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Abstract

Weighted Gamma (WG), a weighted version of Gamma distribution, is
introduced. The hazard function is increasing or upside-down bathtub de-
pending upon the values of the parameters. This distribution can be ob-
tained as a hidden upper truncation model. The expressions for the moment
generating function and the moments are given. The non-linear equations
for finding maximum likelihood estimators (MLEs) of parameters are pro-
vided and MLEs have been computed through simulations and also for a
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1. Introduction

In observational studies for human, wild-life, insect, plant or fish population, it is
not possible to select sampling units with equal probabilities. In such cases, there
are no well-defined sampling frames and recorded observations are biased. These
observations don’t follow the original distribution and hence their modelling gives
birth to the theory of weighted distributions. The idea of weighted distributions
was conceptualized by Fisher [7] and studied by Rao [18] in a unified manner
who pointed out that in many situations, the recorded observations cannot be
considered as a random sample from the original distribution.This can be due to
one or the other reason viz. non-observability of some events, damage caused to
original observations and adoption of unequal probability sampling.

For a non-negative random variable X with density function f(x) and a
non-negative weight function w(x) with finite non-zero expectation, the weighted
random variable Xw has the density function

fw (x) =
w (x) f(x)

E[w(X)]
.(1.1)

The distribution of Xw is called the weighted distribution corresponding to X.
The weighted distribution with w (x) = x is called the length-biased (size-

biased) distribution which finds various applications in biomedical areas such as
early detection of a disease. Rao [18] used this distribution in the study of human
families and wild-life populations. Various other important weighted distributions
and their properties have been discussed by Mahfoud and Patil [15], Gupta and
Kirmani [9], Jain et al. [12], Nanda and Jain [16], Patil [17] and Gupta and
Kundu [11]. It is, therefore, important to study the stochastic orderings and
ageing properties of the weighted random variables with respect to the original
random variables.

Let X and Y be two random variables with probability density functions f(x)
and g(x). The corresponding distribution functions are denoted by F (x) and
G(x). hX(x) and hY (x) are the failure rate functions and µX(x) and µY (x) are
the mean residual life functions of X and Y , respectively (Barlow and Proschan,
[5]).

Definitions of the few ageing concepts and the partial orderings used in the
paper are given below:

(a) INCREASING (DECREASING) FAILURE RATE (IFR (DFR)):
F is said to be Increasing (Decreasing) Failure Rate if failure rate hX(x) is in-
creasing (decreasing) monotonically in x or equivalently, − logF (x) is convex
(concave).

(b) UPSIDE-DOWN BATHTUB (UBT) SHAPED DISTRIBUTION:
F is said to be upside-down bathtub shaped distribution if the failure rate hX(x)
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initially increases for x ∈ (0, x0), then becomes constant and eventually decreases
for x > x0.

(c) STOCHASTIC (ST) ORDERING: X is said to be smaller than Y in
the stochastic order (XST

≤ Y ) if F (x) ≥ G(x) for every x ≥ 0 and with a strict
inequality for some x.

(d) FAILURE RATE (FR) ORDERING: X is said to be smaller than Y in
the failure rate order (XFR

≤ Y ) if hX(x) ≥ hY (x) for every x ≥ 0 or equivalently,

if F (x)/G(x) is decreasing in x.

(e) LIKELIHOOD RATIO (LR) ORDERING: X is said to be smaller than
Y in the likelihood ratio order (XLR

≤ Y ) if f(x)/g(x) is decreasing in x.

(f) MEAN RESIDUAL LIFE ORDERING: X is said to be smaller than
Y in the mean residual life order (XMRL

≤ Y ) if µX(x) ≤ µY (x) for all x ≥ 0 or
equivalently, if

∫∞
x F (u)du
∫∞
x G(u)du

is decreasing in x.

We have the following chain of implications between the various partial orderings
discussed above:

Y LR
≤ X ⇒ Y FR

≤ X ⇒ Y ST
≤ X

⇓

(1.2) Y MRL
≤ X

For the above definitions, one may refer to Lai and Xie [14] and Shaked and
Shanthikumar [19]. Gamma distribution is a popular model in reliability studies
and communication engineering and is considered as a generalization of the Ex-
ponential distribution (Johnson et al. [13]). This distribution has been widely
used in many areas such as reliability engineering, survival analysis, queuing sys-
tems, hydrological analysis, climatology and insurance sector. The lifetime of a
mechanical system, the load on the web server, the flow of items through man-
ufacturing and distribution processes, the amount of rainfall accumulated in a
reservoir and the size of loan defaults or aggregate insurance claims can be mod-
elled by Gamma distribution. When engineers design space shuttles with two
fuel pumps – one active and the other in reserve, then the time elapsed till the
second pump breaks down follows Gamma distribution.

Keeping in mind the importance of the Gamma distribution and the concept
of weighted distributions, we introduce a weighted version of Gamma distribution
with a particular weight function, called as Weighted Gamma (WG) distribution.
Weighted Exponential (WE) distribution introduced by Gupta and Kundu[11],
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Gamma and Exponential distributions can be obtained as special cases of WG
distribution. This new distribution accommodates increasing and upside-down
bathtub shaped hazard rate function and hence will have wider applicability in
reliability and survival analysis. Our model can be interpreted as a hidden upper
truncation model and also as a linear combination of two Gamma models.

The main objective of this piece of work is to study different properties of
the WG distribution and check its superiority over some existing distributions
viz WE, Generalized Exponential (GE), Weibull and Exponential. The maxi-
mum likelihood estimators (MLEs) of three unknown parameters which can’t be
obtained explicitly have been found as solutions of non-linear equations. The
asymptotic distribution of MLEs is provided which can be used for testing of
hypotheses and for construction of asymptotic confidence intervals. The paper is
organized as follows.

In Section 2, the Weighted Gamma distribution is introduced and some in-
terpretations provided. The expressions for the cumulative distribution function
(cdf), the failure rate function, the moment generating function and moments till
fourth order have been derived in Section 3. Section 4 provides the non-linear
equations for finding MLEs, the elements of the Fisher’s information matrix and
the asymptotic distribution of MLEs. In Section 5, simulations are carried out
for the validation of theory presented in Section 4. A real data set illustrates the
importance of the new model. Concluding remarks are presented in Section 6.

2. Weighted Gamma distribution

In this section, we define the Weighted Gamma (WG) distribution and provide
some interpretations.

The random variable (r.v.) X follows Weighted Gamma distribution with
scale parameter λ and shape parameters α and β if the probability density func-
tion (pdf) of X is given by

fX (x;α, β, λ) = k
(1 − e−αλx)λβxβ−1e−λx

Γ(β)
, x > 0, α, β, λ > 0,(2.1)

where k−1 = 1−
(

1
1+α

)β
.

(2.1) is obtained from (1.1) by taking f(x) to be the density function of
Gamma with λ as scale parameter and β as shape parameter and w (x) = 1 −
e−αλx since E[w(X)] = k−1 is non-zero and finite.

If X is a random variable with pdf given in (2.1), we use the notation X ∼
WG(α, β, λ).
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Remark 1.

• (2.1) is the weighted version of the Gamma pdf with weight function

w(x) = 1− e−αλx, α, λ > 0.

• β = 1 gives the Weighted Exponential (WE) distribution introduced by
Gupta and Kundu [11].

• As α→ ∞, the weight function tends to 1. Hence the pdf (2.1) approaches
the Gamma pdf with scale parameter λ and shape parameter β.

• For α→ ∞ and β = 1, (2.1) reduces to the pdf of Exponential distribution
with parameter λ.

• The pdf of the WG can be written as a linear combination of two Gamma
pdfs as

(2.2) fX(x) = k

[

pdf of G (x;β, λ)− 1

(1 + α)β
pdf of G(x;β, λ(1 + α))

]

.

where G(x; a, b) =
ba

∫ x

0
e−btta−1dt

Γ(a) is the cumulative distribution function of

Gamma distribution with shape parameter a and scale parameter b.

Some observations about the new model are discussed below:

1. If for i = 1 and 2, X
′

is are independent random variables with pdfs fXi
(.)

and cdfs FXi
(.), then given α X1 > X2 for α > 0, the pdf of the new r.v.

X = X1 can be written as

(2.3) fX (x) =
1

P (αX1 > X2)
fX1

(x)FX2
(αx) , x > 0.

If X1 ∼ G(β, λ) and X2 ∼ Exp(λ), then (2.1) can be obtained from (2.3).
This means that Azzalini’s results about skew-normal distribution (Az-

zalini [4]) can be extended to two independent and non-normal random vari-
ables.

2. Hidden truncation models arise when the random variable X is observed
given that Y exceeds a certain level, say α, where X and Y follow Bivariate
Normal distribution (Arnold et al. [1]). Such models use lower truncation.

Using upper truncation, our model can be obtained as a hidden trunca-
tion model as in case of skew-normal distribution (Arnold and Beaver [2]).
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For details on models using lower or upper truncations, one can refer to Arnold
[3].

We let X and Y to be two dependent random variables with joint pdf written
as

(2.4) fX,Y (x, y) =
βλβ+1x

β+1−1
e−λxe−λxy

Γ(β + 1)
for β, λ > 0,

and consider the distribution of X when Y ≤ α.

Using (2.4), we get

(2.5) P (X = x, Y ≤ α) =
λβxβ−1e−λx[1− e−αλx]

Γ(β)
;

(2.6) P (Y ≤ α) = 1− (1 + α)−β = k−1.

Hence

fX|Y <α(x) =
kλβxβ−1e−λx[1− e−αλx]

Γ(β)
,

which is the pdf of WG as given in (2.1).

Hence our model is a type of hidden truncation model using upper truncation.

The plot of the joint density function given by (2.4) for β = 0.5 and λ = 1 is
shown in Figure 1.

Figure 1. Plot of the joint density function of X and Y .
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For sake of simplicity, we assume that λ = 1. The pdf of the WG distribution
then transforms to

(2.7) fX (x) =
k[1− e−αx]xβ−1e−x

Γ(β)
.

The plots of this density function for different values of α and β are shown in
Figure 2.
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Figure 2. Plots of the density function of WG with λ = 1.

From the plots in Figure 2, it is observed that

• f(x) approaches 0 as x tends to 0 or infinity;

• the WG distribution is positively skewed for all α and β;

• with increasing β, the density function f(x) approaches symmetry.

3. Properties of Weighted Gamma distribution

3.1. Distributional properties

Using (2.2), the moment generating function of the WG distribution can be writ-
ten as
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MX(t) = k
[

mgf of G(x;β, λ)at t − 1

(1 + α)β
mgf of G(x;β, λ(1 + α))at t

= k

[

1

(1− t
λ)

β
− 1

(1 + α)β
1

(1− t
λ(1+α))

β

]

for t < λ.

The nth order moment of the WG distribution is obtained as

E(Xn) = k

[
∫ ∞

0
xn pdf of G(x;β, λ)dx

− 1

(1 + α)β

∫ ∞

0
xn pdf of G(x;β, λ(1 + α))dx

]

= k
Γ(n+ β)

λnΓ(β)

[

1− 1

(1 + α)n+β

]

.

For λ = 1,

MX (t) = k

[

1

(1− t)β
− 1

(1 + α− t)β

]

, for t < 1

and

(3.1) E (Xn) =
kΓ(n+ β)

Γ(β)

[

1− 1

(1 + α)n+β

]

.

Using (3.1), the first four moments are

E (X) =
β

1 + α

[

(1 + α)β+1 − 1

(1 + α)β − 1

]

;

E
(

X2
)

=
β(β + 1)

(1 + α)2

[

(1 + α)β+2 − 1

(1 + α)β − 1

]

;

E
(

X3
)

=
β (β + 1) (β + 2)

(1 + α)3

[

(1 + α)β+3 − 1

(1 + α)β − 1

]

;

E
(

X4
)

=
β (β + 1) (β + 2)(β + 3)

(1 + α)4

[

(1 + α)β+4 − 1

(1 + α)β − 1

]

.
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Hence

V (X) =

=
β

(1 + α)2
{

(1 + α)β − 1
}






(β + 1)

{

(1 + α)β+2 − 1
}

− β

{

(1 + α)β+1 − 1
}2

(1 + α)β − 1






.

and coefficient of skewness=

√

√

√

√

[

(β+1)(β+2){(1+α)β+3−1}{(1+α)β−1}2
−3β(β+1){(1+α)β+1−1}{(1+α)β+2−1}{(1+α)β−1}+2β2{(1+α)β+1−1}3

]2

β
[

(β+1){(1+α)β+2−1}{(1+α)β−1}−β{(1+α)β+1−1}2
]3 .

Coefficient of variation is written as

CV =

√

V (X)

E(X)

=

√

√

√

√

√

√

(β + 1)
{

(1 + α)β+2 − 1
}{

(1 + α)β − 1
}

− β
{

(1 + α)β+1 − 1
}2

β
{

(1 + α)β+1 − 1
}2 .

For β = 1, we get

E(X) = 1 +
1

1 + α
;

V (X) = 1 +
1

(1 + α)2
;

coefficient of skewness =

√

4{(1+α)3+1}2

{(α+1)2+1}3

and

CV=

√

1− 2(1 + α)

(α + 2)2
=

√
α2 + 2

(α+ 2)
.

The above expressions are same as those given by Gupta and Kundu [11] for
Weighted Exponential (WE) distribution.

Figures 3–5 display the plots for mean, variance, coefficient of skewness and
CV.
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Figure 3. Plots for mean and variance of WG.

Figure 4. Plots of coefficient of skewness for WG for general β and for β = 1.

Figure 5. Plots of coefficient of variation (C.V.) for general β and for β = 1.
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Figures 3–5 help us to conclude the following:

• for all values of α, E(X) and V(X) are increasing functions of β,

• coefficient of skewness

– increases from
√
2 to 2 with an increase in α for β= 1;

– decreases in β for β>1 and all α;

– is zero when β approaches infinity,

• coefficient of variation is

– increasing from 1/
√
2 to 1 in α for β=1 which is true for WE distribution;

– decreasing in β for β > 1 and all α.

For Weighted Gamma distribution, the mode does not exist in a closed form and
can be found by solving the equation

αx = log

[

x (α+ 1)− (β − 1)

x− (β − 1)

]

which is equivalent to eαx =
x (α+ 1)− (β − 1)

x− (β − 1)
= 1 +

αx

x− (β − 1)
.

Remark 2.

• If we use the approximation eαx ≈ 1 + αx for small x, then x = β is the
mode.

• For β = 1, we get x = log(1+α)
α , which is the mode of WE (Gupta and

Kundu [11]).

3.2. Ageing properties

For λ = 1, the cumulative distribution function (cdf) of X can be written using
(2.2) and is given by

(3.2) F (x) =

[

(1 + α)β

(1 + α)β − 1

][

G(x;β, 1) − 1

(1 + α)β
G (x;β, (1 + α))

]

,

Using (2.1) and (3.2), the corresponding failure rate function is given by



100 K. Jain, N. Singla and R.D. Gupta

(3.3) h (x) =
f(x)

F (x)
=

(1− e−αx)xβ−1e−x

Γ(β)[{1−G (x;β, 1)} − 1
(1+α)β

{1−G (x;β, (1 + α))}] ,

where F (x) is the survival function of X.

The plots of failure rate function for different values of shape parameters are
given in Figure 6.
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Figure 6. Plots of the failure rate function.

It is evident from Figure 6 that for any α and

(a) for β ≥ 1, h(x) is increasing implying F is IFR;

(b) for β < 1, h(x) has an upside-down bathtub shape giving that F is UBT.

This can also be proved mathematically.

Theorem 1. The Weighted Gamma (WG) distribution has

(a) increasing failure rate (IFR) if β ≥ 1;

(b) upside-down bathtub (UBT) failure rate if β < 1.

Proof. For proving this, we use the theorem of Glaser [8].

Using (2.1), we write

η′(x) = − d2

dx2
log f(x)

=
α2e−αx

(1− e−αx)2
+
β − 1

x2
.

(a) If β ≥ 1, then η′(x) > 0 for all x > 0 which implies that WG is IFR.
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(b) η′ (x) = 0 if

α2e−αx

(1− e−αx)2
=

1− β

x2

that is, if

(eαx + e−αx − 2)

α2
=

x2

1− β
.

Using eαx ∼= 1 + αx + (αx)2

2! + (αx)3

3! + (αx)4

4! , we get that η′ (x) = 0 for x =√
12β/(1−β)

α = x0 when β < 1.

It is also seen that η′(x) > 0 for x <

√
12β/(1−β)

α = x0; η
′ (x) < 0 for

x >

√
12β/(1−β)

α = x0. Using Theorem by Glaser [8], it can be concluded that WG
is UBT when β < 1.

3.3. Stochastic ordering results

In the next theorem, the relationship between a Gamma and a Weighted Gamma
random variable in terms of likelihood ratio, failure rate, stochastic and mean
residual life orderings is established.

Theorem 2. If X ∼ G(β, λ) and Xw ∼WG(α, β, λ), then

(a) XLR
≤ Xw,

(b) XFR
≤ Xw,

(c) XST
≤ Xw,

(d) XMRL
≤ Xw.

Proof. (a) The result follows since

fwX(x;α, β, λ)

fX(x;β, λ)
= k(1− e−αλx) is an increasing function of x.

(b), (c) and (d) follow because of the chain of implications given in (1.2).
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4. Estimation and Inference

In this section, we derive the equations for finding the maximum likelihood esti-
mators (MLEs) of parameters.

Suppose X follows WG distribution and let θ = (α, β, λ)T be the parameter
vector. The log likelihood based on the observed sample (x1, x2, . . . , xn) is

l = l (α, β, λ)

= n
{

log (1 + α)β − log
{

(1 + α)β − 1
} }

+
n
∑

i=1

log
(

1−e−αλxi
)

+ nβlog λ

+ (β − 1)

n
∑

i=1

log xi − λ

n
∑

i=1

xi − nlog{Γ (β)} .

The components of the score vector U =
(

∂l
∂α ,

∂l
∂β ,

∂l
∂λ

)T
are given by

∂l

∂α
= −nβ(1 + α)β−1







1
{

(1 + α)β − 1
}

(1 + α)β







+ λ
n
∑

i=1

xie
−αλxi

1− e−αλxi
,(4.1)

∂l

∂β
= nlog(1 + α) − n(1 + α)βlog(1 + α)

{

(1 + α)β − 1
} + nlog λ+

n
∑

i=1

log xi − nψ(β) ,

(4.2)

∂l

∂λ
= α

n
∑

i=1

xie
−αλxi

1− e−αλxi
+
nβ

λ
−

n
∑

i=1

xi,(4.3)

where ψ(.) denotes the digamma function, the logarithmic derivative of the
gamma function. The MLE θ̂ of θ is obtained numerically by equating (4.1)–
(4.3) to zeros and solving for α, β and λ. When the parameters are unknown, the

asymptotic distribution of
√
n
(

θ̂ − θ

)

is N3(0,K(θ)−1).

For interval estimation and testing of hypotheses for the parameters in θ, the
3x3 information matrix can be obtained as

K = K (θ)=





Kλ,λ Kλ,α Kλ,β

Kλ,α Kα,α Kα,β

Kλ,β Kα,β Kβ,β



 .
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For u (a, b) =
∫ 1
0 {−log(1− x) }b+1(1− x)ax−1dx, the elements of K are derived

below:

Kλ,λ = −E

[

∂2l

∂λ2

]

=
β

λ2
+







(1 + α)β
{

(1 + α)β − 1
}

(Γ(β))αβλ2







u

(

1

α
, β

)

;

Kλ,α = −E

[

∂2l

∂λ∂α

]

=
1

λ
{

(1 + α)β − 1
}

[

1

1 + α
− (1 + α)β

βαβ+1
u

(

1

α
, β

)

]

;

Kλ,β = −E

[

∂2l

∂λ∂β

]

= − 1

λ
;

Kα,α = −E

[

∂2l

∂α2

]

=
β

(1 + α)2
−
β
{

(1 + α)2β−2 + (β−1)(1 + α)β−2
}

{

(1 + α)β − 1
}2

+







(1 + α)β
{

(1 + α)β − 1
}

(Γ(β))αβ+2







u

(

1

α
, β

)

;

Kα,β = −E

[

∂2l

∂α∂β

]

=
(1 + α)β−1

{

(1 + α)β − βlog (1 + α) − 1
}

{

(1 + α)β − 1
}2 − 1

(1 + α)
;

Kβ,β = −E

[

∂2l

∂β2

]

= −{log (1 + α) }2(1 + α)β

{

(1 + α)β − 1
}2 .
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If we wish to compare the WE and WG distributions using the likelihood ratio
(LR) test, the null hypothesis H0 : β = 1 is to be tested against H1: β 6=1. For
this, LR statistic=-2 (log likelihood under H0 - log likelihood under H1).

In the next section, the Monte Carlo Simulations are carried out to check the
validity of the theoretical results reported in this section.

We also compare WG distribution with Weighted Exponential (WE), Gen-
eralized Exponential (GE) (Gupta and Kundu [10]), Weibull and Exponential
distributions using a real data set.

5. Simulations and application

5.1. Estimation through simulation

Simulations are carried out by generating observations from Weighted Gamma
(WG) distribution with parametric values α = 5, β = 5 and λ = 2, using
Acceptance-Rejection procedure. The estimates of the parameters are found us-
ing (4.1)–(4.3) and equating these to zeros. The considered sample sizes are n=
50, 75, 100, 200 and 300 and the number of repetitions is 10,000. The results
have been found using the BFGS quasi-newton method in R package.

The mean estimates and the corresponding Root Mean Square Errors (RM-
SEs) are reported in Table 1.

The values in Table 1 substantiate the theoretical results reported in Section 4.
It is observed that as n becomes large, the estimates of parameters get closer to
the initial parametric values.

5.2. Real life illustration

We consider a real data set to estimate the parameters and establish the superi-
ority of WG over WE, GE, Weibull and Exponential distributions. The data set
is given by Birnbaum and Saunders [6] on the fatigue life of 6061-T6 aluminium
coupons cut parallel to the direction of rolling and oscillated at 18 cycles per
second. With maximum stress per cycle 31,000 psi, there are 101 observations
given as

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112,
113, 114, 114, 114, 116, 119, 120, 120,120, 121, 121, 123, 124, 124, 124, 124, 124,
128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 131,132, 132, 132, 133,
134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142,
142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157,
157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 201, 212.

The plot for the Total Time on Test (TTT) for the above data set is shown in
Figure 7.
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Table 1. Mean Estimates of parameters and Root Mean Squared Errors.

n parameter mean estimate RMSE

50
α 3.99 3.01

β 5.18 1.18

λ 2.09 0.49

75
α 3.99 3.16

β 5.07 0.91

λ 2.05 0.38

100
α 4.15 3.24

β 5.03 0.78

λ 2.03 0.32

200
α 4.28 3.05

β 4.96 0.55

λ 1.99 0.22

300
α 4.67 2.39

β 4.92 0.45

λ 1.99 0.18
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Figure 7. Total Time on Test (TTT) plot.
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Since TTT plot is concave, hence the failure rate function is increasing implying
that an IFR distribution models the data set. The plots of the empirical and
fitted survival functions are displayed in Figure 8.

60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

Es
tim

ate
d s

urv
ivo

r f
un

cti
on

Kaplan Meier
WG

Figure 8. The empirical and fitted survival functions for the considered data set.

This figure depicts that WG distribution provides a good fit to the data set.

Estimation of parameters

The values of the parameters for Weighted Gamma (WG), Weighted Exponential
(WE), Generalized Exponential (GE), Weibull and Exponential distributions, for
the data set on the fatigue life, have been calculated and are reported in Table 2.

Table 2. Estimates of the parameters.

Distribution
MLE

λ α β

WG .265 12.43 35.38

WE .015 .001 1

GE .039 119.52 -

Weibull .0098 - 1.41

Exponential .0074 - 1

Comparison of WG distribution with its submodels

(I) Using Akaike Information Criterion and Bayesian Information
Criterion:
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For comparing Weighted Gamma distribution with Weighted Exponential,
Generalized Exponential, Weibull and Exponential distributions, we first
use the concept of Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC). The best model is the one which has least values
of AIC and BIC. For establishing its superiority, the calculated values of
AIC and BIC are reported in Table 3.

Table 3. AIC and BIC for different models.

Distribution AIC BIC

WG 919.54 927.39

WE 1119.83 1125.06

GE 934.74 939.97

Weibull 2149.30 2154.53

Exponential 1192.99 1195.61

Since the values of AIC and BIC are lowest for WG, hence WG distribution
provides the best fit to the data.

(II) Through Histogram:

The histogram for the above data set and estimated densities of WG, WE,
GE, Weibull and Exponential distributions have been plotted in Figure 9.

Figure 9. Plots for the histogram and estimated densities.

Figure 9 also shows that WG distribution fits the data in a better way as
compared to the WE, GE, Weibull and Exponential distributions.
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(III) Using Kolmogorov-Smirnov Distances:

For checking the best fitted distribution to the data set, KS distances be-
tween empirical and fitted survival functions are computed for WG, WE,
GE, Weibull and Exponential distributions. These distances and the corre-
sponding p-values are reported in Table 4.

Table 4. Kolmogorov-Smirnov (KS) distances and the corresponding p-values.

Distribution Kolmogorov-Smirnov distances p-value

WG .0491 .5852

WE .2503 .0800

GE .1224 .1082

Weibull .0995 .2469

Exponential .2559 .0954

Since least KS distance and highest p-value correspond to WG distribu-
tion, hence it is concluded that WG provides the best fit against the rival
distributions WE, GE, Weibull and Exponential distributions.

(IV) Using Likelihood Ratio Test:

We compare WG with WE distribution using the Likelihood Ratio test
since WE is a special case of WG distribution. This amounts to testing
H0: β = 1 (WE) versus H1: β 6= 1 (WG). The value of LR statistic is
computed to be 202.284 with corresponding p-value as .00001. Hence H0

is rejected and it is concluded that WG provides a better fit than WE
distribution.

6. Conclusions

We introduce a new three-parameter distribution known as Weighted Gamma
(WG) distribution which provides extension to Exponential, Gamma andWeighted
Exponential distributions with a broader class of failure rate functions. It can
be obtained as a hidden upper truncation model and also as a linear combina-
tion of two Gamma models. We study distributional and ageing properties of
the WG distribution and check its superiority over some existing distributions
viz WE, GE, Weibull and Exponential. The estimation of parameters is done by
the method of maximum likelihood and the information matrix is derived. An
application to a real data set shows that the fit of the WG distribution is superior
to the fits using the WE, GE, Weibull and Exponential distributions.
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