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ABSTRACT

We consider in this work the numerical resolution of a 2D shallow water system with a Coriolis effect and bottom
friction stresses on unstructured meshes by a new Finite Volume Characteristics (FVC) scheme, which has been
introduced in the preliminary works that will be cited below. Our main goal is to extend this approach to 2D
unstructured formalism while preserving the physical and mathematical properties of the system, including the
C-property.
First, we present our extension by preserving the advantages of the finite volume discretization such as conservation
property and the method of characteristics such as elimination of Riemann solvers. Afterward, an approach was
applied to the topography source term that leads to a well-balanced scheme satisfying the steady-state condition of
still water. A semi-implicit treatment will also be presented in this study to avoid stability problems for the other
source terms. Finally, the proposed finite volume method is verified on several benchmark tests and shows good
agreement with analytical solutions and experimental results; moreover, it gives a noticeable accuracy and rapidity
improvement compared to the original approaches.

Keywords Shallow water flow ·Method of characteristics · FVC scheme · Finite volume method ·Well-balanced scheme

1 Introduction

Water is a crucial issue for poverty reduction, sustainable development, and achieving the Millennium Development Goals.
However, until now, some 2.1 billion people, or 30% of the world’s population, still do not have access to a safe water supply
(www.who.int/news/18-06-2019).Climate change and uncontrollable human activities cause flood accidents to become more frequent
in recent decades. As a result, integrated water resources management is necessary and even indispensable for preventing floods and
droughts. The preservation of the environment, the prevention, and control of the impact of natural risks are at the heart of major
socio-economic issues.

In water resources management, numerical modelling is still an essential tool, and we can cite numerous numerical modelling
applications of free surface flows to the management of water resources, environmental and ecosystem protection: simulation of flows
due to a dam break, diversions of floods from a river to a water retention area, the change process of a river bed simulation, sediment
or pollutant transport simulation in estuary and coastal environments, (see e.g. [3, 4, 13] etc. ). In rivers, estuaries and coastal areas,
flows are characterized by: great topographical and morphological complexity, strong affection, or even pure advection in the case of a
dam break on a flat and slippery bottom (without friction), a variable space scale (starting from a dozen to a few thousand meters) and
in time scale (starting from a few minutes to several days).

Consequently, when developing a numerical approach to solve a free surface flow or other models, one encounters major difficulties
which result from the physical complexity of the area and numerical calculations. We consider in this paper a derivative as a
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formal first-order approximation of the three-dimensional free surface incompressible Navier–Stokes equations, using the so-called
shallow-water assumption [17]. The difficulty in defining accurate numerical schemes for such hyperbolic systems is related to their
non-linear behaviour or, more generally, mathematical structure and the physical phenomena they generate. In particular, the presence
of a shock front essentially causes numerical oscillations or artificial scattering, which are due to the treatment of the advection terms
in the equations governing the transport of the water mass by a standard method of approximation. Another fundamental point is to
get schemes that satisfy the preservation of steady states, such as still water equilibrium in the context of the shallow water system.
Different approaches to satisfy the well-balanced property have been proposed (see, e.g. [5, 9, 10, 26, 34]), and recent extensions to
other types of homogeneous solvers can be found in [12, 28]. The extension of ENO and WENO schemes to shallow water equations
has been studied in [41]. Unfortunately, most ENO and WENO schemes that solve real flows correctly are still very computationally
expensive. On the other hand, numerical methods based on kinetic reconstructions have been studied in [31], but the complexity of
these methods is relevant. However, most of the above mentioned works, even if they are unstructured two-dimensional methods they
lead to rather complex and time consuming algorithms. Other approaches are more efficient, but to our knowledge, they are limited to
one-dimensional problems or to two-dimensional Cartesian meshes.

Our main objective in the present study is to develop a class of Eulerian-Lagrangian methods and to accurately solve shallow water
equations in 2D-unstructured meshes without relying on Riemann solvers. The proposed FVC scheme belongs to the class of methods
that employ only physical fluxes and averaged states in their formulations. It can be interpreted as a predictor–corrector scheme. In the
corrector stage, the considered equations are integrated over an Eulerian time–space control volume, whereas, in the predictor stage,
the conservation laws are rewritten in an advective form and integrated along the characteristics defined by the advection velocity field.
This approach has shown its effectiveness through several test cases represented in the works, [8, 7, 6], but the authors of these three
papers remained limited in the Cartesian mesh formalism but, as I have mentioned before, the real problems are characterised by a
great topographical and geometrical complexity, hence, the limit of this formalism. A more thorough study of the accuracy of this
finite volume discretization method on unstructured meshes was always the objective in these works (see the conclusions of [7, 6]).
Therefore, the unstructured finite volume method doesn’t only ensure the conservation of mass, which is an important property in the
computation of fluid flows but also allows the complex geometry of the computational domain to be perfectly taken into account. For
these reasons, we propose an extension of this scheme in an unstructured mesh.

Another strong point of this discretization method is that the Jacobian matrix of the system that caused the slowness of many
approximation schemes is not involved in the calculation. Note also that many approximation schemes in the framework of conservation
laws require a solver for the Riemann problem at each time step to reconstruct the numerical flow, which is completely avoided in
our FVC scheme. Simply this approach is based on a combination of the characteristics method and a finite volume method. Unlike
traditional finite volume methods, this technique integrates our equations along the characteristics curves so that numerical flux are
easily calculated. We noticed that this approach has several advantages over others conservation law solution techniques. Indeed,
the main features of such a finite volume Eulerian-Lagrangian scheme are on the one hand, the capability to satisfy the conservation
property resulting in numerical solutions free from spurious oscillations, and on the other hand, the achievement of strong stability and
high accuracy for numerical solutions containing shocks or discontinuities.

We first present a projection of the shallow water system in order to find a form of a transport equation on which we will apply the
techniques of the characteristics method for the purpose of evaluating our unknowns at the interfaces of our unstructured mesh. We
also present original developments to take into account boundary conditions, to reduce the diffusion of the scheme or to increase the
efficiency of the method.

Second, we announce a new reformulation of the FVC scheme adapted to non-uniform triangular mesh "unstructured mesh" as
well as the discretization of the flow gradients and source terms while keeping the equilibrium and the C-property. It will also be
seen that the proposed scheme has the ability to handle calculations of slowly varying flows as well as rapidly varying flows over
continuous and discontinuous bottom beds.

This article is organized as follows: Section 2 will be devoted to the presentation of the mathematical model and its projected velocity
system, as well as its mathematical and physical properties. In Section 3, numerical methods are formulated for the reconstruction of
the finite volume characteristics scheme on an unstructured meshes and the approximation of the source terms keeping the scheme
Well-balanced. Section 4 is devoted to the numerical results of several test examples and some results interpretations. It is shown that
our new approach achieves the expected accuracy and robustness. Section 5 contains concluding remarks and an outlook.
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2 Mathematical Model

2.1 Governing equation

The 2D shallow water system for the free-surface flow with the Coriolis effect and bottom friction stress is formulated as ∂th+∇ · (hu) = 0

∂thu +∇ · (hu⊗ u) +
1

2
∇(gh2) = −gh∇Z − fc × hu− r(h,u),

(1)

where the unknowns are always the water height h(t, x, y) > 0 and the horizontal speed mean u(t, x, y) = (u, v)T (t, x, y) ∈ R2. The
parameter fc is linked to the angular speed of the earth’s rotation, g is the gravitational acceleration, r(h,u) has various expressions,
for example, the asymptotic derivation mentioned in [21] leads the authors to consider, at first order, a linear friction term. The
quadratic form in the Manning-Strickler velocity is nevertheless the most widely used in river flow applications [15, 24], so in this
study we use the latter approximation such that the bottom’s friction term r(h,u) is given by, r(h,u) = (rfx , rfy ) := η2gh−1/3|u|u,
such as η is the Manning roughness. The function Z(x, y) represents the bottom profile, see the Fig.1.

Fig. 1. Illustration of shallow water model variables.

In order to give the reader a global view on the shallow water system we propose to add other aspects in the right hand side of the
second equation of system (1). For example we can add the wind’s effect on the free surface, i.e. in the case where the wind is moving
with high speed there is the friction term τ(h, ŭ) which is not negligible. The viscosity or diffusion term can also be added if we want
to solve turbulence problems in free surface flow (see e.g [42]). In this case, the second equation of system (1) becomes

∂thu +∇ · (hu⊗ u) +
1

2
∇(gh2) = −gh∇Z − fc × hu− r(h,u) + τ(h, ŭ) + ν

−→
4hu, (2)

where, τ(h, ŭ) = (τsx , τsy ) := 1
2 C̆f |ŭ|ŭ, in which ŭ = (ŭ, v̆)T represents the wind speed and C̆f is the coefficient of wind friction

with water. ν is the diffusion coefficient associated to the term,
−→
4hu := (4(hu),4(hv))T .

For simplicity, in this study we will not deal with these two terms (τ(h, ŭ) and ν
−→
4hu ), we rewrite the system (1) in a conservative

vectorial form
∂tW +∇ · F(W ) = S(W ) +Q(W ), (3)

where, F(W ) = (F (W ), G(W ))T . Such that, we note AT is the transpose of a matrix A,

W =

 h

hu

hv

, F (W ) =

 hu

hu2 + 1
2
gh2

huv

, G(W ) =

 hv

huv

hv2 + 1
2
gh2

, S(W ) =

 0

−gh∂xZ

−gh∂yZ

, Q(W ) =

 0

fchv − rfx

−fchu− rfy

 .
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Note that the equation (3) has to be solved in a bounded spatial domain Ω, with given boundary and initial conditions. In practice,
these conditions depend on the phenomenon studied ( see the Section 4 where numerical examples are discussed).

2.1.1 Properties of the system

A simple calculation shows that the system is still written in a quasi-linear form

∂tW + JF∂xW + JG∂yW = S(W ) +Q(W ), (4)

where JF and JG are the Jacobian matrices of the fluxes

JF =

 0 1 0

gh− u2 2u 0

−uv v u

 and JG =

 0 0 1

−uv 2v u

gh− v2 0 2v

 .

Following the usual techniques [22, 38], we define JF((α1, α2)) := α1JF +α2JG. For any (α1, α2) ∈ R2, the matrix JF((α1, α2))
has three eigenvalues defined by

λ1 = α1u+ α2v,

λ2 = α1u+ α2v + |(α1, α2)|
√
gh,

λ3 = α1u+ α2v − |(α1, α2)|
√
gh.

The shallow water system is a first-order hyperbolic system of balance laws, and it is also strictly hyperbolic for h > 0 with real and
distinct eigenvalues.

•) Equilibrium

An important property is related to the source terms, and the most studied balance family is related to the presence of topography’s
source term: the shallow water system admits non-trivial steady-states. They are characterized by

∇ · hu = 0, ∇
(
|u2|
2

+ g(h+ Z)

)
− u∇× u = 0. (5)

For flows in complex geometry, it seems very difficult to numerically preserve all two-dimensional balances, except those that
correspond to an area at rest and whose characterization is independent of the dimension considered.

h+ Z = Cst, u = 0. (6)
This particular stationary state, known as the resting lake state, is important because many flows in lakes or coastal bays are
perturbations around this balance. Therefore it is essential to prevent numerical anomalies from disrupting the approached solution.
However, the preservation of the stationary states at the numerical level is not obvious to be achieved, and even the simplest one is not
an exception. In fact, (6) correspond to a balance between flow terms and source terms, whose discretization are not correlated.

There are other categories of stationary states resulting from an equilibrium between the pressure term and the Coriolis term, i.e.

g∇h+ fc × u = 0.

For example, at large scales, the atmospheric and oceanic flows bear most of the time the perturbations of this stationary state [30],
therefore it is also very important to be represented in the approached solution. This balance presents a complexity added to the
balance of the lake at rest because it involves non-zero speeds.

•) Entropy inequality

The physical system we are dealing with here is a system of conservation laws, so the energy aspect is very important in this
type of system, thus we propose to say a few words on this point in order to provide insight into the treatment of this notion when
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constructing approximate solutions under the constraint of preserving certain properties, for example, the decay of energy in the
presence of friction source terms.

We call entropy solution to the shallow water system (see [20]), a weak solution which satisfies the following entropy inequality

∂tE +∇ ·
(
E +

|u|2

2

)
6 0, (7)

where E is a mathematical entropy (which is the mechanical energy see [27]), defined as E(h,u, Z) = h
|u|2

2
+
gh2

2
+ ghZ.

This inequality becomes equality for regular solutions, in the absence of energy loss terms, notably friction, and remains inequality,
for admissible discontinuous solutions, resulting from classical calculations; we invite you to read subsection 1.1 in [19]. The
mechanical energy, which is easily verified as convex with respect to the conservative variables, thus acts here as a mathematical
entropy. In the case of the system without source terms and in the 1D problem, the mechanical energy is only one of the entropies that
must be associated with the system for the problem to be properly posed. In 2D, or when the system contains the source terms, there
is no longer a complete family of mathematical entropies. Therefore, even if the inequality (7) alone is not sufficient for a rigorous
mathematical study, it nevertheless ensures the presence of an additional bound on a certain positive function of the system unknowns
and can provide information on the choice of a physical solution. The finite volume scheme presented in section 3 verifies innately the
conservation properties. The energy decay property remains more difficult to satisfy.

2.1.2 The initial and the boundary conditions

To obtain a well-posed problem, we add to this system some initial condition and boundary conditions. In this paper, we consider
only two types of boundaries: solid walls on which we prescribe a slip condition and fluid limits on which we prescribe one or two
conditions depending on the type of flow (subcritical, supercritical). In some cases we use the injection and Neumann homogeneous
boundary conditions.

slip wall no-slip wall subcritical inflow subcritical outflow supercritical inflow supercritical outflow

hr = hl hr = hl hr = hb hr = hb hr = hb hr = hl
ur = 0 ur = 0 ur = ul +

√
g(
√
hl −

√
hr) ur = ul +

√
g(
√
hl −

√
hr) ur = ub ur = ul

vr = vl vr = 0 vr = 0 vr = vl vr = 0 vr = vl

Here the subscripts r and l denote the right and left states respectively at a boundary cell interface, such as the local values of the
Froude number is used to determinate whether the flow is subcritical or supercritical at a given time. The subscript b above denotes
prescribed physical boundary values.

3 Finite volume discretization of the model in 2D unstructured formalism

In this section we present the FVC scheme for the discretization of the shallow water system (3). The method consists of two steps
and can be interpreted as a predictor-corrector approach. The first step deals with the classical finite volume method, whereas in the
second step, the reconstruction of the numerical flux by constructing the intermediate state using the characteristics method [45].

3.1 Discretization

The integral form of the system (3) can be written as

∂

∂t

∫
Ω
WdV +

∮
∂Ω

F(W ) · ndσ =

∫
Ω

(S(W ) +Q(W ))dV, (8)

where Ω is the domain of interest, ∂Ω is the boundary surrounding, n is the normal vector to ∂Ω in the outward direction, dV and
dσ are respectively the surface element and the length element. The problem domain is first discretized into a set of triangular cells
forming an unstructured computational mesh see Fig.2. The average of conserved variables is stored at the centre of each cell, and the
edges of each cell define the faces of a cell control what is called "control volume".
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Fig. 2. Generic definition of the Ω domain and the control cells of the mesh.

We use the following notations:

• xi, centroid of the cell Ti,

• pi, vertex of Ti,

• γij , boundary edge between the cells Ti and Tj ,

• |γij |, length of γij ,

• |Ti|, area of the cell Ti,

• nij , unit normal to γij , outward to Ti such as, nji = −nij .

For each triangular control volume, the system (3) is written as

|Ti|
dWi

dt
+

∮
γi

F(W ) · ndσ =

∫
Ti

(S(W ) +Q(W ))dV, (9)

where Wi is the average quantity of cell Ti stored at the cell centre. The flux vector over each edge of the triangular cell and the
discrete form of the integral is ∮

γi

F(W ) · ndσ =
∑

j∈N(i)

|γij |Φ(Wij ,nij),

where, Φ(Wij ,nij) '
1

|γij |

∫
γij

F(W ) · nijdσ, is the numerical flux computed at the interface between the cells Ti and Tj .

As explained in the Fig.2, γij is the edge surrounding the cell Ti and N(i) is the neighbouring triangles of the cell Ti. The intermediate
solution Wij is reconstructed using the FVC scheme. The time discretization of (9) is performed by a first order explicit Euler scheme.
The time domain is divided into N sub-intervals [tn, tn+1] with time step ∆t = tn+1 − tn for n = 0, 1, ...., N . Wn is the value of a
generic function W at time tn. The fully-discrete formulation of the system (3) is given by

Wn+1
i = Wn

i −
∆t

|Ti|
∑

j∈N(i)

|γij |Φ(Wn
ij ,nij) +∆t(Sni +Qni ). (10)

3.2 The FVC scheme

In this subsection, we present a generalization of this scheme that was introduced in the preliminary works [7, 45], the first was
done in the Cartesian mesh and the second was done without taking into account the source term related to bathymetry and the balance
produced by this term. For the corrector stage, we will use 2D finite volume formalism described in Section 3.1. Finally, the predictor
stage and the final reformulation of the FVC scheme will be presented in this subsection.
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3.2.1 Construction of the projected speed model

Let us discretize the spatial domain Ω with cells Ti as Ω =

Nele⋃
i=1

Ti and ∂Ti =
⋃

j∈N(i)

γij ,

with, ∂Ti is the border of the cell Ti and Nele is the total number of element.

Integrating the equations (1) over the cell Ti, the basic equations of the finite volume method obtained using the divergence
theorem are given by

∂

∂t

∫
Ti

h dV +

∫
∂Ti

huη dσ = 0, (11a)

∂

∂t

∫
Ti

hu dV +

∫
∂Ti

{
huuη +

1

2
gh2nx

}
dσ =

∫
Ti

−gh∂xZ dV +

∫
Ti

fchv dV −
∫
Ti

η2ghu
|u|
h4/3

dV, (11b)

∂

∂t

∫
Ti

hv dV +

∫
∂Ti

{
hvuη +

1

2
gh2ny

}
dσ =

∫
Ti

−gh∂yZ dV −
∫
Ti

fchu dV −
∫
Ti

η2ghv
|u|
h4/3

dV, (11c)

Fig. 3. The projected velocity on the control volume.

where η = (nx, ny)T the unit outward normal to the surface
|Ti| of the cell Ti and tangential τ = (−ny, nx)T where the
normal velocity uη = unx + vny and the tangential velocity
uτ = vnx − uny (see Fig.3). In order to simplify the system (11),
we do the following operations

12b← nx11b+ny11c , 12c← nx11c−ny11b. The outcome
of these operations is

∂

∂t

∫
Ti

h dV +

∫
∂Ti

huη dσ = 0, (12a)

∂

∂t

∫
Ti

huη dV +

∫
∂Ti

{
huη

2 +
1

2
gh2
}

dσ = −
∫
Ti

gh∇Z · n dV +

∫
Ti

fchuτ dV −
∫
Ti

η2ghuη
|u|
h4/3

dV, (12b)

∂

∂t

∫
Ti

huτ dV +

∫
∂Ti

huτuη dσ = −
∫
Ti

fchuη dV −
∫
Ti

η2ghuτ
|u|
h4/3

dV, (12c)

which can be rewritten the system (12) in a differential form as

∂h

∂t
+
∂huη
∂η

= 0,

∂huη
∂t

+
∂

∂η

(
huη

2 +
1

2
gh2
)

= −gh∂ηZ + fchuτ − η2ghuη
|u|
h4/3

,

∂huτ
∂t

+
∂

∂η
(huηuτ ) = −fchuη − η2ghuτ

|u|
h4/3

.

(13)

The system (13) can also be reformulated in the transport equation form as

∂U

∂t
(t,X) + uη(t,X)

∂U

∂η
(t,X) = F(U, Z, fc) ∀ X = (x, y) ∈ Ω ⊂ R2, t > t0, (14)

where,

U =

 h

huη

huτ

 , F(U, Z, fc) =


−h∂η(uη)

−gh∂η(h+ Z) + fchuτ − huη∂η(uη)− η2ghuη |u|h4/3

−fchuη − huτ∂η(uη)− η2ghuτ |u|h4/3

 .
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The aim of using this technique on the local coordinates of the two-dimensional shallow water system (1) in the control volume Ti,
is to reduce the dimension to an one-dimensional system (14) on each surface |Ti| of this control volume.

3.2.2 Flux construction

we reconstruct the numerical flux Φ(Wn
ij ,nij) using the method of characteristics. The fundamental idea of this method is to

impose a regular grid at the new time level and to backtrack the flow trajectories to the previous time level, for more details see
[36, 37]. At the previous time level, the quantities that are needed are evaluated by interpolation from their known values on a irregular
grid, we’ll see about that later.

3.2.3 Method of characteristics

The characteristic curves associated with the equation (14) are solutions of the following Cauchy problem
dXc(t)

dt
= uη(t,Xc(t)) · n t ∈ [tn, tn + α∆t], α ∈]0,

tend − tn
∆t

[,

Xc(tn + α∆t) = X∗.
(15)

Fig. 4. Illustration of the method of characteristics:
An Eulerian gridpoint Xc(tn) is traced back in
time to X∗ where the intermediate solution Û

n

ij is
interpolated.

Note that Xc(s) is the departure point at time s of a particle that will arrive at
the interface γij in time tn + α∆t, see the Fig.4. The method of characteristics
does not follow the flow particles forward in time, as the Lagrangian schemes do,
instead it traces backwards the position at time tn of particles that will reach the
points of a fixed mesh at time tn +α∆t. By doing so, the method avoids the grid
distortion difficulties that the conventional Lagrangian schemes have. Hence, the
solution of (15) can be expressed in an integral form as

Xc(tn) = X∗ −
∫ tn+α∆t

tn

uη(s,Xc(s)) · n ds, (16)

this integral can be calculated using an integral approximation method. In our
approach, we used a Runge-Kutta 3 method to approximate the integral in (16)
which is accurate enough. In order to complete the reformulation of the algorithm
used, the departure points must be calculated once the characteristic curves are
known. Therefore, the solution of the transport equation (14) is given by

U(tn + α∆t,X∗) = U(tn, X
c(tn)) +

∫ tn+α∆t

tn

F(U(s,Xc(tn)), Z, fc) ds, (17)

where U(tn, X
c(tn)) is the solutions at the characteristic feet computed by the local least squares interpolation method. In other cases,

the integral of the equation (17) can be calculated using a first-order approximation based on the rectangle method, the vector Un is
reconstructed at the interfaces using

Unij = Û
n

ij + α∆tF(Û
n

ij , Z, fc), (18)
where,

Û
n

ij = U(tn, X
c(tn)) =

∑
k∈V (c)

αk(c)U(Xk), (19)

Fig. 5. LSM Illustration.

where, V (c) := { the nodes and cell centres around the edge γij}, see the
Fig.5 and αk(c) is weights coming from the least squares method (LSM). It can
be written

αk(c) =
1 + λ · (Xk −Xc)

Card(V (c)) + λ ·R
, (20)

such as, λ = (λx, λy) and R = (Rx, Ry). The weights parameters are given by
formulas (see the Appendix).
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Fig. 6. Diamond cell in 2D

To approximate F(U, Z, fc), (i.e. ∂η(uη), ∂η(h+ Z), ... ) we will need to approx-
imate these derivatives in the interfaces, for that we use the diamond cell Fig.6. This
cell is constructed by connection of centres of gravity (L,R) of cells Ti, Tj which
share the interface γij and its endpoints S, N . We obtain the co-volume SRNL by this
construction. One can assume that the gradient is constant on the co-volume SRNL.
According to Green-Gauss theorem the approximation leads to

∇uij =
1

2µ
SRNL

{
(u

S
− u

N
)~n

LR
|γ

LR
|+ (u

R
− u

L
)~nij |γij |

}
, (21)

where u
N

, u
S

, u
R

, and u
L

represent respectively the values of the quantity u in the
point N , S, R and L. ~n

LR
is a unit normal vector of the co-volume face γ

LR
and |γ

LR
|

is its length. The others co-volume interfaces and their normal vectors are labeled
analogically. µ

SRNL
is the area of the co-volume SRNL.

After the discretization of the source terms (see subsection 3.2.4), the district equation system (18) leads to the following predictor
step

•) Predictor stage

∣∣∣∣∣∣∣∣∣∣∣∣∣

hnij = ĥnij − α∆tĥnij∇ ˆ(uη)nij ,

(huη)nij = ˆ(huη)nij − α∆t

{
gĥnij∇(ĥnij + Zij)− fc ˆ(huτ )nij + ˆ(huη)nij∇ ˆ(uη)nij + η2g ˆ(huη)nij

|(û)nij |
(ĥ3/4)nij

}
,

(huτ )nij = ˆ(huτ )nij − α∆t

{
fc ˆ(huη)

n

ij + ˆ(huτ )
n

ij∇ ˆ(uη)nij + η2g ˆ(huτ )nij
|(û)nij |

(ĥ3/4)nij

}
.

(22)

Once these projected states are calculated, the quantity Wij will be calculated using the following transformations

hunij = (huη)nijnx − (huτ )nijny, and hvnij = (huτ )nijnx + (huη)nijny .

•) Corrector stage

∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn
ij = (hnij hunij hvnij)

T ,

Φ(Wn
ij ,nij) = F(Wn

ij) · nij ,

Wn+1
i = Wn

i −
∆t

|Ti|
∑

j∈N(i)

|γij |Φ(Wn
ij ,nij) +∆tSni +∆tQni .

(23)

3.2.4 Well-balanced FVC scheme: the discretization of the bathymetry source term

In order to be able to calculate realistic flows we now consider the case∇Z 6= 0R2 and introduce a numerical discretization of the
source terms. As discussed in paragraph 2.1.1, the treatment of source terms related to bathymetry in the shallow water system poses a
challenge in many numerical methods. In our scheme, the approximation of the source term Sni is reconstructed in such a way that the
C-property [10] is satisfied, i.e. to maintain a discrete local balance of the continuous stationary state in still water.

hni + Zi =hnj + Zj = H := cst

uni + unj =0R2 , ∀ Ti, Tj ∈ Ω

}
⇒ hn+1

i + Zi = H, and un+1
i = 0R2 . (24)
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•) The hydrostatic balance

∇
(

1

2
gh2
)

= −gh∇Z,

we prove from the hydrostatic balance that the model of the projected speed preserves the stationary state of the lake at rest

•) The projected speed model

∂t

 h

0

0

+ 0× ∂η

 h

0

0

 =

 0

−g∂η(h+ Z)

0

 , (25)

∂th = 0, and ∂η(h+ Z) = 0 =⇒ h(x, y, t) + Z(x, y) = cst ∀ x, y, t.
This result ensures the equilibrium property corresponding to the lake at rest, and therefore it is consistent with the continuous form of
the system’s equilibrium with bathymetry source term.

∆t

|Ti|
∑

j∈N(i)

|γij |Φ(Wn
ij ,nij) =

∆t

|Ti|

∫
Ti

SdV, (26)

which is equivalent to 
0∑

j∈N(i)
1
2g(hij)

2(nij)x|γij |∑
j∈N(i)

1
2g(hij)

2(nij)y|γij |

 =

 0

−g
∫
Ti
h∂xZdV

−g
∫
Ti
h∂yZdV

 . (27)

To approximate the source terms, we proceed as follows. First, we decompose the triangle Ti into three sub-triangles, as depicted in
Fig.7.

Fig. 7. Sub-triangles used in the discretiza-
tion of source terms

where Nxij = (nij)x|γij |, and Nyij = (nij)y|γij |. Then, the source term is
approximated as∫

Ti

h∂xZdV = h1

∫
T1

∂xZdV + h2

∫
T2

∂xZdV + h3

∫
T3

∂xZdV, (28)

with h1, h2 and h3 are the average values of h over T1, T2 and T3 respectively.

h1

∫
T1

∂xZdV =
∑

j∈N(1)

∫
γ1j

ZnxdV

= h1
∑

j∈N(1)

Z1 + Zj
2

Nx1j

=
h1
2
{(Z1 + Zl)Nx1l + (Z1 + Z2)Nx12 + (Z1 + Z3)Nx13} .

(29)

The same applies to the y-direction.
Again the stationary flow condition h1+Z1 = hj+Zj = H = cst, ∀j ∈ N(1)⇒ h1+hj+Z1+Zj = 2H andH− h1+hj

2 =
Z1+Zj

2 .
Thus, (29) gives∫

T1

h∂xZdV = h1
∑

j∈N(1)

(
H − h1 + hj

2

)
Nx1j =︷ ︸︸ ︷∑

j∈N(1)

Nx1j = 0

−h1
2

∑
j∈N(1)

hjNx1j .

Finally,
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∫
T1

∂xZdV = −h1
2

(hlNx1l + h2Nx12 + h3Nx13) .

A similar procedure leads to the following approximations of the other terms in (28)∫
T2

∂xZdV = −h2
2

(hkNx2k + h1Nx21 + h3Nx23),∫
T3

∂xZdV = −h3
2

(hjNx3j + h1Nx31 + h2Nx32).

Notice that hl, hk and hj are the average values of h, respectively, on the triangle Tl, Tk and Tj . Summing up, using the fact that
(Nxij = −Nxji) so, the discretization (28) gives∫

Ti

h∂xZdV = −1

2
(h1hlNx1l + h2hkNx2k + h3hjNx3j) . (30)

For this reconstruction, the source terms in (27) result in

∑
j∈N(i)

(hnij)
2Nxij =h1hlNx1l + h2hkNx2k + h3hjNx3j ,

∑
j∈N(i)

(hnij)
2Nyij =h1hlNy1l + h2hkNy2k + h3hjNy3j .

(31)

If you have noticed, we will need h1, h2 and h3 to be able to calculate the values of the integrals in equation (30) but the system.
(31) has two equations for the three unknowns. To complete the system, we add the natural conservation equation, h1 +h2 +h3 = 3hi.
The following system gives us the values we need h1

h2

h3

 =

 1 1 1

hlNx1l hkNx2k hjNx3j

hlNy1l hkNy2k hjNy3j


−1

·

 3hi∑
j∈N(i)(h

n
ij)

2Nxij∑
j∈N(i)(h

n
ij)

2Nyij

 . (32)

Analogously, the bottom values Zj , j = 1, 2, 3 are reconstructed in each sub-triangle of Ti as
Z1 = Zi + hni − hn1 ,
Z2 = Zi + hni − hn2 ,
Z3 = Zi + hni − hn3 .

Finally the source terms in (30) are approximated as

∫
Ti

h∂xZdV = h1
∑

m∈N(1)

Z1 − Zm
2

Nx1m + h2
∑

m∈N(2)

Z2 − Zm
2

Nx2m + h3
∑

m∈N(3)

Z3 − Zm
2

Nx3m, (33)

with a similar equation for the other source terms in the y-direction.

•) Computation of the solution

Finally, we write the formally well-balanced FVC scheme after calculation of the interface values (23) and the bathymetry source
term approximation (33) as

Wn+1
i = Wn

i −
∆t

|Ti|
∑

j∈N(i)

|γij |Φ(Wn
ij ,nij) +∆tSni . (34)
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3.2.5 Semi implied treatment of friction term source

To avoid stability problems related to the bottom friction source term, a fractional semi implied treatment for this term is proposed.
The idea is to evaluate the momentum in the system (3) by decomposing it into two equations


∂hu
∂t

= −η2gh−1/3|u|u

∂hu
∂t

+ Φhu(W ) = −gh∇Z,
(35)

where Φhu(W ) represents the convection terms corresponding to the equations of the momentum. In a first step, a linearized semi
implied method is used to integrate the first equation of the system (35)

(h̃u)i − (hu)ni
∆t

= −η2g(h̃u)i|uni |(hni )−4/3. (36)

In the second step, the value (h̃u)i is taken as the initial condition for solving the second equation of (35).

4 Numerical tests

It is clear from (23) that the scheme is conservative and can compute the numerical flux corresponding to the physical solutions of
water flow without relying on Riemann problem solvers. The CFL condition for the explicit scheme (22) can be written

∆t 6 min

{
|Ti|

|γij |(u · n +
√
gh)

,
|Ti|

|γij |(u · n +
√
gh)
√

2α

}
.

A fixed CFL = 0.9 is used and α = 2 if not specified in the test. The used computer is an Intel Core i7-8565U CPU @ 1.80GHz ×
8, with 15 GB RAM.

In order to validate our FVC scheme on unstructured meshes to simulate shallow water flows, therefore we present some test cases
that are proposed by several authors to validate their model and their numerical approach. The accuracy is demonstrated by comparing
numerical solutions produced by the FVC scheme with analytical solutions, especially in tests 4.1, 4.2 and 4.3. To reproduce the
calculation results reported in the literature, the source term of the bed is always taken into account. The C-property produced by this
term has also been treated in tests 4.4 and. The Coriolis effect was taken into account in test 4.5 and this test’s results are in good
agreement with those presented in the literature.

4.1 Accuracy test example

We test our approach on a problem where the exact solution is known [18]. It can be readily checked that.

h(t, x, y) = 1− a2

4bg
exp
(
−2b(x̄2 + ȳ2)

)
,

u(t, x, y) = Mcos(θ) + aȳ exp
(
−b(x̄2 + ȳ2)

)
, v(t, x, y) = Msin(θ)− ax̄ exp

(
−b(x̄2 + ȳ2)

)
,

where, x̄ = x− x0 −Mt cos(θ) and ȳ = y − y0 −Mt sin(θ),

gives a smooth solution of the shallow water system (1) without the source terms ( i.e. ∇Z = 0, and fc = 0 ) for any choice
of constants, M,a, b, x0, y0 and θ. Initial and boundary condition are set according to the exact solution.
We let M = 1

2 , g = 1, a = 0.04, b = 0.02, and (x0, y0) = (−20,−10). To test the scheme ability to resolve flows that are not
aligned with the computational mesh, we let θ = π

6 . We compute for (x, y) ∈ Ω = [−50, 50] × [−50, 50] up to time t = 100 s to
compare the accuracy of our FVC scheme to the SRNH scheme originally introduced in [29, 35]. We also propose to see the effect of
the choice of the parameter α. In [8] where the authors defined for the first time the FVC scheme in its one-dimensional formulation,
were able to show that the parameter α controls the accuracy of the FVC scheme, for more rigorous details we invite you to see
the Lemma 3.2 and its proof. Our study reaches the same conclusion on alpha as in Fig.8 we show the convergence order for three
different choices of α.
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Table 1: Relative L1 errors and CPU times obtained for the accuracy test example at time t = 100 using the SRNH and FVC schemes.
Schemes SRNH FVCα=1

L1 error CPU time (s) L1 error CPU time (s)

# Cells h hu hv h hu hv

2648 2.042E-04 5.344E-03 9.546E-04 16.71 1.785E-04 4.379E-03 8.763E-03 11.91
10362 1.627E-04 7.626E-03 7.626E-03 31.30 1.078E-04 1.534E-03 3.475E-03 21.49
40690 1.317E-04 2.716E-03 5.450E-03 184.81 4.518E-05 5.430E-04 1.249E-03 101.46
161316 9.363E-05 1.628E-03 3.441E-03 1887.89 1.986E-05 2.083E-04 4.868E-04 1003.26
640138 8.526E-05 9.871E-04 1.067E-03 21031.82 1.066E-05 1.771E-04 3.278E-04 10524.03
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Fig. 8. Convergence order in L1 error of a water height.

The results in Table 1 show that increasing the number of
the cells in the computational domain lead to a decrease in the
L1 error for the water height h, and the discharges hu and hv
in all schemes. Faster decay of the error is observed in the
FVC scheme than in the SRNH scheme which is only natural a
simple inspection of Table 1 also reveals that for meshes with
a low number of the cells, the measured computation time is
comparable for the SRNH scheme and FVC scheme. However,
for meshes with a somewhat large number of cells, the FVC
method is the most efficient. For example, a mesh of 161316
cells, the FVC scheme is about two faster than the SRNH scheme
this is due to our FVC approach is not based on the calculation of
the Jacobian matrix of the system, this matrix intervenes in many
Q-scheme type approximation schemes, it is responsible for the
slowness of this kind of scheme. Note that the SRNH scheme
requires a solver for the Riemann problem at each time step to
reconstruct the numerical flux, which is completely avoided in
our FVC scheme. We can see that both schemes could reach the
designed order of accuracy. In Fig.8 we have plotted the log of L1 error calculated in Table 1 and the other values calculated for
α = 0.5 and then α = 2 against the log of the maximum value of the mesh edges. We find that the L1 errors of the FVC scheme lie on
a slope line 1.4, indicating that the accuracy order of the scheme is about 1.4 for α = 0.5.

4.2 Dam-break problem

Flood flows produced by the dam break, segments of dykes, or other structures are torrential in nature with the presence of a
discontinuous front propagating downstream and a rarefaction wave propagating upstream. The characteristics of these flows such as
velocity, water level and time of arrival of floods must be determined in advance in order to manage floods and reduce their impact on
the environment and economic infrastructure. In order to test our approach for problems related to dam break, we carried out a series
of test cases proposed in the literature ( see, e.g. [8, 14, 39] ) etc.
The proposed approach is not based on a Riemann solver technique which is very appropriate for a hyperbolic problem whose solution
is often represented by a discontinuous front. Thus it will be interesting to examine the accuracy of our approach by simulating
torrential flows with the presence of a discontinuity in the velocity profile and the free surface.

•) Description of the problem

We consider a rectangular channel with a flat bottom, Z(x, y) = 0 and no friction, i.e. there is no source terms, the problem is
purely hyperbolic. The channel is 1.6 m long and 0.1 m wide (we assume a nondimensionalization problem), the initial conditions are
given by

h(0, x, y) =

{
hl if x 6 xm,

hr ifx > xm,
0 6 y 6 0.1

u(0, x, y) = v(0, x, y) = 0 m/s. A dam is placed in the middle of the channel i.e. xm = 0.8m.
This corresponds to a homogeneous Riemann problem. Initially, the water is at rest, the height hl remains 1.0 m for all simulations.
The downstream height hr takes on different values 0.5 m, 0.1 m, and 0.025 m. The nature of the torrential flow due to the dam break
depends essentially on the ratio hr/hl.
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A numerical instability is likely to occur for small values of the ratio hr/hl. At t = 0, it is assumed that the dam is abruptly removed
causing a shock wave with the presence of a discontinuous front of the water surface propagating downstream.
The channel is assumed to be closed on all four sides and the "slip" conditions is imposed on all walls. The computational domain is
discretised by a mesh of 41776 triangles with an average size of 0.003m2. We will compare the water height and velocity obtained by
our approach with the analytical solution which is calculated using the Stoker method [40].

The evolution of the water surface profile is used to examine the behaviour of the FVC scheme in capturing the discontinuous
shock front. Henderson [23] notes that when the ratio hr/hl is greater than 0.138, the flow is sub-critical in the whole of the channel.
When the ratio hr/hl is smaller than 0.138, the flow is supercritical downstream and sub-critical upstream of the dam.
For very small values of hr/hl, the upstream flow regime becomes strongly supercritical, and it may be difficult to capture such a
shock wave numerically.

•) Results and discussion

The first simulation concerns a river flow with hr/hl = 0.5. The Fig.9 shows the cross-section at y = 0.05 of the evolution of the
water depth and the longitudinal velocity. Excellent agreement is obtained between the numerical and analytical results, this is clear
from Table 2 where the L1 error and the accuracy order of h and hu are presented respectively. The comparison shows that, under this
condition, our scheme, can accurately predict the shock wave without creating oscillations.

In [16] the authors have proven that for a ratio hr/hl smaller than 0.05, most of the existing numerical models cannot give accurate
results especially on the front. The last simulations, with hr/hl = 0.1 and 0.025 (see Fig. 10 and Fig.11), create supercritical flows
downstream and sub-critical flows upstream. When hr/hl 6 0.025, a slight, non-physical oscillation occurs at the shock front.

Table 2: Relative L1 error and CPU times for dam break test at t = 0.1 s using FVC scheme on a different meshes.
# Cells Maximum of edges size Error in h Error in hu Ordre CPU time (s)

5252 0.0127 2.612E-03 2.189E-02 - 7.91
10632 0.00913 1.650E-03 1.378E-02 1.402 10.66
21224 0.00666 1.045E-03 8.711E-03 1.453 19.96
41776 0.00479 6.255E-04 5.169E-03 1.583 30.21
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Fig. 9. Comparison of results for hr/hl = 0.5 at t = 0.1s. Left: water height h. right: longitudinal velocity u.
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The ratio hr/hl is largely responsible for the problem of numerical instabilities that occur in the simulation of torrential flow due
to dam failure. The difficulty of the problem increases with the decrease of the ratio hr/hl. We conclude that the proposed approach is
well able to simulate torrential flows with a good capture of the shock front for the ratio hr/hl very small.

4.3 Tidal wave flow over an irregular bed

Here we propose to study a tidal flow on a very irregular bed. This test case has been proposed in several works to validate and to
test the C-property of their approximation method [43, 5]. So this test example is a good illustration of the significance of the source
term treatment for practical applications to natural watercourses. It is well known that in the shallow water equations describing a flow
over a very irregular background, the source terms become dominant and may cause undesirable numerical instabilities. Therefore this
test case allows us to test the reliability and robustness of the proposed model when the bottom variation is fast and irregular. The
bed topography is defined in Appendix (Table of bed elevation Z(x) and its illustration ). The initial and boundary conditions are
constructed from the asymptotic analytical solution is given by

h(t, x) = h0 + 4− Z(x)− 4 sin

(
π(

4t

86400
+

1

2
)

)
, u(t, x) =

π(x− 1500)

5400 · h(t, x)
cos

(
π(

4t

86400
+

1

2
)

)
but with, h0 = 16 m, h(0, x) = h0 − Z(x).

In order to compare the numerical results of our approach with the analytical solution, we choose two results, at t = 10800 s and
at t = 32400 s. In Fig.12 we present a comparison between the approach surface level and the analytical solution at t = 10800 s
as well as the water height at the same time using a mesh of 200 grid points in x-direction. We also include in Fig.13 a comparison
between the water velocity generated by the FVC scheme and the analytical velocity at t = 10800 s then at t = 32400 s. In Table 3 we
present a comparison between the exact solution and the solution generated by FVC scheme using the relative L1 error. An excellent
agreement is obtained between the numerical and analytical solutions. This confirms that the proposed scheme is also accurate for
tidal flow over an irregular bed. Moreover, these results are qualitatively in good agreement with those published in [43, 5].
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Fig. 13. Comparison of water velocity u in tidal wave flow over an irregular bed. Left: at t = 10800 s. Right: at 32400 s.

The accuracy of the proposed scheme in the treatment
of the source terms has been identified. The numerical
errors produced by the model remain very low despite
the fact that the mesh is coarse and the bed is very
irregular. The results of this test case confirm the good
performance of our approach in the treatment of the
source terms, while avoiding undesirable numerical
errors due to the rapid variation of the bed.

Table 3: Relative L1 error and CPU times for the tidal wave flow over an
irregular bed using FVC scheme.

tend Error in h Error in hu Error in h+ Z CPU time (s)

10800 1.254E-05 4.230E-03 1.012E-05 545.95
32400 7.719E-06 5.731E-03 1.241E-05 1583.41

4.4 Flow over a non-flat irregular bed

We consider the example of water flow in a two-dimensional channel including an irregular bed, a similar test has been proposed in
[5]. The mathematical formulation consists of solving the shallow water system (1) without Coriolis force and subjected to Neumann
boundary conditions. The initial conditions as follow
h(0, x, y) = 1− Z(x, y) m, u(0, x, y) = v(0, x, y) = 0 m/s,

where the bed profile is defined by: Z(x, y) =

5∑
k=1

ak exp

(
− (x− xk)2 + (y − yk)2

σ2
k

)
,

with (a1, σ
2
1 , x1, y1) = (0.75, 2,−4, 5), (a2, σ

2
2 , x2, y2) = (0.7, 2,−2.5, 2.5), (a3, σ

2
3 , x3, y3) = (0.65, 3.3, 0, 0),

(a4, σ
2
4 , x4, y4) = (0.6, 2.5, 3,−2), and (a5, σ

2
5 , x5, y5) = (0.55, 1.48, 5,−4).

The purpose of this test example is to verify the achievement of the C-property for the FVC scheme applied to shallow water flows
over non-flat bed.

|(h
+Z

)(t
,x

,y=
x)

 - 
1| 

0.0

1.0e-17

2.0e-17

3.0e-17

4.0e-17

5.0e-17

6.0e-17

7.0e-17

8.0e-17

9.0e-17

1.0e-16

1.1e-16

1.2e-16

1.3e-16

x
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

t = 3600 s

u(
t,x

,y
=x

) &
 v

(t,
x,

y=
x)

-2.5e-12

-2.0e-12

-1.5e-12

-1.0e-12

-5.0e-13

0.0

5.0e-13

1.0e-12

1.5e-12

2.0e-12

2.5e-12

3.0e-12

3.5e-12

4.0e-12

4.5e-12

x
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

u

v

t = 3600 s

Fig. 14. Cross-sections at y = x. Left: the absolute error of the free-surface for the lake at rest. Right: velocities values after 1 hour.

The C-property of well-balanced FVC scheme on unstructured meshes is checked in this example. As expected the water free-
surface remains constant during the simulation time. The velocities and the error presented in Fig.14 also show that the equilibrium of
the lake at rest is verified. All this shows that the proposed FVC scheme perfectly preserves the C-property.
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4.5 Circular dam-break problem

We consider the benchmark problem proposed in [25] to study cyclone/anticyclone asymmetry in nonlinear geostrophic adjustment.
We solve the shallow water system (1) with a Coriolis effect on a non-flat bottom in the spatial domain Ω = [−10, 10]× [−10, 10]
subjected to Neumann boundary conditions and the following initial conditions

h(0, x, y) = 1 +
1

4

(
1− tanh

(√
ax2 + by2 − 1

c

))
, u(0, x, y) = v(0, x, y) = 0m/s,

where a = 5
2 , b = 2

5 , c = 0.1, fc = 1 Kg.m/s2 and g = 1 m/s2.

The bottom profile has the following expression: Z(x, y) = 0.3

(
1 + tanh

(
3x

2

))
.

Let’s start by looking at the behaviour of this phenomenon in a domain with a flat bottom. The Fig.15 shows the representation of
the water level calculated at different times for this test case with Z(x, y) = 0. As can be seen, a hole has formed and water is flowing
out of the deepest region as a rarefaction wave progresses outwards. It is clear from the results presented that the initial elliptical
mass imbalance evolves in a non-axisymmetric manner. The two expected shock waves are very well captured by the proposed FVC
method. These results are qualitatively in good agreement with those published in [7, 25]. In Fig.16 we exhibit the results for the
velocity field corresponding to the plots Fig.15. As can be seen the two shock waves originated behind the water elevation are slowly
spinning clockwise in the computational domain. The velocity field is well represented by the FVC method and re-circulation regions
within the flow domain are well captured.

Fig. 15. Water depth for the circular dam-break problem on flat bottom obtained at different times using a mesh with 10040 cells.
From top to bottom t = 4 s, 8 s and 16 s.
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Fig. 16. Velocity fields for the circular dam-break problem corresponding to the plots represented in Fig.15.

Let’s move on to the case of the non-flat bottom to assess the performance of our FVC scheme on unstructured meshes to solve the
circular dam-break problem on a non-flat bottom. The Fig.17 shows the calculated results for the water depth at t = 2 s, 8 s and 16 s
using two meshes of 10040 and 40146 cells. The corresponding results for velocity field are presented in Fig.18. From a numerical
point of view this test example is more difficult than the previous one as the flow is expected to exhibit complex features due to the
interaction between the water surface and the bed. As in the previous test a hole has formed and the water drains from the deepest
region as a rarefaction wave progresses outwards. However, a slower propagation is detected for the water free-surface in this test
compared to the simulations on flat-bottom.
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Fig. 17. Water depth for the circular dam-break problem on non-flat bottom obtained using a mesh with 10040 cells (first row) and
40146 (second row). From left to right t = 2 s, 8 s and 16 s.
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Fig. 18. Velocity fields corresponding to the plots represented in Fig.17. First row: mesh with 10040 cells. Second row: mesh with
40146 cells.

5 Conclusion and perspectives

We have presented in the first part of this paper the extension of the finite volume-characteristics scheme for solving two-
dimensional equations of nonlinear conservation laws on unstructured formalism. In the second part, a conservative approach has been
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presented to approximate the source terms while preserving the stability properties of the homogeneous solver. We note this work was
the future goal of many works [6, 7, 2, 1].
Our approach has several advantages, especially solving steady flows without large numerical errors, thus demonstrating that the
proposed scheme preserves the balance related to bathymetry term; it can also compute the numerical flux corresponding to the real
state of water flow without relying on Riemann problem solvers.

The method’s performance has been evaluated for several test examples; furthermore, in [32], the authors concluded the robustness
of the finite volume-characteristics method in other types of equations. In this work, we have developed a code for calculating
free-surface flows over an irregular bottom for complex geometry. This code is based on the solution of the shallow water equations
using the FVC scheme in unstructured meshes. This method applies to problems that represent large source terms due mainly to
rapid variation and high background irregularity. Faced with these problems, the methods that use a Riemann approximation solver,
which is well suited to the solution of purely hyperbolic equations, often encounter difficulties due to the instability of the numerical
solution. In addition to the test cases presented in this paper, there is about fifteen other test cases have been carried out in the context
of free-surface flows; each of these tests aims at verifying precisely one or more properties of our code. It should be noted that some
extensions of this approach can be used for modeling realistic applications, notably sediment and pollutant transport. Extending this
approximation method to a multi-layer shallow-water model and multi-phase flows [2, 11] will also aim for future works. We can also
adapt this method for solving the shallow water magnetohydrodynamic equations [33, 44].
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