one [17], [41] involves GAs, which are characterized
by an explicit neighborhood since they need an explicit dis-
tance cutoff to induce emergence of niches in the search space.
This feature restricts their application to clustering problems for
which distance between optima cannot be estimated. The second
one [11], [33] consists of techniques for which neighborhood is
implicit and requires no information about the search space. A
general niching technique of this category, known as determin-
istic crowding, is shown below and followed by a new niching
method proposed for the clustering problem.

1) Deterministic Crowding: Mahfoud [33] improved the
standard crowding of DeJong [11] and proposed Deterministic
Crowding (DC) by introducing competition between offspring
and parents of identical niches. In DC, selection pressure at the
selection stage is eliminated by allowing individuals to mate
at random with any other individual in the population. After
crossover and eventually mutation, each of the two offspring
is first paired with one of the parents; this pairing is not done
randomly. Rather, the pairings are done in such a manner the
offspring is paired with the most similar parent. Then, each
offspring is compared with its paired parent, the individual with
the higher fitness is allowed to stay in the population, and the
other is eliminated.

2) Proposed Niching Method: DC can maintain the diver-
sity of individuals in proportion to their fitness. However, in the
case of our clustering problem, it is also important to maintain
the population diversity with respect to the number of clusters
encoded in the individuals. Therefore, a new niching method is
developed to preserve both the diversity of the population with
respect to the number of clusters encoded in the individuals
and the diversity of the subpopulation with the same number
of clusters. In this method, the selection step is modified to en-
courage mating within individuals with similar number of clus-
ters and the replacement step is modified to encourage replace-
ment within similar individuals (determined by the Euclidean
distance based on a phenotypic metric) of the same number of
clusters while allowing for some competitions among the sub-
populations with different number of clusters. The similarity
measure used during the selection step is the absolute differ-
ence of the number of clusters encoded in the individuals. If
this result in a group with more than one candidate for selec-
tion, then the Euclidean distance based on a phenotypic metric
is further used within the group. The flow of the niching method
is as follows:

Step 0) (Initialization) Generate an initial population with
individuals.

Step 1) (Restricted mating) One parent is selected ran-
domly from the population, and its mate is se-
lected not from the entire population but from a
group of individuals called Selecting Factor Group
(SFG), which is picked randomly (without replace-
ment) from the population. The one most similar to

is chosen as mate . This procedure is repeated
until parent pairs are selected.

Step 2) Crossover the parent pairs to generate offspring,
then apply mutation, and run one step of -means
on the new offspring (see Section III-D).

Step 3) (Restricted competition replacement) Compare
each offspring op with a group of individuals
called the Comparing Factor Group (CFG), which
is picked randomly (without replacement) from
the population and pair with the most similar in-
dividual of the same number of clusters as op if
exists; otherwise, pair with the individual with the
lowest fitness. If the fitness of the offspring op is
better than its paired individual, then replace the
individual.
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Step 4) Repeat steps 1 to 3 until the stopping criterion is
met.

Crossover between two individuals with a large difference
in cluster number encoded in the chromosomes often produces
low performance offspring. Therefore, we introduce Selecting
Factor Group (SFG) to promote mating between individuals
with similar number of clusters. When the SFG size value equals
one, it is basically a random selection. As the size increases there
is more possibility of selecting a similar individual as the first
parent. However, it should be small enough to allow mating be-
tween individuals with different number of clusters. The idea
of using Comparing Factor Group (CFG) is mostly to balance
competition during replacement between individuals with the
same number of clusters and individuals with different number
of clusters. A large CFG size will restrict the replacement among
individuals with the same number of clusters. Decreasing CFG
size will promote more competition between the individuals
with different number of clusters. An appropriate value should
be set to allow both thorough explorations of the search space
and competition between individuals with different number of
clusters. By using Euclidean distance based on a phenotypic
metric to measure the dissimilarity of individuals with the same
number of clusters during replacement, we are also trying to pre-
serve the diversity of the subpopulation with the same number
of clusters.

C. Fitness Computation

The fitness of an individual indicates the degree of suitability
of the solution it represents. Any of the functions described in
Section II-A can be used for this purpose. For each individual,
the centers encoded in it are first extracted, and then, a parti-
tioning is obtained by assigning the objects to a cluster corre-
sponding to the closest center. Given the above partitioning and
the number of clusters, the value of a specific validity function
is computed. The fitness of an individual is then defined as a
function of the corresponding validity measure.

However, it may result in unreliable solution by using a cer-
tain validity function for computing fitness because its perfor-
mance may be sensitive to structures of different problem in-
stances. A possible way to overcome this problem is to apply
the WSVF for computing the fitness of the individuals. Un-
like a single validity function, the use of the WSVF is not so
straightforward, because no a priori information available for
normalization of its component functions. Here, we design our
algorithm to normalize the values of its component functions
dynamically during evolution. As a result the fitness of the indi-
viduals is also calculated dynamically based on the normalized
values.

For each individual, a fitness vector is introduced to store the
values calculated from each of the six component functions of
the WSVF that are associated with the individual. Before calcu-
lating the fitness of an individual, the values of corresponding
component functions in the associated fitness vector are first ex-
tracted and each of them then normalized according to

(8)

where is the value for the th component function, and
and are maximum and minimum values of the

component function recorded so far in the evolution. After that,
the fitness of the individual is then calculated according to (7)
based on the normalized values. Note that the fitness calculating
of individuals happens only when they compete with their paired
individuals to survive and the values will not associate with the
individuals.

D. -Means Hybridization

-means [32] is an iterative scheme attempting to minimize
the sum of squared Euclidean distances between data objects
and cluster centers. Let ( ) be the set of
data objects, the number of clusters, and the center of
cluster . Then, the algorithm tries to minimize the cost func-
tion Mean Square Error (MSE)

MSE (9)

Starting from an initial distribution of cluster centers in the
data space, each data point is assigned to the cluster with the
closest center, after which, each center itself is updated as the
center of mass of all data objects belonging to that particular
cluster. The procedure is repeated until convergence. This iter-
ative scheme is known to converge sufficiently fast. However, it
depends highly on the initialization of cluster centers.

In order to improve computational efficiency, one step of
-means is applied to all new offspring during each generation

after the regeneration step. This is done by assigning each data
point to one of the clusters with the nearest center encoded
in the individual’s chromosome. After that the cluster centers
encoded in the individual’s chromosome are replaced by the
mean objects of the respective clusters.

E. Crossover and Mutation

During crossover, the cluster centers are considered to be
indivisible, i.e., the crossover points can only lie in between
two clusters centers. For this purpose, the operator analogous
to traditional two-point crossover [18] is defined as follows: Let
parent individuals and encode and cluster centers
( ), respectively, and and , which are the crossover
points in , are generated as RandInt and
RandInt . If is greater than , then swap the value of

and to make sure that . The cross points and
in are then generated as RandInt

and , where is the length of seg-
ment between cross points of and . After that, the segment
information between and in exchanges with the seg-
ment information between and in . It can be seen that
according to the above rules, the number of clusters of the off-
spring generated will be either have the same number of clusters
as or . The crossover is performed on each paired parents.

After crossover, a low probability of Gaussian mutation was
applied to the offspring. Gaussian mutation adds a unit Gaussian
distributed random value to the chosen attribute value. The new
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Fig. 1. (a) Normal_7 data set. (b) Normal_9 data set. (c) Normal_15 data set.

Fig. 2. (a) Fitness value (averaged over ten trials) found on Normal_9 data set plotted against run time by the CGA and HNGA and (b) by the VGA-clustering
and HNGA.

attribute value is clipped if it falls outside of the lower or upper
bounds of that attribute.

F. Terminal Condition

The stopping criterion for the proposed algorithm is that the
fitness value of the best population individual has not changed
for generations. There are several other possibilities for de-
termining when to stop. Options include examining the stan-
dard deviation of the population individuals’ fitness values or
stopping when the current standard deviation reaches some per-
centage of the original population standard deviation. However,
these options may be not appropriate as the stopping criteria for
the HNGA since the population diversity should be preserved
during the search.

IV. DATA SETS AND IMPLEMENTATION PARAMETERS

This section provides a description of the data sets and the
implementation parameters of the proposed algorithm. Several
numerical data sets and real data are used in our experiments.
The numerical data sets Normal_7, Normal_9, and Normal_15
are generated according to a spherical bivariate normal distribu-
tion with 7, 9, and 15 clusters, respectively. Fig. 1(a)–(c) shows

the three data sets. Note that the artificial data sets are generated
in such a way that they present different degrees of difficulty
for clustering. The Normal_7 appears to be visually simple: one
larger cluster in the middle rounded with six clusters with the
same volume. On the other hand, clusters in Normal_9 can be
seen to be overlapped and with different volumes and sizes. In
Normal_15, there is large number of clusters, and we also in-
troduce some noisy objects between clusters from a uniform
distribution.

Three real data sets considered are Iris, Breast cancer, and
Subcellcycle. First, we consider Iris data [1]: The ob-
jects in four dimensions represents three physical clusters Se-
tosa, Versicolor, and Virginica, with 50 objects per cluster. It is
known that two clusters (Versicolor and Virginica) have a large
amount of overlap, whereas the cluster Setosa is linearly sepa-
rable from the other two. Second, we will use Wisconsin breast
cancer data, which is available at the UCI Repository [38]. It is
a nine-dimensional data with 699 data objects. We remove 16
objects with missing values and use the remaining ones since
the current version of our algorithm cannot cope with missing
values. The third data set Subcellcycle is a subset of the yeast
cell cycle data set provided by [7]. The yeast cell cycle data
set contains time series expression profiles for more than 6220
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TABLE I
COMPARING THE RESULTS FOUND BY THE CGA AND HNGA ON THE EXPERIMENTAL DATA SETS OUT OF TEN TRIALS

TABLE II
COMPARING THE RESULTS FOUND BY THE VGA-CLUSTERING AND HNGA ON THE EXPERIMENTAL DATA SETS OUT OF TEN TRIALS

genes, with 17 time points for each gene taken at 10-min inter-
vals covering nearly two yeast cell cycles (160 min). The Sub-
cellcycle data used in this work consists of 384 genes, whose
expression levels peak at different time points corresponding to
the five phases (early G1, late G1, S, G2 and M) of cell cycle.
The Subcellcycle is normalized so that every gene has an av-

erage expression value of zero and a standard deviation equal to
one.

All parameter values of the HNGA for experiments on above
data sets were determined experimentally. The mutation rate
was set at 0.01. To establish this value, all variables were held
constant with only the mutation rate changing. Ten runs were
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completed for a wide range of values of the mutation rate. The
best solutions from each of the ten runs were averaged, and the
best average was selected. The outcomes of the ten runs were
averaged to ensure the HNGA performs well consistently over
a series of runs. The size of SFG and CFG were determined in
a similar way. First, SFG size was varied as all other parame-
ters were held constant, and then, the CFG size was determined
using the established SFG size. Both the best fitness values and
consistency of results were used in determining the SFG and
CFG size. The SFG size of 4, 5, 5, 3, 6, and 5 with the CFG
size of 10, 15, 15, 8, 20, and 15 were established on the above
six data sets, respectively. The population size was 3
for each data set so that large data set will have large population
size [45]. The stopping criterion was that the fitness value of the
best population individual has not changed for 20 generations.
It is possible that there are nonlinear relationships between the
parameters and therefore, there may be a more effective set of
parameter values that would result in even better performance.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed method, we performed two
types of experiments. First, we explored the properties of the
HNGA and compared the performance with other genetic clus-
tering methods, which do not need knowledge about the number
of clusters a priori. After that, we compared the performance of
the WSVF with its six component functions as clustering objec-
tive function. All results reported in this section were obtained
on a PC with AMD Athlon™ 1800 running the Windows™
2000 operation system.

A. Exploring the HNGA

In this section, we explored the properties of the HNGA
and compared it with the Clustering Genetic Algorithm (CGA)
[14] and the VGA-clustering [34]. Other than the quality of
clustering solutions, which is also dependent on the specific
clustering objective function for computing fitness, we mainly
concern the performance with respect to the criteria of the
consistency and efficiency of identifying the best known op-
timum corresponding to the given data in concurrence with the
convergence results.

Before discussing the comparative experiments, we first
briefly describe the CGA and the VGA-clustering. The CGA
was developed as an attempt to improve Falkenauer’s Grouping
Genetic Algorithm [15]. In the CGA, the binary representation
was used to represent the membership of data objects, and
cluster assignment was done explicitly based on the value of
the binary string. To avoid the problems of redundancy and
context insensitivity, both crossover and mutation operators in
the CGA were redefined. In the VGA-clustering, the Variable
string length Genetic Algorithm (VGA) [19] was applied with
real parameter representation as the underlying searching tool.
Both the CGA and the VGA-clustering employed a variant
of SGA, in which individuals with higher fitness scores are
selected to create a mating pool, and the next generation is
comprised of those previous generation individuals who never
got a chance to reproduce and the offspring of those who got
a change to produce.

Fig. 3. Partitioning with seven clusters found on Normal_7 data when the
WSVF is used for computing fitness.

Fig. 4. Partitioning with eight clusters found on Normal_7 data when the PBM
is used for computing fitness.

Since different functions were used in the CGA and the VGA-
clustering for computing fitness, we carry out two pairwise com-
parisons, between the HNGA and the CGA and between the
HNGA and the VGA-clustering. In the first pairwise compar-
ison, both the HNGA and the CGA run on the experimental
data sets to optimize the SIL, which was used for computing
fitness in the CGA, and their results were compared. Similarly,
the second pairwise comparison between the HNGA and the
VGA-clustering was carried out, however, to optimize the PBM,
which was used for computing fitness in the VGA-clustering. To
make the pairwise comparisons more meaningful, we used the
same stopping criterion (i.e., the fitness value of the best pop-
ulation individual has not changed for 20 generations) and the
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Fig. 5. Partitioning with nine clusters found on Normal_9 data when the
WSVF is used for computing fitness.

Fig. 6. Partitioning with seven clusters found on Normal_9 data when theV
is used for computing fitness.

same population size on each data set for all experiments. Other
parameters of the CGA and the VGA-clustering were specified
according to the original papers for the best performance.

To compare the performance of the two pairwise comparisons
in terms of the consistency and efficiency of identifying the best
known optimum corresponding to the given data in concurrence
with the convergence results, we reported the number of clus-
ters, count, average fitness value, overall average fitness value,
and average run time found from the ten trials on each of the six
data sets. The number of clusters is the resulting cluster number
found from the trials, count is the number of trials for which the

Fig. 7. Partitioning with fifteen clusters found on Normal_15 data when the
WSVF is used for computing fitness.

Fig. 8. Partitioning with sixteen clusters found on Normal_15 data when DB
is used for computing fitness.

resulting cluster number occurred, the average fitness is aver-
aged over the count, the overall average fitness and average run
time is averaged over all of the ten trials. The ten trials were car-
ried out by generating ten random starting populations,and run-
ning each experiment once with each of the ten random starting
populations. All sets of experiments used the same ten random
starting populations. The same starting populations were used to
better ensure that the different performance was not caused by
different starting populations. Tables I and II show these two
pairwise comparison results on the six data sets. The perfor-
mance of the two pairwise comparisons on Normal_9 data in
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TABLE III
COMPARING THE NUMBER OF CLUSTERS FOUND ON THE EXPERIMENTAL DATA SETS OUT OF TEN TRIALS BY USING THE WSVF AND EACH OF ITS COMPONENT

FUNCTIONS AS THE CLUSTERING OBJECTIVE FUNCTION FOR COMPUTING FITNESS. IF THERE ARE A DIFFERENT NUMBER OF CLUSTERS IDENTIFIED

OUT OF TEN TRIALS, THE NUMBER OF TRIALS OCCURRING ON EACH OF THE NUMBER OF CLUSTERS IS INDICATED IN THE PARENTHESES

terms of the fitness value against run time is shown in Fig. 2(a)
and (b), respectively.

Tables I and II show that almost every run of the HNGA even-
tually converges to the best known optimum value on all ex-
perimental data sets, whereas most runs of the CGA and the
VGA-clustering fail to do so. The performance of the CGA and
the VGA-clustering is not surprising because they are suffered
from premature convergence to local optima, e.g., nine out of
ten trials of both the CGA and the VGA-clustering on Normal_7
data are trapped in local optima. Similar results can be also ob-
served on Normal_9 data from Fig. 2(a) and (b) that, in case of
the HNGA, the average fitness values is approaching the best
known one, whereas it is not in the case of the CGA and the
VGA-clustering. Therefore, from the tables and graph, we can
infer that the CGA and the VGA-clustering are not assured to
reach the best known optimum value. The situation becomes
worse when the search space is large, and there are many local
optima, e.g., neither CGA nor VGA-clustering can identify the
best known optimum on Normal_15 data out of ten trials. Fur-
thermore, the CGA and the VGA-clustering are not efficient
enough. However, the HNGA is faster to identify the best known
optimum value on all experimental data sets. This mainly comes
from the one step of the -means hybrid. Clearly, based on the
experiments of the two pairwise comparisons, the HNGA is the
best alternative as it can consistently and efficiently converge
to the best known optimum corresponding to the given data in
concurrence with the convergence results.

It was also observed, in the experiments, that even though
with the best known fitness value, the resulting number of clus-
ters may not correspond to the correct one. For example, the best
known fitness value (the SIL was used for computing
fitness) and (the PBM was used for computing
fitness) on Normal_15 data correspond to 16 and eight clusters,
respectively. This indicates that the SIL and PBM may have lim-
itations as clustering objective functions. This problem will be
further explored in the following section.

B. Exploring the WSVF

In the next experiments, we explored the properties of the pro-
posed WSVF as the clustering objective function and compared
it with its six component functions. We compared the results
with respect to the criteria of 1) the accuracy to recover clusters

in the data sets and 2) the robustness over all the experimental
data sets. Since the performance of the specific function is also
dependent on the genetic clustering scheme, the same setting
of the HNGA is used for the optimization of the different func-
tions as the clustering objective to make the comparisons more
meaningful.

The number of clusters obtained by using each of the six va-
lidity functions together with the WSVF are shown in Table III.
As in previous experiments, the results were obtained by using
the same ten random starting populations and running each ex-
periment once with each of the ten random starting populations.
Figs. 3, 5, and 7 show the partitioning obtained by using the
WSVF on the three artificial data sets (different clusters repre-
sented by different symbols). As a comparison, we also show
one typical partitioning obtained by using the component func-
tions of WSVF on each of the three artificial data sets in Figs. 4,
6, and 8, respectively.

It can be seen from Table III that the WSVF can be used to
accurately determine the number of clusters in a data set and
is robust as it gave uniformly good results over all the data sets.
Figs. 3, 5, and 7 show that the WSVF can evolve the appropriate
partitioning for all the three artificial data sets. The six com-
ponent functions failed at least one of the six data sets consid-
ered. The failed on two data sets (Normal_7 and Normal_9),
and the failed on three data sets (Nomal_9, Normal_15,
and Subcellcycle). Neither the nor were able to iden-
tify the presence of the nine overlapping clusters with different
volumes and sizes in Normal_9 data. We can see, from Fig. 6,
that found a partitioning with seven clusters on Normal_9 as
two clusters at the lower-left corner and two clusters at up-right
corner are joined together. In the simulations from Normal_9,
the CH and PBM also failed to recover the proper number of
clusters, whereas the DB and SIL performed well. However,
for Normal_15 with large number of clusters and some noise
objects, the DB and SIL cannot recover the proper number of
clusters, whereas the CH and showed the best performance.
Fig. 8 shows that DB preferred a partitioning with 16 clusters
on Normal_15, as the cluster at the upper right corner is split up
into two clusters.

For Subcellcycle data, apart from the WSVF, only the DB,
and three out of ten trials of the SIL provided the correct

number of clusters, whereas others tended to underestimate the
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number of clusters. For Iris data, all functions show that
is the optimal number of clusters, except the CH. Geometrically,
the primary structure in Iris is probably , but the physical
labels insist that . Consequently, the best value for is
debatable. Breast cancer data has two clusters, which have only
a small amount of overlap. As a result, two clusters were found
irrespective of the function used.

In summary, for the data sets considered here, the WSVF is
the most robust and accurate to recover the proper number of
clusters and the appropriate partitioning. The WSVF can inte-
grate many functions to yield stable results. Thereby, the user
does not have to compare different functions and pick a single
best function. Rather, the WSVF appears to automatically
“focus” on whatever is most appropriate for the given data.

VI. SUMMARY AND DISCUSSION

In this paper, we consider the clustering problems wherein
the number of clusters is not known a priori. We suggest a clus-
tering objective function called Weighted Sum Validity Func-
tion (WSVF), which is a weighted sum of the several normalized
cluster validity functions. Further, we propose a Hybrid Niching
Genetic Algorithm (HNGA) that can be used for the optimiza-
tion of the WSVF to automatically evolve the proper number
of clusters and appropriate partitioning of the data set. Within
the HNGA, a niching method is developed to prevent prema-
ture convergence during the search. Additionally, in order to
improve the computational efficiency, we hybridize the niching
method with the computationally attractive -means. In com-
parison with other related genetic clustering algorithms, the re-
sulting HNGA can consistently and efficiently converge to the
best-known optimum corresponding to the given data in con-
currence with the convergence results. The WSVF is found to
generally be able to improve the confidence of clustering solu-
tions and achieve more accurate and robust results.

The HNGA clustering by optimizing the WSVF requires
more computational time than general clustering methods such
as -means. This is mainly because the WSVF consists of six
validity functions to evaluate the given solution chromosome.
For example, it takes two orders of magnitude more time than

-means for the Iris data set. However, the reward is that our
approach can consistently achieve accurate and robust results,
without making any a priori assumption about the number of
clusters. Like most other general clustering methods, -means
needs knowledge about the number of clusters a priori and is
susceptible to local optima. To make the comparison between
the HNGA clustering by optimizing the WSVF and -means
more meaningful, we may need to process -means with

to , where is taken to be , and
evaluate the WSVF of the resulting partitioning in each case.
Then, this procedure is repeated until the same amount of time
as the HNGA clustering is spent, and the best partitioning is
selected. In this case, our results indicate (data not shown) that
the HNGA clustering by optimizing the WSVF outperformed

-means in terms of the WSVF values with only one exception,
i.e., for the Breast cancer data, both methods performed equally
well. Similarly, the comparisons between the HNGA clustering

by optimizing the WSVF and other general clustering methods
may also be carried out in the future.

The HNGA clustering by optimizing the WSVF becomes
costly for the larger sizes of data sets, which leads to a quadratic
increase in the computation time. To alleviate this drawback,
one may use fewer component functions for the WSVF and/or
run the method on a subset of the data set (e.g., 10%) selected
using sampling techniques.

There are several other directions in which the work may be
extended further. First, how to effectively choose the component
functions for the WSVF to achieve even better results is still an
open problem. The HNGA can preserve the subpopulations with
a different number of clusters during the search. Accordingly,
parallel computer architectures can be exploited. Additionally,
simultaneous search for the effective set of parameter values of
the developed technique can be attempted, and the use of other
distance metrics may be investigated. Finally, the algorithm de-
veloped here can be suitably modified and tailored so that it is
applicable to fuzzy clustering problems. In this regard, a clus-
tering objective function consisting of several fuzzy cluster va-
lidity functions may also be developed in a similar way as the
WSVF.
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