
A Well-Arranged Simulated Annealing Approach for the Location-Routing
Problem with Time Windows

Halil Ibrahim Guenduez

RWTH Aachen University

guenduez@or.rwth-aachen.de

Hueseyin Memet Kadir

RWTH Aachen University

hueseyin.kadir@rwth-aachen.de

Abstract
Location and route planning are implemented indepen-
dently in most distribution networks. Low-quality solu-
tions are obtained if sequential methods, e.g. locate de-
pots first and plan routes second, are used. In this paper
we include aspects of route planning in location planning
and consider it as a location-routing problem (LRP). Here,
we present a well-arranged simulated annealing approach
for a single-stage LRP with time windows and compare its
performance with a sequential and a tabu search heuris-
tic. Although the presented approach improves the costs of
the tabu search approach slightly the computational time
is reduced significantly.

1. Introduction

The European logistics market is one of the most impor-

tant economic factors and indicators with a market volume

of e 930 billion in 2010 [10]. Transportation and ware-

housing represent the largest part of the market volume

with a share of 42% and 26%, respectively. Thus, in dis-

tribution logistics the bulk of costs are comprised of loca-

tion, transportation, and handling costs. To reduce them,

facility location and route planning strategies are crucial

choices. Both the capacitated facility location problem

(CFLP) and the vehicle routing problem (VRP), have been

studied and solved intensively over the last decades as in-

dividual models. Salhi and Rand [19] revealed that the in-

dependent tackling of both problems leads to suboptimal

solutions. The set of location-routing problems within lo-

cation theory combines location and route plan decision

levels. In recent years, the attention has increased and

many of the published works deal with real problems. For

example, military [13], evacuation [4], and the paper in-

dustry [7] to name just a few. Especially in postal logistics,

a huge variety of LRP applications exists (e.g. [3], [21]).

An overview of the current state of scientific research is

provided by Nagy and Salhi [15].

In this paper we consider a single-stage location-routing

problem with time windows (SSLRPTW) and capacity re-

strictions at both customers and depots, as presented by

Guenduez [6]. Time restrictions in LRP have hardly been

considered up to now. Jacobsen and Madsen [9] consider

a latest delivery time at customers in a two stage newspa-

per distribution network. Wasner and Zaepfel [21] mainly

restrict the routes to maximum time duration in a par-

cel distribution network. In some real problems, external

truck companies perform the routing, and desire to imple-

ment route plans for a long period of time whereby, of

course, time windows of customers are respected. Exe-

cuting routes for a long period of time improves the abil-

ity of external truck companies to schedule their staff and

vehicle fleet more efficiently and reduces extreme plan-

ning fluctuations. Furthermore, this leads to cost reduc-

tions, from which clients also can benefit during contract

negotiations. Thus, the routing in these cases is tactical

rather than operational. The considered problem is derived

from a real application case of a high quality mail pickup

and delivery service for special customers in an urban area

of Germany. In Germany a next-day delivery is possible

if letter and bulk mail are posted before approximately 5

p.m. An early reception of mail enables law chambers, of-

fices, and agencies to deal with their customers’ business

in the morning and afternoon, and to post the return mail

before 5 p.m. Thus, they are able to give quick response

without having to use additional express services if the de-

livery is early in the morning and the pickup up is before

5 p.m. In fact, daily time windows exist between approx-

imately 6-8 a.m. for delivery and between approximately

3-5 p.m. for pickup. In Fig. 1 the executed network is de-

picted. The mail is delivered from sorting centers to small

depots, and vice versa. In the case of delivery, they are

used as breakup sites and in the case of pickup, they are

used as consolidation sites. The depicted network includes

a transportation stage between sorting centers and depots,

where also other major freight is shipped to or from other

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.69

1143

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.69

1144



locations. Therefore, this transportation stage can be omit-

ted for our case. Finally, the question of ‘where to locate

the depots’ leads to the SSLRPTW.

Guenduez [6] proposed a heuristic based on tabu search

and showed that a simultaneous decision on depot locating

and route planning leads to much better solutions than se-

quential decisions: locating depots first and building route

plans after. Guenduez used a systematic complete neigh-

borhood search of a solution to investigate the solution

space. Although the used neighborhood is restricted to

small fraction of the whole solution space, the main flaw

is a high computation time caused by the systematic com-

plete neighborhood search. Therefore, we propose a well-

arranged simulated annealing approach based on ideas by

Osman [16] for the vehicle routing problem and Osman

and Christofides [17] for the capacitated clustering prob-

lem and compare it with Guenduez’ tabu search algorithm.

They observed that search strategies checking neighbors

only randomly by doing random moves tend to observe

parts of the solution space intensively and leave other parts

of the solution space unobserved. To overcome this flaw

the main idea is to combine a systematic neighborhood

search with a randomized component and to apply the first

improving or accepted move. In order to save comput-

ing time, the remaining neighborhood search is carried out

to the applied move. The contribution of this work is to

present an approach which leads to the same or better so-

lution as Guenduez’ tabu search in significantly less com-

putation time.

This paper is organized as follows. Section 2 introduces

the required notation, defines the problem, and proposes

an integer linear optimization model. The subproblems

are presented in section 3, followed by the explanation of

the proposed hybrid heuristic in section 4. Computational

results are presented in section 5. We close with some

concluding remarks.

Figure 1: An example network structure

2. SSLRPTW: Definition and
Model

The following definition of the single-stage location-

routing problem with time windows (SSLRPTW) is bor-

rowed from Guenduez [6]. It is defined on a weighted (not

necessarily complete) directed graph G= (V,A,C,T ). The

node set V consists of a subset D of m potential depot sites

and a subset I =V \D of n customers. C and T are weights,

corresponding to the traveling costs ci j and the traveling

time ti j (includes service time si at node i), associated with

the set of arcs A linking any two nodes i and j. Each depot

site has a capacity Qd , opening hours [opend ,closed ], and

opening costs Fd . Further, each customer has a demand qi
and has to be served during the time window [ai,bi]. For

service purposes, a homogenous fleet K of vehicle with

capacity C is available and any subset can be placed at any

depot site. The task is to determine the location of open de-

pots, the assignment of the customers to open depots, and

the vehicle routes serving the customers with minimum

overall costs such that the following constraints hold:

• Each customer is assigned exactly to one open depot

and served by exactly one vehicle during the depot’s

time window (a waiting time wi at customer i is al-

lowed).

• Each vehicle is used once at the most.

• Each vehicle route begins and ends at the same open

depot during the opening hours.

• The vehicle load does not exceed the vehicle capacity.

• The total demand of the customers assigned to an

open depot does not exceed the depot capacity.

The following binary variables are necessary:

yd =

{
1, if depot d is open

0, otherwise

zdi =

⎧⎨
⎩

1, if customer i is assigned

to depot d
0, otherwise

xk
i j =

⎧⎪⎪⎨
⎪⎪⎩

1, if node j is directly

visited after node i
by vehicle k

0, otherwise

Further, we need the following time variables:

Ti : arrival time at customer i
wi : waiting time at customer i
startk

d : departure time of vehicle k at depot d
endk

d : return time of vehicle k at depot d
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The linear program of the SSLRPTW can now be stated as

follows:

min ∑
d∈D

Fd · yd + ∑
k∈K

∑
(i, j)∈A

ci j · xk
i j (1)

subject to

∑
i∈I

qi · zdi ≤ Qd · yd ∀d ∈ D (2)

∑
k∈K

∑
i∈V

xk
i j = 1 ∀ j ∈ I (3)

∑
j∈V

xk
i j− ∑

j∈V
xk

ji = 0 ∀k ∈ K, i ∈V (4)

∑
d∈D

∑
j∈V

xk
d j ≤ 1 ∀k ∈ K (5)

∑
k∈K

∑
i∈S

∑
j∈V\S

xk
i j ≥ 1 ∀S⊆ I, 2≤ |S| (6)

∑
i∈V

∑
j∈I

q j · xk
i j ≤C ∀k ∈ K (7)

∑
s∈V

(xk
ds + xk

si)− zdi ≤ 1

∀d ∈ D, i ∈ I, k ∈ K (8)

Ti +wi ≥ ai

∀i ∈ I (9)

Ti ≤ bi

∀i ∈ I (10)

startk
d−opend ≥ 0

∀k ∈ K, d ∈ D (11)

closed− endk
d ≥ 0

∀k ∈ K, d ∈ D (12)

−M(1− xk
i j)− (Tj−Ti−wi− ti j)≤ 0

∀i ∈ I, j ∈ I, k ∈ K (13)

M(1− xk
i j)− (Tj−Ti−wi− ti j)≥ 0

∀i ∈ I, j ∈ I, k ∈ K (14)

−M(1− xk
d j)− (Tj− startk

d− td j)≤ 0

∀d ∈ D, j ∈ I, k ∈ K (15)

M(1− xk
d j)− (Tj− startk

d− td j)≥ 0

∀d ∈ D, j ∈ I, k ∈ K (16)

−M(1− xk
id)− (endk

d−Ti−wi− tid)≤ 0

∀i ∈ I, d ∈ D, k ∈ K (17)

M(1− xk
id)− (endk

d−Ti−wi− tid)≥ 0

∀i ∈ I, d ∈ D, k ∈ K (18)

xk
i j ∈ {0,1} ∀ i, j ∈V, k ∈ K (19)

yd ∈ {0,1} ∀ d ∈ D (20)

zdi ∈ {0,1} ∀ d ∈ D, i ∈ I (21)

Ti, wi ∈ Z
+ ∀ i ∈ I (22)

startk
d , endk

d ∈ Z
+ ∀ d ∈ D (23)

The objective function minimizes the sum of depot and

transportation costs. Capacity constraints of the open de-

pots and the used vehicles are satisfied through inequali-

ties (2) and (7). Constraints (3) and (4), known as ‘degree

constraints’, guarantee the uniqueness and continuity of a

route performed by a vehicle. Each vehicle is used once

at the most through constraints (5). Subtours consisting

of only customers are eliminated by constraints (6). Con-

straints (8) ensure that a customer is only served by a ve-

hicle assigned to the same open depot. While constraints

(9) and (10) imply that the arrival time (with additional

waiting time) at a customer is within its time window, con-

straints (11) and (12) guarantee that each route starts and

ends at a depot during its open hours. The arrival time, the

departure time, and the return time on a route performed

by a vehicle are determined by inequalities (13)-(18). If

xk
i j = 1 holds, then inequalities (13) and (14) reduce to

the equation Tj = Ti + wi + ti j, otherwise to the relaxed

inequality −∞ ≤ Tj − Ti−wi− ti j ≤ ∞. The same holds

for (15)-(16) and (17)-(18) for startk
d and endk

d instead of

Ti and Tj, respectively. Finally, the integrality constraints

(19)-(23) state the binary or integer nature of the decision

variables. For the purpose of time variables description,

the time horizon is discretized into time points and coded

as integer values.

This formulation includes O(|K| · |V |2) binary variables,

O(max{|K · |D|, |I|}) integer variables, and O(2|V | − 2|D|)
constraints. Therefore, only very small-scale instances

can be solved with commercial solvers. Thus, the use of

heuristics is essential for large-scale SSLRPTW instances.

3. Subproblems: Location,
Allocation, and Vehicle Routing

The location of depots, the allocation of customers, and the

construction of routes are essential parts of the SSLRPTW.

We decompose the overall problem into the mentioned

subproblems, describe them briefly in this section, and

propose a solution method, which is a modular part of our

approach.
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3.1. Capacitated Facility Location
Problem with Time Windows

If we neglect routes, the SSLRPTW reduces itsself to

the capacitated facility location problem (CFLP), first in-

troduced by Balinski [1], with additional time windows

(CFLPTW) and single-sourcing constraints. The task is to

determine the number and location of open depots and the

assignment of the customers to open depots with a mini-

mum sum of fixed costs and assignment costs, such that

the following constraints hold:

• Each customer is assigned exactly to one open de-

pot (single-sourcing) and is reachable before the cus-

tomer’s of its time window.

• The earliest departure time at a depot is after its open-

ing time.

• The latest arrival time at a depot from each assigned

customer is before its closing time.

• The total demand of the customers assigned to an

open depot does not exceed the depot capacity.

The CFLPTW model is consistent with the CFLP if time

feasibility checks are executed during a preprocessing

phase. Therefore, we need to check whether

• opend + td j ≤ b j and

• max{opend + td j,a j}+ t jd ≤ closed

hold, otherwise the assignment variable zd j can be fixed to

zero or rather arcs (d, j) and ( j,d) can be removed from G.

The CFLPTW with single-sourcing constraints is stated as

follows:

min ∑
d∈D

Fd · yd + ∑
(d, j),( j,d)∈A

(cd j + c jd) · zd j (24)

subject to

∑
i∈I

qi · zdi ≤ Qd · yd ∀ d ∈ D (25)

∑
d∈D

zdi = 1 ∀ I ∈ I (26)

zdi ∈ {0,1} ∀ d ∈ D, i ∈ I (27)

yd ∈ {0,1} ∀ d ∈ D (28)

The objective function (24) minimizes the sum of all

fixed and assignment costs. Assignment costs are defined

by travel costs from depot to customer and back. Inequali-

ties (25) guarantee that a customer can only be assigned to

an open depot and that capacity constraints of the depots

are respected. Constraints (26) are single-sourcing restric-

tions. Finally, constraints (27) and (28) define the binary

assignment variables and location variables, respectively.

An allocation problem with time windows (APTW) oc-

curs if open depots have already been determined. The

time feasibility check can be outsourced to a preprocess-

ing phase. Hence, only constraints (25) and (26) remain

for the open depots. Large-scale instances with 1000 cus-

tomers and 362 potential depots have been solved exactly

with the commercial solver IBM ILOG CPLEX Optimizer

12.2.

3.2. Vehicle Routing Problem with Time
Windows

The (multi-depot) vehicle routing problem with time win-

dows (MDVRPTW) occurs as a subproblem if depot loca-

tions and a feasible assignment of customers are known.

Then, the task is to construct routes for each depot and its

assigned customers with the following constraints:

• Each customer is served by exactly one vehicle dur-

ing the customer’s time window (waiting time is al-

lowed).

• Each route begins and ends at the depot during the

opening hours.

• The vehicle load does not exceed the vehicle capacity.

The goal is to minimize the overall transportation costs.

We omit a description of a full model and refer the reader

to Toth and Vigo [20]. At the beginning, we construct

routes with the savings heuristic of Clarke and Wright [5]

and obtain the initial solution. Each customer is served

individually by a separate route. Combining two routes,

serving customers i and j, results in a cost savings Si j =
cid + cd j − ci j with d as the serving depot. We link cus-

tomers i and j with maximum positive savings such that

the combined route is time and capacitative feasible. Fur-

ther, we restrict the linking of customers to those who re-

tain the traversing order of the previous two routes, be-

cause reversing a route order leads in most cases to time

infeasibility. The savings procedure is applied iteratively.

Local search methods are used to improve feasible solu-

tions. Arc-exchange operators are applied to find neigh-

boring solutions. The following arc-exchange moves are

applied: 2-opt, 2-opt∗, Or-opt, relocate, exchange, and

cross-exchange. The 2-opt tries to improve a route by re-

placing two node disjoint arcs by two other arcs. 2-opt∗
is similar to 2-opt, but it combines two different routes by

deleting one arc of each route and replacing them by two

new arcs which combine the first part of the first route with

the second part of the second route and the first part of the

second route with the second part of the first route. Thus,

the orientation of the routes is preserved.

The Or-opt is another arc-exchange operator and a special
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case of 3-opt preserving the orientation of the route. Three

disjoint arcs are replaced by new three arcs, such that all

three route parts preserve their orientation after concate-

nation with the new arcs. By using a relocate operator,

a customer is moved from one route to another and by us-

ing an exchange operator, customers of different routes are

simply swapped. Thus, we are able to change the assign-

ments of customer if the relocate or exchange operation is

applied to routes assigned to different depots. The used

operators are described in Braeysy and Gendreau [2]. Re-

source extension function generalized to segments intro-

duced by Irnich [8] are used to check the feasibility of the

operators in constant time. Algorithm 1 gives an overview

of how the multi-depot vehicle routing problem is solved

in our work.

Algorithm 1 Multi-Depot VRPTW

1: for each depot and its assigned customers do
2: Construct routes with the savings method.

3: end for
4: for each depot and its routes do
5: Improve routes by arc-exchange operators in the follow-

ing sequence: 2-opt, 2-opt∗, Or-opt, relocate, exchange,

cross-exchange.

6: if an operator improves a solution then
7: Stop and update the route(s). Go to 4.

8: end if
9: end for

10: for each pair of depots and their routes do
11: Improve routes by arc-exchange operators in the follow-

ing sequence: relocate, exchange .

12: if an operator improves a solution then
13: Stop and update the route(s). Go to 10.

14: end if
15: end for
16: if an operator in 11 improved the solution at least once then
17: Go to 4.

18: end if

4. Well-Arranged Simulated
Annealing

‘Locate first and route second’-type heuristics are sequen-

tial methods for LRP. In our work, we refer to the more

suitable approach of nested methods, presented by Nagy

and Salhi [14], and we use the sequential method as ini-

tial solution and for comparison purposes. An alternative

approach could be that of iterative methods (e.g. Daskin

[18]), where both problems are treated equally. These

methods iterate between the location and routing phases

until a stop criterion is met. The drawback of itera-

tive methods is that the location solution space cannot

be searched intensively as in the nested methods, due to

an intensive routing phase for the whole distribution sys-

tem after each location and allocation decision. First, we

define the neighborhood structure of the SSLRPTW by

the moves add, drop, and shift, introduced by Kuehn and

Hamburger [11]. Opening a depot corresponds to an ‘add’

move and closing a depot corresponds to a ‘drop’ move. A

‘shift’ move is a simultaneous add and drop move. A de-

pot location change mostly influences a connected area of

closely located depots with their associated customers and

the changed depot and its customers. Therefore, all three

moves are restricted to a region and a catchment area of

an open depot, where after each move a MDVRPTW is

solved. In addition, we define a neighborhood relation be-

tween two depots to specify the term closely in this con-

text. The following definitions are adopted from Nagy and

Salhi [14].

Definition 1 Two depots d1 and d2 are neighbors if and
only if at least one customer i exists, such that d1 and d2

are the nearest two depots to customer i.

Definition 2 The region R(d) of an open depot d consists
of the depot d itself, its customers, neighbor depots, and
their associated customers.

Definition 3 The catchment area CA(d) of an open depot
d is the smallest rectangle comprising depot d and its cus-
tomers.

The neighborhood relation, the region of a depot d, and

its catchment can be created easily. Moreover, we restrict

add and shift moves to the catchment area of an investi-

gated depot d. Closed depots too far from depot d are

not considered because they have only a slight direct in-

fluence on each other. We introduce now a well-arranged

approach based on simulated annealing which accepts the

first improving neighbor in a simulated annealing manner.

The first neighbor with total costs less than the actual so-

lution or with worse total costs but accepting the simulat-

ing annealing criterion becomes the new actual solution.

We use Lundy and Mees’ [12] flexible cooling procedure

enriched with Osman’s idea of resets [16]. The cooling

procedure allows a parameterized temperature lowering

starting with temperature TStart and reducing it to TStop by

α reduction steps. A temperature reduction step occurs

always after comparing the actual solution costs with a

neighbor’s costs. At each step there is a chance of ac-

cepting a worse neighbor with the probability e−Δ/T : Δ is

the cost difference of the actual solution’s and neighbor’s

costs and T is the actual temperature. The search strategy

is well-arranged or systematic because the generation of

the neighbors to compare the actual solution with is gen-

erated by add, drop, and shift moves in a strict order. If

a neighbor’s costs is less than the actual solution’s costs
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or the simulated annealing criterion accepts the neighbor’s

costs, the search procedure does not start over completely.

Instead, the remaining add, drop, and shift moves are car-

ried out to the the new actual solution to generate next

neighbors. This search strategy was successfully applied

by Osman [16] for the vehicle routing problem and by Os-

man and Christofides [17] for the capacitated clustering

problem. Search strategies checking neighbors randomly

by doing random moves tend to observe parts of the solu-

tion space intensively and leave other parts of the solution

space unobserved. The systematic generation of neigh-

bors avoids this. Using the simulated annealing criterion

to decide whether to accept a neighbor or not gives us the

opportunity to overcome local optima. Osman proposes

another method to overcome local optima with so called

‘resets’. A reset is a massive temperature increase to over-

come local optima and heat the search strategy to go on

checking its neighbors more intensely.

While tabu search tries to evade local optima once found

by introducing a memory in the form of tabu lists, Osman’s

search strategy relies on the memoryless simulated anneal-

ing criterion and additional temperature resets. Tempera-

ture resets lead to non-monotonic cooling schedules.

Figure 2 shows two cooling schedules: a) Monotonic cool-

ing schedule as proposed by Lundy and Mees, b) Non-

monotonic cooling, as proposed by Lundy and Mees, en-

riched with three temperature resets by Osman. Both

schedules cool the starting temperature TStart = 10000

down to TStop = 200 in α = 3000 reduction steps.

Algorithm 2 shows how the search strategy works. The

initial solution is calculated by solving a CFLPTW first

and a MDVRPTW for the depot customer assignments

second. The starting point for creating and checking all

neighbors is line 5. For every open depot d of the solu-

tions S, a drop move is done in line 7, an add move is

performed in line 13, and finally a shift move is checked

in line 18 for every closed depot in the catchment area of

the current investigated open depot. A depot is closed, a

formerly closed depot becomes open, a depot is swapped

with a closed depot, and the region’s customers are re-

allocated solving an APTW. While the CFLPTW’s solu-

tion leads to first depot customer assignment, where every

customer is assigned to a depot, the APTW solution re-

arranges the assignment of customers to open depots only

for small regions, as in Definition 2. Solving MDVRPTWs

afterwards, leads to a new solution fragment which needs

to be embedded back into the actual solution. In Algo-

rithm 2 this is performed only if the simulated annealing

acceptance criterion in the lines 8, 14, or 19 returns the

boolean value ‘true’. In those cases the systematic search

continues for the new created actual solution with the next

open depot in line 5. If the accepted solution has costs

lower than the best cost value encountered, the solution

will be recorded. The ‘for’ loop in line 5 will be triggered

again if the reset counter is less than three. Resets are per-

formed if none of the solution neighbors is accepted or the

temperature falls under the minimum temperature Δmin. In

the first case the actual solution is a local optimum. In

the latter case the search has reached its maximum neigh-

bor comparison count. The temperature is raised to the

maximum of Δmax/2resetCount and temperature best. This

ensures that the temperature is raised high enough to allow

random neighbor changes to escape from local optimum.

In contrast to the tabu search (TS) of Guenduez [6], we do

not search the whole neighborhood for the best improv-

ing neighbor. We accept the first improving neighbor and

continue the search in the regarded neighborhood with the

next open depot in line 5. The algorithm presented tries to

overcome local optima with memoryless methods. First,

the acceptance criterion has always the chance to accept

worse solutions. Second, the reset, the massive tempera-

ture increase, will mostly ensure that worse solutions will

be accepted and the search procedure continues in differ-

ent regions of the solution space.

Algorithm 3 shows how the simulated annealing accep-

tance criterion is exactly checked. The cost difference

Δ between the actual solution and the regarded neigh-

bor is calculated. If Δ is positive, the neighbor’s costs

value is lower than the actual solution’s cost value and

the acceptance criterion returns ‘true’. If Δ is negative,

the neighbor’s costs are higher and the neighbor becomes

the new actual solution only with the probability ‘eValue’.

‘eValue’ equals to e(Δ/temperature). Since Δ is negative,

the expression is lower than 1. Independent of the return

value, the temperature is decreased in line 2 with the help

of the decrement ratio β . The starting temperature needs

to be related to cost values. The adjustment of the start-

ing temperature and other simulated annealing-specific pa-

rameters is performed once before Algorithm 2 starts. Al-

gorithm 2 runs once without any acceptance checking just

to get an impression of the cost values, their deviations for

the first neighborhood, and the count of feasible neighbors.

The variable ‘neighborCosts’ saves encountered neighbor

cost values. Δmin holds the minimum difference between

any neighbor costs and Δmax saves the maximum differ-

ence. The starting temperature then is initialized to Δmax.

α denotes the count of reduction steps after which the min-

imum temperature Δmin is reached. We limit the reduction

steps by either the product of the feasible solutions count

in the first neighborhood with the depot count or by 20000.

For 1000 customer instances, this product gets too high, so

finally the reduction steps are limited to 20000. The decre-

ment ratio β then is initialized using Δmin, Δmax, and α .

We call the introduced algorithm ‘F1S’ and create a variant

named ‘F1F’, changing α , the number of reduction steps

until Δmin is reached. We also reduce the maximum num-
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ber of resets to 1. α is set to 100 · |D|. For 1000 customer

instances, this will lead to a maximum of 36200 neighbor

comparisons, while F1S is bounded to max. 20000 com-

parisons. F1F cools slower than F1S but uses only 1 reset

instead of 3.
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Figure 2: Cooling schedules

5. Computational Study

The proposed heuristic was coded in C++ and executed on

an Intel Core2Duo 2.15 Ghz computer with 6 GB RAM.

IBM ILOG CPLEX Optimizer 12.2 was applied to solve

the CFLPTW and APTW.

We used SSLRPTW instances proposed by Guenduez [6],

which are extensions of the VRPTW Solomon instances.

The class RC1 with 1000 customers is used, in order to

have large-scale instances with clustered and randomly

distributed customers. As fixed costs we used 3000 mon-

etary units (MU) combined with depot capacity of 3000

quantity units (QU). In the following, we denote the 10 in-

stances as ‘Test Class’ (TC). The demand of all customers

is 17822 QU and the minimum required number of open

depots is 6. Overall, the generated instances consist of

362 potential depots. The vehicle capacity of 200 QU is

adopted from the Solomon instances. Further, the travel

costs ci j and the travel time match the Euclidean distance

multiplied by factor 10.

Algorithm 2 Hybrid simulated annealing

1: Initial solution S and total costs C(S).
2: Sbest = S, resetCount = 0.

3: while resetCount ≤ 3 do
4: success = f alse
5: for each depot d in S do
6: Calculate the Region R(d).
7: Drop open d from R(d). Solve APTW and then MD-

VRPTW for R(d)\{d}. Calculate costs C(R(d)\{d}).

8: if check(C(S|R(d)\{d}),C(Sbest)) then
9: S = S|R(d)\{d}, t best = temperature, success = true

10: break

11: end if
12: for each closed depot d̃ in CA(d) do
13: Add d̃ to R(d). Solve APTW first and then the

MDVRPTW for R(d) ∪ {d̃}. Calculate the costs

C(R(d)∪{d̃}).
14: if check(C(S|R(d)∪{d̃}),C(Sbest)) then
15: S = S|R(d)∪{d̃}, t best = temperature, success =

true
16: break

17: end if
18: Swap d̃ with d in R(d). Solve APTW and then the

MDVRPTW for (R(d)∪{d̃}) \ {d}. Calculate the

costs C((R(d)∪{d̃})\{d}).
19: if check(C(S|

(R(d)∪{d̃})\{d}),C(Sbest)) then
20: S = S|

(R(d)∪{d̃)\{d}}, t best =
temperature, success = true

21: break

22: end if
23: end for
24: end for
25: if not success or temperature≤ Δmin then
26: resetCount = resetCount+1

27: temperature = max(Δmax/2resetCount, t best)
28: end if
29: end while

Algorithm 3 check(C,CB)

1: Δ =CB−C, eValue = e(Δ/temperature)

2: temperature = temperature/(1+β · temperature)
3: if Δ > 0 then
4: Sbest = Solution of C
5: return true

6: end if
7: if (Δ < 0 and eValue > randomValue(0,1)) then
8: return true

9: else
10: return false

11: end if

Tables 1 - 3 list the results of TC. Columns ‘� dep.’ corre-

spond to the number of open depots. Column Δ provides

the deviation of the initial solution costs from the minima
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Algorithm 4 Initialize SA

1: Execute Algorithm 2 without the if statements contain-

ing the execution of checkAcceptance just to gather all

neighborCosts and the count feasibilityCount of feasible

neighbors.

2: sort(neighborCosts)

3: Δmin = neighborCosts(2)−neighborCosts(1)
4: Δmax = neighborCosts(last)−neighborCosts(1)
5: temperature = Δmax
6: α = min(feasibilityCount · |D|,20000)
7: β = (Δmax−Δmin)/(α ·Δmax ·Δmin)

of the solution costs computed with one of the heuristics

TS, F1S, and F1F. The three columns ‘TS’, ‘F1S’, and

‘F1F’ list either the percental deviation of the cost’s or

the computation time’s minima, respectively. Since those

minima are computed from the cost or time values ob-

tained for TS, F1S, and F1F, each row contains a zero

value for deviation costs and deviation times. The column

with the zero entry indicates the algorithm variant with the

best costs or time value. Table 3 lists the number of open

depots of the best solution calculated by TS, F1S, and F1F.

The computational results proof that location-routing ap-

proach leads to much better solutions than the sequential

approach. The initial solution opens between 64 and 67

depots (see Table 2). The open depot count for the im-

proved solution is reduced down to 17-21. The CFLPTW

model considers round trip costs to customers and over-

estimates the route costs, which are drastically lowered

solving MDVRPTWs. Since distances to customers are

weighted quite highly in the CFLPTW model, the number

of open depots is high compared to the best found solu-

tion. Therefore, time windows are less restrictive factors

for the initial solution. Time windows become more re-

stricting when depots are reduced and customers are lo-

cated to them considering tour costs calculated by solving

MDVRPTWs. We observed a cost reduction between 32%

and 55%. This is mainly caused by the high fixed costs and

the reduction of open depots. The highest cost reductions

have been achieved for the instances I03 and I04.

If we compare the heuristics, we see that the maximal per-

cental cost deviation is 1.47%. The best results are mainly

found by the hybrid heuristics ‘F1F’. On the other hand,

the solutions of the three heuristics do not differ so much,

so that we cannot say that one of the used heuristics is

outperforming the others according to the best objective

value. The average percental deviation from the calculated

best solution for TC of TS is 0.44%, F1S is 0.43%, and

F1F is 0.30%. Thus, our propose approach provides solu-

tions of slightly better mean quality. Although the objec-

tive values calculated by F1S, F1F, and TS are tight, the

solution structure can differ quite a lot, especially in the

number of open depots (see Table 3). For example, in in-

stance I04, the maximal percental cost deviation is 0.16%,

but all three heuristics vary in the number of open depots.

Hence, even the location of depots and the assignment of

customers to tours differ considerably in local areas of the

three solutions (see Figure 3). Moreover, the TS best so-

lutions have in almost all instances at least one or more

open depots than the best solutions of F1S and F1F, re-

spectively.

Further, the comparison of the computation time shows

that the presented heuristics F1S and F1F have a better per-

formance than TS. The computation times differ a lot for

the regarded instances: between 24095s and 55571s (see

Table 1) for the fastest computations. As expected, F1F

computes the fastest solution for the most instances. The

mean computation time of TS is 66470 s, F1S is 56304 s,

and F1F is 53061 s. The mean percental deviation of the

best computation times of TS is 91.2%, F1S is 55.3%, and

F1F is 33.1%. Overall, F1S and F1F compute on average

better solutions in less computation time compared to TS.

Table 1: Calculation time results of TC
inst. min time deviation time

id seconds TS F1S F1F

I01 55571.13 2.6 0 108.9

I02 41527.62 0 126.1 201.7

I03 37336.90 56.6 0 15.1

I04 45693.53 43.0 23.9 0

I05 30372.50 176.8 183.4 0

I06 24095.11 253.3 56.7 0

I07 25539.83 170.6 12.0 0

I08 39744.80 37.6 7.3 0

I09 46614.55 108.1 0 4.8

I10 32024.64 63.6 143.4 0

Table 3: Number of open depots
inst. � dep.

id TS F1S F1F

I01 25 25 22

I02 21 19 21

I03 20 17 17

I04 18 15 16

I05 21 22 19

I06 21 19 19

I07 21 21 19

I08 21 18 17

I09 21 20 17

I10 20 17 17

6. Conclusion

In this paper, both location and routing problems are tack-

led together, leading to the single-stage location-routing
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Table 2: Computational results of TC
inst. initial solution min costs deviation costs

id � dep. costs � dep. costs Δ TS F1S F1F

I01 67 352204 22 266782 32.02 0.89 0.55 0

I02 66 338148 21 246819 37.00 0.35 0.51 0

I03 67 331772 17 226089 46.74 0 0.75 0.76

I04 67 322968 16 207711 55.49 0 0.07 0.16

I05 67 347828 19 258189 34.72 0.64 1.02 0

I06 67 347118 19 256364 35.40 0 0.51 1.59

I07 64 337319 21 252069 33.82 0.65 0 0.17

I08 67 342972 17 245452 39.73 0.13 0.32 0

I09 67 343380 17 244739 40.30 0.27 0.56 0

I10 67 340189 17 238533 42.62 1.49 0 0.35

problem with time windows (SSLRPTW). This consists of

locating depots, assigning customers, and planning routes

with consideration of time windows and capacity restric-

tions at depots and customers. An initial solution is ob-

tained by a sequential method. First, an appropriate ca-

pacitated facility location problem with time windows is

formulated as an integer linear program and solved with

CPLEX. Afterwards, a multi-depot vehicle routing with

time windows is solved. The proposed heuristic based on

simulated annealing to solve large-scale instances is well-

arranged or systematic because the moves are executed

in a strict order. Instead of starting over the neighbor-

hood search after a new solution is accepted, the remain-

ing moves are executed for the new solution. We use add,

drop, and shift moves to define and to explore the neigh-

borhood of existing solution. These moves are restricted

to a defined region and catchment area of an investigated

depot. A new solution, not necessarily better, will be ac-

cepted if the simulating annealing criterion is met. Further,

we use a flexible cooling procedure enriched with resets,

that means a massive temperature increase is used to over-

come local optima by checking intensively the neighbors

of a solution. The basic ideas are derived from Osman

[16].

The proposed heuristics have been tested on 10 instances

with varying customer time windows. The obtained so-

lutions are compared with the tabu search algorithm pre-

sented by Guenduez [6]. For most of the instances, the

proposed heuristics led to better solutions in a significantly

shorter computation time. In cases where the tabu search

algorithm calculated better solutions, the proposed heuris-

tics were able to find solutions of similar overall costs.

Therefore, the average percental deviation from best cal-

culated solutions is lower for the proposed heuristics than

for the compared tabu search. Hence, the proposed heuris-

tics provide solutions of better mean quality in less av-

erage computation time. Although better solutions have

been calculated, we do not know how good these solu-

tions are. Future research should include the calculation

of ‘good’ lower bounds for the SSLRPTW model in order

to measure the solution quality of the presented heuris-

tics. Moreover, different initial solution methods could

lead to improved solutions and should be involved in fu-

ture research. The proposed approach could be adopted

to a multi-stage LRP with time windows. Then, instead of

time windows a generalization to earliest pickup and latest

delivery aspects could be worth further investigations.
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