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ABSTRACT Automatic image annotation plays a significant role in image understanding, retrieval, classi-

fication, and indexing. Today, it is becoming increasingly important in order to annotate large-scale social

media images from content-sharing websites and social networks. These social images are usually annotated

by user-provided low-quality tags. The topic model is considered as a promising method to describe these

weak-labeling images by learning latent representations of training samples. The recent annotation methods

based on topic models have two shortcomings. First, they are difficult to scale to a large-scale image dataset.

Second, they can not be used to online image repository because of continuous addition of new images

and new tags. In this paper, we propose a novel annotation method based on topic model, namely local

learning-based probabilistic latent semantic analysis (LL-PLSA), to solve the above problems. The key

idea is to train a weighted topic model for a given test image on its semantic neighborhood consisting of

a fixed number of semantically and visually similar images. This method can scale to a large-scale image

database, as training samples involved inmodeling are a few nearest neighbors rather than the entire database.

Moreover, this proposed topic model, online customized for the test image, naturally addresses the issue of

continuous addition of new images and new tags in a database. Extensive experiments on three benchmark

datasets demonstrate that the proposed method significantly outperforms the state-of-the-art especially in

terms of overall metrics.

INDEX TERMS Automatic image annotation, image retrieval, probabilistic latent semantic analysis, topic

model.

I. INTRODUCTION

Automatic image annotation (AIA) is an important and chal-

lenging task in the field of computer vision. The AIA tech-

niques attempt to learn a model from the training images and

predict semantic labels for test images automatically using

the learned model. The outburst of multimedia content on

the Internet as well as social media has raised the demands

for automatic annotation methods, thus making it an active

area of research [1]. In recent years, it has been an active

research topic due to its great potential applications in image

retrieval, image classification, and image understanding (or

image caption generation) [1]–[3].

In the past 20 years, some representative AIA approaches

have been proposed and great achievements have been

made, such as MBRM [4], JEC [5], and 2PKNN [1]. These
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state-of-the-art AIA approaches can achieve better perfor-

mance in the ideal image databases created by experts. How-

ever, they are not suitable for the realistic social images from

content-sharing websites (e.g. Picassa, Flickr, and YouTube)

and social networks (e.g. Facebook andWechat). Those social

images have two obvious characteristics. The first is that

those images are alwaysweakly annotatedwith user-provided

tags. Those databases contain hundreds of millions of images

of all kinds of quality, size, and content that are collected

from non-professional users. In contrast to traditionally

well-annotated image databases by experts, user-provided

tags from those databases usually are subjective, incomplete,

containing noisy words. Even worse, some images do not

have tags at all. The second is the continuous addition of new

images and new labels, which will lead to frequent modeling

on large-scale image databases.

To accurately describe weakly annotated image content,

topic models have been introduced for image representation
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and understanding. In topic models, each image is rep-

resented as a mixture of latent topics, and each topic is

described by a distribution over visual words [6]. The topic

can be regarded as a means of image representation whose

semantic level is higher than the visual feature. In comparison

with visual word and textual word, the topic model is adapted

to low-quality labels (synonym, polyseme, noisy, and incom-

plete tags) [7], [8]. The typical topic models introduced into

computer vision are the latent semantic analysis (LSA), prob-

abilistic latent semantic analysis (PLSA), and latent Dirich-

let allocation (LDA) [6], [8]. For example, Li exploited PLSA

and LDA for scene classification [9], [10]. Monay proposed

the famous PLSA-WORDSbased on PLSA for image annota-

tion [7]. Tian proposed PLSA-MB based on PLSA for image

annotation [11].

However, these state-of-the-art methods based on topic

models have two problems. First, they are difficult to scale

to a large-scale image dataset due to expensive storage cost

or memory overhead, because the entire image dataset must

be used to train a model. Second, because of continuous

updating of the database and the subsequent model training,

they can not be used to online image repository.

To overcome the above shortcomings, in this paper, we pro-

pose a novel annotation approach based on topic model,

namely local learning-based PLSA (LL-PLSA), which aims

to improve the semantic level, and reduce complexity of

model training. Different from traditional topic models

learned from the entire (training) database, our proposed

model learns from a local semantic neighborhood consisting

of only a small part of training images.

The main contributions of our work can be summarized

as follows. (1) Novel image representation. We combine

two different CNN features (visual and semantic) into our

model to reduce semantic gap. (2) A weighted and cus-

tomized topic model is proposed for image annotation. First,

a weighting mechanism is introduced into topic model to

improve the annotation model quality. Second, we propose

the customized topic model learned online for each test

image, instead of the same topic model learned offline for

all images. (3) A fixed number of training images rather

than all are used for training model. Experiment results on

three annotation datasets ( Corel5k [12], ESP Game [5], and

IAPR TC-12 [5]) show that we only need 15 images for

training a high-quality model. The experimental results and

analysis demonstrate the effectiveness and efficiency of our

approach.

II. RELATED WORKS

A. TOPIC MODEL APPROACHES

The probabilistic topic models are originally developed for

natural language processing tasks [13]. They model a text

document as a probabilistic distribution over some topics

where each topic is itself defined as a probabilistic distribu-

tion over a set of words. In light of this, if we consider each

patch of the image as a visual word and the whole image as

a document consisting of these visual words, the topic model

can be used for computer vision. In this model, both image

patches (visual words) and annotation words (textual words)

are assumed to be randomly generated conditioned on topic

variables.

For an AIA approach based on standard topic model, all

training images must be used to train a model in the training

stage. As the number ofmodel parameters grows linearly with

the size of the image dataset, the storage overhead of model

training is direct proportion to the size of training dataset. In a

larger training dataset, the overhead of storage and time will

dramatically increase, and even lead to memory overflow.

Therefore, the traditional topic model can not be applied to a

large-scale datasets. So, many researchers propose improved

approaches. In order to improve image annotation or retrieval

performance and reduce space-time overheads, there are two

directions to improve the topic model, including extending

model structure and decreasing training samples [14]–[16].

Some research works focus on extending model structures.

Lienhart et al. [17] propose a multi-layer PLSA model that

is convenient to extend the learning and inference rules to

more layers and modalities. The MF-PLSA model [18] can

be considered as an extension of PLSA methods in that it

handles two kinds of visual feature domains. The tr-mmLDA

model [19] presents a topic-regression multi-modal Latent

Dirichlet Allocation method to learn the joint distribution

of texts and image features. This tr-mmLDA model is quite

different from the former topic models which only share a

set of latent topics between two data modalities [8]. Song

proposes a multi-modal topical coding approach for image

annotation by capturing more compact correlations between

textual words and image regions [15], [16].

Some research works aim to reduce training cost by select-

ing a subset of training image dataset. Romberg randomly

selects some training images to train a PLSA model so as to

reduce the storage overhead in the training model stage [20].

The improved PLSA model can effectively reduce storage

overhead, but it suffers from model quality degrading due

to discarding lots of valuable training images and semantic

labels. Zheng classifies all images into different groups by

SVM classifier, and train a PLSA model for each group [14].

Then, appropriate keywords are generated by label trans-

fer algorithm in topic space. The proposed approach can

improve the performance compared with standard PLSA.

In terms of average precision, the annotation performance

of the proposed approach is comparable to MBRM [14].

This improved topic model can reduce storage cost, but these

SVM classifiers require to be retrained as new labels are

added to the database. This method might not be applicable

to online image repositories. Furthermore, in the large-scale

image database, images of one group may be too many to

train PLSA model. With regard to annotation performance,

these annotation approaches based on PLSA might not

achieve comparable performance, quoted as ‘‘that alternative

approaches based on probabilistic latent semantic indexing,

while proposing appealing venues for linking the occurrences
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of words and images, have not resulted in significant perfor-

mance gains’’ [5].

B. NEAREST NEIGHBOR MODEL BASED APPROACHES

Recently, many nearest-neighbor models based AIA meth-

ods have been proved to be quite successful [8]. The Joint

Equal Contribution (JEC) model is one of the most classical

nearest-neighbor models [5]. The JEC model utilizes vari-

ous low-level image features and a simple combination of

basic distance measures to find nearest neighbors of a given

image. It creates a family of very simple and intuitive baseline

method for image annotation.

The two-pass KNN (2PKNN) model represents a classical

solution to solve problems related to label-imbalance and

weak-labeling [1]. It identifies all related semantic neigh-

bors for each label by selecting K similar images in the

vocabulary to boost rare labels. Due to its successfully

solving class-imbalance problem, the 2PKNN makes great

achievement in terms of popular evaluation metrics including

per-word precision and recall and still is one of the most

famous and influential image annotation approaches [8].

C. DEEP LEARNING BASED APPROACHES

Recently, Convolutional Neural Networks (CNNs) have

shown great performance in many computer vision tasks by

extracting effective feature vectors from images [21]–[25].

The approaches of image annotation based on deep learning

can be classified into two categories. In the first category,

the deep learning networks can perform image annotation

by the means of multi-label multi-class classification. In this

case, most approaches focus on modifying the output layer

or activation function based on standard deep learning archi-

tecture. To adapt to a target image dataset, these modified

models always require to be trained on a large image dataset,

or fine-tuned on the target image dataset. In the second cat-

egory, the function of deep learning models is just to extract

feature vector from image. Most of the deep learning-based

AIA approaches are based on convolution neural network

(CNN) [24]–[27], and the features are always extracted from

pre-trained AlexNet and VGGNet network [16], [25]–[27].

Jia, the creator of the Caffe, proposes CNN+WARP

model [24]. The network architecture of the proposed

model is similar to AlexNet. The experiments conducted

on NUS-WIDE dataset outperform the conventional visual

features by about 10% [24]. The CNN-R model is proposed

by the team led by Murthy et al. [25], who proposed the

famous CMRM and MBRM models. Their idea is to formu-

late the image annotation problem as a CNNbased regression.

The proposed method is based on CNN feature and word

embedding vectors (word2vec). They achieve this by replac-

ing the last layer of Caffe-Net with a projection layer (fully

connected layer) and they call it as a CNN regressor (CNN-

R). Verma and Jawahar perform the 2PKNN experiment

using CNN-features and establish a new state-of-the-art per-

formance [1]. Different from the aforementioned annotation

methods based on CNN model, the D2IA approach is based

on generative adversarial network (GAN) model. The D2IA

aim to create semantically relevant, yet distinct and diverse

labels [28]. Deep learning models are extensively being used

for various computer vision tasks and shown a breakthrough

performance, which mainly contributes to end-to-end feature

extraction through convolution neural networks, but the appli-

cation of deep learning for AIA is still in its early stage [2].

The deep learning-based AIA is a quite new but promising

direction for AIA [8].

III. PROPOSED APPROACH

A. THE AIA FRAMEWORK

Figure 1 shows our proposed LL-PLSA framework for auto-

matic image annotation. We extract two levels of feature

vectors, the shallow layer visual feature and the deeper layer

semantic feature, from the same deep convolution neural

network (DCNN) (i.e. VGG-16). The semantic features aim

to determine semantic neighbors of the test image, while

visual features encoded as Bag-of-Words (BOW) aim to train

the LL-PLSA topic model. After we get the neighborhood

of the test image, we can obtain its corresponding sparse

visual features (BOW). Thus, we build the local feature space,

consisting of a few number of images semantically similar to

the test image, where our proposed LL-PLSA is learned. The

weight of each training sample for modeling is determined

by the visual similarity between this training image and the

test image. In other words, the topic model is directly learned

from visual feature space constituted by neighbors, but the

neighborhood is generated according to semantic features.

Consequently, both visual and semantic features of images

participate in our modeling, even though we never use any

textual information. Different from traditional PLSA model-

ing, in our modeling process, the test image is involved in our

modeling process, including determining neighbors and their

weights. The topic model is customized for each test image

online. Finally, the LL-PLSA predicts annotation words for

the test image.

FIGURE 1. The proposed LL-PLSA framework.

B. THE SEMANTIC AND VISUAL FEATURES EXTRACTION

BASED ON DEEP LEARNING

Recently, many developments in computer vision have been

boosted by the use of DCNN, which achieves excellent per-

formance especially for classification tasks [13].Most DCNN

architectures consist of convolution layers, max-pooling
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FIGURE 2. The flowchart of feature extraction.

layers, and fully-connected layers. In Figure 2, we illustrate

VGG-16, a widely used DCNN in computer vision. VGG-

16 includes thirteen convolution layers, three fully-connected

layers, and five max-pooling layers. The convolution kernel

of every convolution layer is 3 × 3, and every convolution

layer is followed by ReLu activation function. As shown

in Figure 2, the shape of each layer is represented by R ×

C × K . For example, the shape of the first convolution layer

(namely Conv1-1) is 224 × 224×64, which means that this

layer has 64 feature maps and each has size 224 × 224.

In the architecture of DCNN, the deeper layers usually

contain the semantic features, whereas shallower layers have

detail features, namely visual features in this paper. To get

semantic features, most works only utilize the output of the

fully-connected layer while ignoring the output of intermedi-

ate convolution layers. In fact, as shown in Figure 2, the shal-

low layer (i.e. Conv5-2) can output a low dimension (512D)

vector for each patch, whereas the deeper fully-connected

layer (FC6-FC7) can output a high dimension (4096D) vec-

tor for an image. In Conv5-2 layer, an image includes 196

(14 × 14) patches, as a result, the Conv5-2 layer can output

196 vectors for an image. In other words, one FC vector

represents a whole image, whereas one convolution vector

only represents a patch of the image. As a result, the shallow

layers capture more local visual patterns of objects, whereas

deeper layers abstract more categorical information of the

whole image.

Image classification and annotation need different ways of

describing the image. Image classification aims to identify

labels for an image from among a group of predetermined

labels, whereas image annotation focuses on describing the

objects in an image by a set of related keywords [13].

The class label can be considered as the global descriptor of

the image, whereas the annotation words can be considered

as the local descriptors of the objects in the image. To benefit

from both semantic and visual features, we extract multi-level

features from different layers simultaneously for AIA.

We have performed experiments on classical datasets

(Corel5k, ESP Game, and IAPR TC-12) to verify the per-

formance of each convolution layer in VGG-16 pre-trained

on ImageNet2012 database. The Conv5-2 and Conv5-3 can

achieve similar performance, both layers outperforming other

convolution layers. These layers are the same both in the

number of feature maps (196) and vector dimension (512D).

We select the convolution output of the Conv5-2 as our

intermediate feature. Then, we encode the output vectors of

this intermediate (Conv5-2) using BOW coding. Specifically,

to aggregate BOW feature, the codebook (vocabulary) is con-

structed from the training dataset in an unsupervised fashion

(i.e. k-means). Using this codebook, each feature vector of

patch is encoded. At last, an image is visually represented by

a BOW feature vector. In Figure 2, the BOW feature vector

is our visual feature, whereas the FC7 feature vector is our

semantic feature vector.

C. WEIGHTED PLSA MODEL FOR IMAGE ANNOTATION

Typical probabilistic topic models include PLSA, LDA, and

their variations. The PLSA is a general probabilistic topic

model, whereas LDA is a special form of PLSA. The only

difference is that the topic distribution of LDA is assumed

to have a Dirichlet prior. PLSA may be equivalent to the

LDA model under a uniform Dirichlet prior distribution. For

simplicity but without loss of generality, we use PLSA as the

following topic model.

The PLSA model assumes the existence of a latent topic

z (aspect) in the generative process of each element xj in a

particular document di. The model can be defined by the joint

probability of element xj and document di as Equation (1),

P(xj, di) = P(di)
∑Nz

k=1
P(zk |di)P(xj|zk ). (1)

Equation (1) is equivalent to Equation (2),

P(xj|di) =
∑Nz

k=1
P(zk |di)P(xj|zk ). (2)

whereNz is the topic number. The parameters of themodel are

P(zk |di) and P(xj|zk ) that can be learned from training sam-

ples via likelihood maximization. To maximize the predictive

probability P(xj,di), these parameters can be solved by using

the Expectation-Maximization (EM) algorithm for the log-

likelihood:

L =
∑Nd

i=1

∑Nx

j=1
n(xj, di) logP(xj, di). (3)

where observation pair n(xj, di) denotes the number of ele-

ment xj in document di, Nd is the number of the documents,

Nx is the number of the elements. The EM algorithm can be

divided into two steps (E-step and M-step), which is defined

respectively as,

E-step:

P(zk |di, xj) =
P(xj|zk )P(zk |di)

∑Nz
k=1 P(xj|zk )P(zk |di)

. (4)

M-step:

P(xj|zk ) =

∑Nd
i=1 n(xj, di)P(zk |di, xj)∑Nx

j=1

∑Nd
i=1 n(xj, di)P(zk |di, xj)

. (5)

P(zk |di) =

∑Nx
j=1 n(xj, di)P(zk |di, xj)

∑Nx
j=1 n(xj, di)

. (6)
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In the process of model learning, the observation objects

are the co-occurrence matrices between all samples (training

images) and their elements rather than one sample and its

elements. As a result, the probability tables in Equation (2),

including P(x|d), P(z|d) and P(x|z), will be large matrices.

For P(x|d), its row is as many as the number of images (Nd ),

whereas its column is as many as elements number (Nx). In a

larger training dataset, the model will bring more overhead

in both time and space. The model can’t be applied to online

image repositories due to memory overflow.

We propose a weighted PLSAmodel to further improve the

model. Specifically, we modify the PLSA model equations

by introducing weights to measure relevance between the

training images and the test image. This improvement is

based on the fact that the contribution of each training sample

to the model should be proportional to how it is similar to

the test image, instead of equal contribution. The weight of

training sample d is defined by the similarity between the

training sample d and test image dtest , which is embodied by

weighted observation pairs of document d and element x in

the process of modeling. The weighted observation pairs of

document d and element x is defined as,

nwt (x, d) = n(x, d) × sim(d, dtest ). (7)

where sim(d, dtest ) is the similarity between the test image

dtest and training sample d . In LL-PLSA model, we replace

the observation pars n(x, d) with the weighted observation

pairs nwt (x, d). Accordingly, we redefine Equation (3), (5),

(6) respectively as,

L =
∑Nd

i=1

∑Nx

j=1
nwt (xj, di) logP(xj, di). (8)

P(xj|zk ) =

∑Nd
i=1 nwt (xj, di)P(zk |di, xj)∑Nx

j=1

∑Nd
i=1 nwt (xj, di)P(zk |di, xj)

. (9)

P(zk |di) =

∑Nx
j=1 nwt (xj, di)P(zk |di, xj)

∑Nx
j=1 nwt (xj, di)

. (10)

where, element x can represent an annotation word t (in tex-

tualmodality) or visual word v (in visualmodality), nwt (xj, di)

is weighted representation of the observed frequencies of

neighbor image di and element xj.

In the proposed local learning-based PLSA (LL-PLSA),

d represents neighbor image of the test image instead of all

training images. Nd , Nx and Nz are only associated with a

fixed number of neighbor images instead of the entire training

dataset. Hence, we can dramatically reduce the time and

space overheads. Given a test image, its topic model can

be learned from the semantic neighborhood. The neighbor

images are a fixed number of training images that are most

semantically similar to the test image according to their

semantic feature vectors (FC7). The generation details of the

neighborhood and semantic feature vector are described in

section 3.1. Even in large-scale online image repositories,

our proposed approach only needs about a few number of

semantic neighbor images to train a model. The storage and

FIGURE 3. The flowchart of LL-PLSA modeling and annotation.

time costs of model training are a small constant if ignoring

the cost of generating the semantic neighborhood.

The flowchart of LL-PLSA modeling and annotation is

shown as Figure 3. Given a test image dtest , its neighbor-

hood can be generated using semantic feature similarities

between test image and training dataset. The model learning

and annotation are as follows. Firstly, a textual topic model

can be trained on textual modality of neighbor images to

learn both P(z|d) and P(t|z) parameters according to Equa-

tions (1),(4),(8)-(10). Secondly, a visual topic model can be

trained on visual modality to learn P(v|z) with fixed P(z|d)

which is learned previously in textual topic model. Thirdly,

a visual topic model for the test image can be trained to

learn P(z|dtest ) while the previously learned P(v|z) is fixed.

Finally, for given the test image, we can infer the posterior

probabilities of annotation words by the following equation

P(t|dtest ) =
∑Nz

k=1
P(t|zk )P(zk |dtest ). (11)

The mode training process and annotation process of the

proposed model can be summarized as the Algorithm 1 and

Algorithm 2, respectively.

IV. EXPERIMENT

A. DATASET

We perform our experiments on three datasets including

Corel5k, ESP Game and IAPR TC-12. The images in these

datasets are of various categories such as natural scene, game,

sketches, personal photos and so on, which makes the anno-

tation a challenging task. Corel5K was the first widely used

in 2002, and since then it has become a de facto evalua-

tion benchmark for comparing the annotation performance

[1], [12]. Corel5k dataset consists of 4500 training images

and 499 test images. Each image is either 192 × 128 or

128 × 192 pixels. Each image is manually annotated with

3.5 words on average from a dictionary of 260 words. ESP

Game dataset consists of 18689 training images and 2081 test

images. Each image is manually annotated with 4.7 words on

average from a dictionary of 268 words. IAPR TC-12 dataset

consists of 17665 training images and 1962 test images. The

images are 480 × 360 or 360 × 480 pixels. Each image

VOLUME 8, 2020 76415
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Algorithm 1 Training Model for a Given Test Image

Require: visual feature v of the test image, visual features v

and textual words t of the test’s neighbor images

//modeling in textual modality of semantic neighborhood

Process:

1: Randomly initialize the probability tables P(z|d) and

P(t|z)

2: while 1L > T do

3: for k ∈ 1, . . . ,Nz and all (di, tj) pairs in neighborhood

do

4: Compute P(zk |di, tj) with Equation (4)

5: end for

6: for j ∈ 1, . . . ,Nt and k ∈ 1, . . . ,Nz do

7: Update P(tj|zk ) with Equation (9)

8: end for

9: for i ∈ 1, . . . ,Nd and k ∈ 1, . . . ,Nz do

10: Update P(zk |di) with Equation (10)

11: end for

12: Compute L from P(tj|zk ) and P(zk |di) with Equa-

tion (1) and (8)

13: end while

14: Save θt = {P(tj|zk )}, j ∈ 1, . . . ,Nt , k ∈ 1, . . . ,Nz
//modeling in visual modality of semantic neighborhood

15: Randomly initialize the probability table P(v|z)

16: while 1L > T do

17: for k ∈ 1, . . . ,Nz and all (di, vj) pairs in neighborhood

do

18: Compute P(zk |di, vj) with Equation (4)

19: end for

20: for j ∈ 1, . . . ,Nv and k ∈ 1, . . . ,Nz do

21: Update P(vj|zk ) with Equation (9)

22: end for

23: Compute L from P(vj|zk ) and P(zk |di) learned in tex-

tual modality with Equation (1) and (8)

24: end while

25: Save θv = {P(vj|zk )}, j ∈ 1, . . . ,Nv, k ∈ 1, . . . ,Nz
Ensure: θt and θv

is manually annotated with 5.7 words on average from a

dictionary of 291 words.

Besides the above datasets, there are also other publicly

available image datasets such as UIUC-Sports. However,

these datasets have no specific divisions between training and

test images. For a fair comparison, we will not collect results

on these datasets.

B. EVALUATION METRICS

The precision, recall, and F1-measure are the most popular

metrics in the information retrieval and AIA communities.

Recently, per-word metrics (per-word precision, recall, and

F1-measure) are most widely used in the AIA community.

For each word, per-word precision is defined as the number

of images correctly predicted over the total number of images

Algorithm 2 Annotating the Test Image

Require: visual features v of the test image, θtandθv
Process:

//modeling in visual modality of test image with the

parameter θv

1: Randomly initialize the vector P(z|dtest )

2: while 1L > T do

3: for k ∈ 1, . . . ,Nz and all (dtest , vj) pairs do

4: Compute P(zk |dtest , vj) from P(zk |dtest ) and θv with

Equation (4)

5: end for

6: for k ∈ 1, . . . ,Nz do

7: Update P(zk |dtest ) with Equation (10)

8: end for

9: Compute L from P(zk |dtest ) and θv with Equation (1)

and (8)

10: end while

//annotating test image with the parameter θt

11: Compute P(t|dtest ) from P(z|dtest ) and θt with Equa-

tion (11)

12: Select top 5 words with the highest distributions of

P(t|dtest ) as annotation words

Ensure: Annotation words of the test image

predicted with this word, and per-word recall is defined as the

number of images correctly predicted over the total number

of images having this word in its ground-truth or manual

annotations. The values are averaged over all the words in

the vocabulary as,

per-word Precision =
1

C

∑C

i=1

N c
i

N
p
i

. (12)

per-word Recall =
1

C

∑C

i=1

N c
i

N
g
i

. (13)

where, C is the number of labels (keyword or classes), N c
i is

the number of images correctly annotated for label i, N
p
i is

the number of predictions for label i, and N
g
i is the number of

images having ground-truth label i.

Many researchers have pointed out that the per-word met-

rics are biased toward infrequent labels, becausemaking them

correct could have a very significant impact on final accu-

racy [24]. Therefore they propose overall metrics (sometimes

called as per-image metrics) [24], [29]–[31]. The overall

metrics are defined as,

overall Precision =

∑C
i=1 N

c
i∑C

i=1 N
p
i

. (14)

overall Recall =

∑C
i=1 N

c
i∑C

i=1 N
g
i

. (15)

The F1-measure is used for comprehensive performance

evaluation by combing precision and recall. The same equa-

tion can be used for both per-word metric and overall metric
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as,

F1-measure =
2 × Precision × Recall

Precision + Recall
. (16)

C. IMPLEMENTATION DETAILS

To conveniently compare different AIA models, we employ

VGG-16 to collect visual and semantic features by remov-

ing the final fully-connected layer. We use FC7 of VGG-

16 to extract 4096-dimensional semantic feature vector for

our experiments. In the codebook generation step, the num-

ber of clusters (code words) is set to 1000. In our experi-

ments, given an image from any dataset, we can generate its

1000-dimensional visual feature vector according to BOW

model. We need to resize all images of the three datasets

to 224 × 224 so that it is compatible with the input size of

the VGG-16. It is worthy to note that the VGG-16 network

used in this paper is pre-trained on ImageNet2012 dataset

[22] without retraining or fine-tuning on our target dataset

to demonstrate our model generality.

The similarity measure between two images is defined

as the cosine similarity between their features. The number

of nearest neighbors K is fixed to fifteen. As our proposed

approach needsmodeling for every test image, it is impossible

to manually set topics number every time. We consider the

number of the topics is related to the number of annotation

words associated with training samples. We empirically set

topics number as number of keywords existing in semantic

neighbor images of the test image.

D. RESULTS AND COMPARISON

In this subsection, we evaluate our method and previ-

ous methods on three datasets (Corel5k, ESP Game and

IAPR TC-12) using per-word metrics (precision, recall, and

F1-measure) denoted as W-P, W-R, and W-F respectively.

For a fair comparison, we carry out our experiment on the

same datasets using DCNN and predict a fixed length of

annotations ( five words ) for each test image.

In Table 1, we compare our approach with state-of-the-

art models, including classical topic model PLSA-WORDS,

the latest topic model PLSA-MB, classical probabilistic

model MBRM, two nearest-neighbor models JEC and Tag-

Prop. We also compare with D2IA that is a method based

TABLE 1. Performance comparison in terms of per-word metrics.

on GAN, a representative deep architecture. There are three

kinds of features used in these methods including handcraft

feature (HC), deep feature from VGG-16, and deep feature

from GAN.

Table 1 gives a performance comparison in terms of

per-word metrics. From the Table 1, we can see that our

method outperforms previous topic model-based methods

(PLSA-WORDS, PLSA-MB) by a large margin, although

we achieve comparable results against methods that do not

fall in topic model category. As can be seen from Table 1,

some methods outperform LL-PLSA in terms of certain

metric, but our proposed LL-PLSA can achieve compara-

ble performance (on ESP Game) and best performance (on

Corel5k and IAPR TC-12) in terms of comprehensive metric

(per-word F1-measure). Moreover, our proposed LL-PLSA

can outperform any method in terms of per-word F1-measure

as neighborhood size is larger than 28 as shown in Figure 5(a)

in the next subsection.

E. FURTHER EVALUATION

In this subsection, we will comprehensively compare

LL-PLSA, the classical topic model PLSA-WORDS,

the state-of-the-art approach 2PKNN, and three most famous

representative models (MBRM, JEC, and TagProp). In recent

years, 2PKNN is considered as a state-of-the-art approach,

which is referenced by nearly all AIA works. The 2PKNN

was proposed for the first time by Yashaswi in 2012 [32], then

Venkatesh and R. Manmatha implemented it using DCNN

features in 2015 [25]. Yashaswi re-implemented this work

using three layers of features from DCNN based on DeCAF

framework in 2017 [1]. As DeCAF framework is obsolete

today, we substitute this model with VGG-16 implemented

in PyTorch. We extract 9192 dimensional feature from its

last three fully-connected layers according to [1]. For a fair

comparision, in this subsection, all approaches but MBRM

are performed using deep features extracted from the same

architecture (VGG-16). Being limited tomodel itself,MBRM

is performed using handcraft feature.

The goal of image annotation is to facilitate image

retrieval, image classification, and image understanding

[1]–[3], whereas per-word metrics are mainly for evaluating

image retrieval. In essence, as far as image understanding is

concerned, the overall metrics are much better than per-word

metrics, since the overall metrics pay more attention to image

content understanding in the perspective of each image.

As a result, in common with per-word metrics, the overall

metrics are considered as appropriate metrics for compar-

ing image annotation methods [24], [29]–[31]. In addition,

we also introduce hybrid F1-measure (called H-F1) combin-

ing per-word F1-measure and overall F1-measure with the

harmonic mean [29]. In Table 2, we denote per-word metrics

byW-P, W-R, andW-F, whereas overall metrics by O-P, O-R,

and O-F. The H-F1 is denoted as H-F.

As shown in Table 2, our LL-PLSA significantly out-

performs MBRM, JEC, and TagProp in both per-word

and overall metrics as we expect. TagProp achieves better
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TABLE 2. Comprehensive performance comparison in terms of per-word
and overall metrics.

performance in both per-word and overall metrics, which

probably benefits from its sophisticated metric learning. But

it is hard to apply to a large-scale image database because of

time-consuming metric learning in training stage.

Our approach outperforms PLSA-WORDS in terms of

both per-word and overall metrics. This might attribute to

our novel semantic neighborhood and weighted topic model

customized for each test image. Our approach is comparable

to 2PKNN in terms of per-word metrics, which suggests our

proposed semantic neighbors can build high-quality semantic

space. In contrast to 2PKNN, our semantic neighborhood

is generated using deep learning features rather than textual

labels. For an image, 2PKNN consider that its nearest neigh-

bors from a given label constitute its semantic neighborhood

with respect to that label, whereas our approach directly

selects nearest neighbors from the entire image dataset and

only generates a neighborhood rather than as many as the

labels. Moreover, the deep learning feature is extracted from

pre-trained model rather than fine-tuned model, and our

semantic neighborhood generation is irrelevant to textual

labels, so our approach is able to address the issue of new

labels addition. Even if the number of user-generated tags

is tremendous, our approach is able to generate semantic

neighborhood in the same way, considering that the number

of semantic neighbors is fixed and irrelevant to the number

of labels. Therefore, our approach can be applied to both

large-scale image datasets and online image repositories.

Our approach significantly outperforms 2PKNN in terms

of overall metrics and H-F1. The main reason is that our per-

formance improvement largely benefits from accurate image

understanding whereas 2PKNN mainly from giving more

importance to rare labels than the frequent ones. The infre-

quency labels are usually related to fewer images, whereas

frequent ones related to more images. Enhancing infrequency

labels implicitly sacrifices many images with frequency

labels, which will decrease per-image performance of image

understanding. Our topic model customized for a given test

image is learned from its semantic neighbors, then the image

is represented by the customized topic model. The topic

feature can accurately capture more implicit information than

the visual feature, which is in favor of image understanding

and improving our performance in terms of overall metrics.

In summary, our proposed method improves performance

in both per-word and overall metrics, which results from

accurate image understanding.

As the annotation performances are affected by the number

of annotation words, we carry out evaluation experiments

with the number of annotation words varying from 2 to 20.

The overall precision-recall curves of MBRM, JEC, TagProp,

PLSA-WORDS, 2PKNN, and our method are visualized

in Figure 4 based on Corel5k, ESP Game, and IAPR TC-

12, respectively. The overall precision and recall values are

the mean values calculated over all the test images. As can

be seen from Figure 4, our model remarkably outperforms

the others for any number of annotation words. These again

confirm the effectiveness and efficiency of our method.

F. QUALITATIVE ANALYSIS

Table 3 shows several examples of annotations produced by

our approach on the three datasets. The example images in

three rows are from Corel5k, ESP Game, and IAPR TC-

12, respectively. We can see that our approach can correctly

predicate the ground-truth annotations, although there are

some extra labels. By checking the extra labels (with blue

font), we find that most of them are all consistent with

the content of the images but not included in ground-truth

labels. Our approach can integrate visual information into the

neighbor semantic space so as to find visually and seman-

tically similar images and predicate the correct annotation

words.

G. EFFICIENCY ANALYSIS

In this subsection, we analyze the efficiency of the pro-

posed approach with varying neighborhood size and com-

pare it with PLSA-WORDS. The experiments are performed

using Matlab programs on a computer of Intel Core(TM)

i5-6500 CPU with 3.20GHz and 16 GB RAM, running Win-

dows 7 OS. We conduct evaluation experiments with the

number of nearest neighbors K varying from 1 to 100, and

show the influence of K on the annotation performance on

all the three datasets (in terms of per-word F1-measure and

overall F1-measure) in Figure 5(a) 5(b). We can observe the

performances are generally stable but have a little fluctuation

as K increases. The reason is that topic models are initialized

randomly. In Figure 5(c), we analyze the computational costs

of LL-PLSA on K varying from 1 to 100. Since the proposed

model is customized for each test image, the training and

testing process work alternately. To accurately compute time

costs, we give the total time costs for all test images instead of

one test image. Consequently, the time costs in Figure 5(c) is

the total time of N training stages and N testing stages (N is

the number of test images). The complexity of the proposed
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TABLE 3. Example results on corel5k, ESP-game and IAPR TC-12 and the annotation predicted by our approaches.

LL-PLSA model depends on the neighborhood instead of

the whole dataset. As we expect, the time costs are almost

linear for neighborhood sizes in the three datasets. We can

observe that, for K larger than 15, the increase in annotation

performance (both per-word and overall F1-measure) is very

small as K increases, but the time costs will increase nearly

linearly. Balancing efficiency and quality, we set K as 15.

To verify the efficiency of the proposed LL-PLSA,

as shown in Table 4, we compare the time costs among

PLSA-WORDS, 2PKNN, and LL-PLSA. In LL-PLSA exper-

iments on the three datasets, the models are learned from

fixed 15 neighbors. As shown in Table 4, the time cost of

PLSA-WORDS includes one training stage and N testing

stages, while that of LL-PLSA includes N training stages

and N testing stages (N is the number of test images).

As shown in Table 4, for every dataset, the total time cost

of the proposed LL-PLSA is even smaller than the testing

cost of PLSA-WORDS. A possible explanation is that the

number of LL-PLSA model parameters is obviously smaller

than that of PLSA-WORDS. For both LL-PLSA and PLSA-

WORDS, theoretically, they need to learn the same proba-

bility tables, including P(t|z), P(z|d), P(v|z) in the modeling

stage, and P(z|dtest ) in the testing stage. In fact, the number

of LL-PLSA model parameters dramatically decrease com-

pared with PLSA-WORDS. Taking P(z|d) of Corel5k as an

example, we compare the two models. For PLSA-WORDS,

the numbers of training samples and topics, N and K , are

4500 and 200 respectively, while N and K are 15 and

about 18 in LL-PLSA respectively. In the modeling process,

P(z|d) is a K -by-N table that stores model parameters of the

N multinomial distributions P(z|di). Thus, the P(z|d) table

includes 900 thousand (200×4500) and 270 (18×15) values

for PLSA-WORDS and LL-PLSA respectively. Similarly,

the numbers of the other parameters of PLSA-WORDS are

much larger than those of LL-PLSA. The PLSA-WORDS

model is so complex that its testing time cost is larger than

the total time cost of training and testing of LL-PLSA.

In contrast to original topic models, the complexity of the

proposed LL-PLSA model is irrelevant to the size of training

image database. Theoretically, for the same neighborhood

size, the space-time overheads of LL-PLSA are almost fixed

if ignoring differences in textual distribution between dif-

ferent databases. As can be seen from Table 4, for each

dataset, the total time cost of LL-PLSA is nearly proportional

to the number of test images. Moreover, its storage cost of

modeling only depends on a fixed number of training sample

images (including the numbers of images, textual words,

visual words, and topics) rather than the entire training or test

dataset. This again confirms that the proposed LL-PLSA can

scale to any large-scale image database.

For most traditional AIA models based on nearest neigh-

bors such as JEC, the performance will decrease as neigh-

borhood size K increases. The most possible explanation

is that more irrelevant training samples (with more weak

and noisy labels) participate in modeling along with a larger

neighborhood. It is worth mentioning that the performance

of our proposed LL-PLSA is very stable as K increases

as shown in Figure 5(a) 5(b), which mainly benefits from

the topic model. In contrast to AIA models based on visual

features, topic models can capture more abstract concepts

and deal with low-quality manual labels. In comparison with

classical PLSA models, our proposed method can achieve

better performance at the low cost of storage and time as

shown in Table 4. Hence, our approach will be more fit for

online image repository with low-quality manual labels.

In contrast to traditional offline trained models, ours is

online trained efficiently for a given test image, which ensures

the current model consistent with the latest information of the

real-world database. Hence, ours is capable of addressing

the issue of continuous addition of new concepts and new
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FIGURE 4. Overall precision-recall curves on three datasets.

TABLE 4. Time costs of PLSA-WORDS, 2PKNN and LL-PLSA(in seconds).

images in the real-world database. As mentioned above, even

though the time of our model is shorter than the original topic

model (PLSA-WORDS), our modeling procedure still seems

FIGURE 5. Annotation effectiveness and efficiency of LL-PLSA with
varying neighborhood size.

to be very time-consuming because the model needs to be

trained for every test image. As nearest-neighbor methods are

concept-clear and structure-intuitive, and they need not train

complex models, to further verify the efficiency of LL-PLSA,

we compare it with 2PKNN that is a two-step variant of the

classical k-nearest neighbor algorithm. As shown in Table 4,

the testing time of 2PKNN is much longer than the total time

of training and testing of LL-PLSA. Therefore, despite our

method needs to train amodel for each test image, in fact, ours

can perform annotation efficiently rather than suffer from

the drawbacks of low generalization and customizing model

for every test image. As a matter of fact, it is only online

modeling that allows us to customize a model for the specific

test image so as to apply to real-world image database.

V. CONCLUSION AND FUTURE WORK

We present a novel image annotation based on PLSA model.

To our knowledge, this is the first published work that pro-

posed to explicitly utilize the intermediate layer output of

CNN as local visual feature in the image annotation task. Dif-

ferent from many works attempting to devise more compli-

catedmodels, we propose the concept of customizing ‘‘agile’’

topic model for each test image, which is learned from local

space consisting of a few number of visually and semantically

76420 VOLUME 8, 2020



H. Song et al.: Weighted Topic Model Learned From Local Semantic Space for AIA

similar images. Our proposed LL-PLSA has several advan-

tages. (1) Our LL-PLSA can easily fuse semantic feature and

visual feature, extracted from the same deep learning archi-

tecture, into the semantically and visually meaningful neigh-

borhood so as to train a low-cost high-quality topic model.

(2) Our method can scale to a large-scale dataset because

our neighborhood is a fixed number of semantic neighbor

images (semantic neighborhood) instead of the entire train-

ing dataset. (3) Our method effectively exploits weighting

mechanism into topic model to improve modeling quality

so as to address the weak-labeling issue. (4) Our proposed

weighted and customized topic model is fit to online image

repository, whose characteristic is the continuous addition of

new images and new labels. Extensive experiments demon-

strate that our approach can achieve comparable or state-of-

the-art performance in terms of per-word metrics, whereas

our method significantly outperforms 2PKNN in terms of

overall metrics. Our customized model for a given test image

has many advantages, however, there is a shortcoming. The

complete from-scratch model needs training for every test

image, even though few tags and images are added to the

image database. In the future, wewill explore a newmodeling

strategy based on the existing model so as to further reduce

modeling complexity. In addition, we are interested in explor-

ing the new technology in deep learning (e.g. attentionmodel)

into feature extraction and correlation analysis of visual and

textual features.
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