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A well-balanced spectral volume scheme with the

wetting–drying property for the shallow-water equations
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ABSTRACT
The shallow-water equations are widely used to model surface water bodies, such as lakes, rivers

and the swash zone in coastal flows. Physically congruent solutions are characterized by non-

negative water depth, and many numerical methods may fail to preserve this property at the discrete

level when moving wet–dry transitions are present in the physical domain. In this paper, we present

a spectral-volume method for the approximate solution of the one-dimensional shallow-water

equations, which is third-order accurate in wet regions, far from discontinuities, and which is well

balanced for water at rest states: the stability of the solution is ensured if reconstruction and

limitation of variables preserves non-negativity of the depth and a suitable constraint for the time

step length is satisfied. A number of numerical experiments are reported, showing the promising

capabilities of the model to solve problems with non-trivial topographies and friction.
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INTRODUCTION
The increase of safety demand against adverse flooding

phenomena, and the request of better understanding of

propagation of constituents in surface water bodies, have

prompted the development of many mathematical models

for the description of shallow flows in lakes, rivers and the

swash zone of coastal areas. When the water depth is negli-

gible with respect to the horizontal dimensions of surface

water bodies, long waves can be efficiently described by

means of the so-called shallow-water equations. Since the

analytical solution of such mathematical models is available

only in very schematic cases, numerical methods are

required in general cases.

In one-dimensional gradually varied flows, the shallow-

water equations can be obtained from the De Saint Venant

equations (Cunge et al. ) by assuming a rectangular

cross section with unitary width: despite these simplifica-

tion, the one-dimensional shallow-water equations retain

all the mathematical characteristics of the De Saint
Venant equations and are universally considered a model

for developing and testing numerical methods useful for

the solution of the complete system of governing equations.

Moreover, the one-dimensional shallow-water equations are

interesting per se, in that their solution is the fundamental

ingredient for the numerical approximation of two-

dimensional shallow-water equations, which are used to

simulate the flow characteristics in two-dimensional shallow-

water bodies (Toro ). In one space dimension, the

shallow-water equations assume the form

@h
@t

þ @hU
@x

¼ 0

@hU
@t

þ @

@x
1
2
gh2 þ hU2

� �
¼ �gh

dzb
dx

� ghSf

(1)

where the following definitions hold: zb(x)¼ bed elevation,

h(x, t)¼water depth, U(x, t)¼ vertically averaged water
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velocity, g¼ gravity acceleration constant, Sf (h, U, x)¼ fric-

tion slope, x¼ horizontal coordinate, t¼ time. The first of

Equation (1) represents the mass conservation, while the

second represents the momentum balance. Since these

hyperbolic equations are nonlinear, they admit the for-

mation of discontinuities in the flow field (propagating

bores, hydraulic jumps) even in the case of smooth initial

conditions: such discontinuities are also encountered in

the case of propagation of wetting–drying moving frontiers.

Different numerical schemes, based on the concept of finite

differences (FD), finite volumes (FV) or finite elements (FE),

when written in conservative form, with numerical fluxes

evaluated using an exact or approximate Riemann solver

(Toro ), are able to cope with discontinuities in the

flow field (Mynett ).

We observe that the momentum equation is character-

ized by the presence of source terms, due to the bed slope

and friction, on the right-hand side: this term balances the

advective fluxes when a steady-state condition is attained.

The numerical solution of the shallow-water equations

with source terms has to take into account this fact, in

order to avoid non-physical solutions, difficulties in

attaining steady state conditions, spurious oscillations

of the numerical approximation and instability of the

algorithm. When water is at rest, the stationary state

reduces to

U ¼ 0; ζ ¼ const: (2)

where ζ¼ hþ zb is the water surface elevation. Many classic

FV schemes may fail in guaranteeing the mutual cancelation

of fluxes and source terms when the water is at rest is the

physically congruent solution: the numerical methods

which preserve the water-at-rest condition are said to satisfy

the so-called C-property (Bermúdez & Vázquez ), and a

number of different source term treatments which ensure

this property have been proposed in the literature (see Caselles

et al.  for a brief review).

Not properly designed schemes for the solution of the

shallow-water equations produce negative depths near

wet–dry transitions, which can reduce the accuracy of the

method or introduce stability issues: physically admissible

solutions of Equation (1) are characterized by h� 0, and it

is desirable that the numerical schemes are able to mimic
om http://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
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this non-negativity property at the discrete level. Also, in

the case that possible small negative depths are set to zero

at every time step, the mass error accumulates: in the

worst cases, the appearance of negative depths plainly

leads to the instability of the scheme. Numerous second-

order accurate FV schemes, able to preserve water-at-rest

states and non-negativity of the solution (Kurganov &

Levy ; Gallardo et al. ; Berthon & Marche ),

have been presented.

Despite the fact that high-order FV schemes have been

available in the numerical modelling community for a long

time (Colella & Woodward ), first- and second-order

schemes have been generally preferred when the approxi-

mate solution of the shallow-water equations has been

considered (Audusse & Bristeau ): in fact, low-order

schemes are robust and simple estimates can be given for

the stability requirements (Bouchut ) and they can be

easily implemented also in the case of unstructured grids.

Of course, first- and second-order FV schemes exhibit a

major shortcoming, namely high diffusive and dispersive

errors: this could not seem an issue in the case of fast tran-

sients (dam break or run-up evaluation), but in the case of

long transients, or in the case of small-amplitude wave

propagation, the quality of the solution can be adversely

affected (Shu ). This justifies the recent effort made by

researchers in order to implement genuinely high-order FV

schemes for the approximate solution of the shallow-water

equations (Caleffi et al. ; Castro et al. ; Noelle

et al. ; Xing & Shu a, b; Akoh et al. ): gener-

ally, these schemes do not exhibit the wetting–drying

property. In a very recent work (Xing & Shu ), a high-

order finite-volume scheme is presented, able to manage

dry or nearly dry regions, but which seems unable to cope

with friction source terms.

In this paper we describe and demonstrate a novel third-

order accurate well-balanced numerical model for the

approximate solution of the one-dimensional shallow-

water equations with bed-slope and friction source terms,

named SV3RK3, which is able to cope with moving wet–

dry frontiers, and also when friction and complex topogra-

phy are present. In the following sections, the treatment of

the bed-slope and friction source terms is presented in the

context of the spectral volume (SV) method. The modifi-

cations needed to satisfy water-at-rest conditions in the
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presence of a wet–dry transition are also discussed and a

number of numerical tests are considered in order to verify

the scheme.

Nowadays, practitioners, consultant engineers and policy

makers are, at different levels, consumers of electronically

encapsulated hydraulics knowledge (Abbott ), and they

are often not aware of the complicated numerical machinery

contained in the black-box programs they buy and use, which

produce beautiful colour flooded area maps. Presentation of

numerical methods should always be accompanied by guar-

antees about the physical soundness of the good results

claimed, in order to prove the limits and the merits of the

schemes, because dishonest or simply incorrect calculations

can lead to legal issues for engineers in many countries. In

the literature, it is common to find the description of naive

numerical models for the solution of one- and two-dimen-

sional shallow-water equations which are poorly

demonstrated and without any proof about their claimed

properties: these models should simply be rejected in practi-

cal applications. Viable numerical schemes, based on well-

grounded methods, must supply stable and reliable results,

under a priori known conditions: in the Appendix (available

online at http://www.iwaponline.com/jh/014/035.pdf), the

ability of the method to preserve the water-at-rest states and

the depth-positivity properties in the case of moving wet–

dry frontiers are also proven.
THE 1D SPECTRAL VOLUME METHOD FOR THE
SHALLOW-WATER EQUATIONS

The SV method is a high-order numerical method, recently

developed for the solution of conservation laws on unstruc-

tured grids (Wang ; Wang & Liu , ; Wang et al.

; Zhang & Shu ; Liu et al. ; Sun et al. ;

Van den Abeele & Lacor ; Van den Abeele et al.

a, b), which is strongly related to the spectral difference

(SD) method, to the discontinuous Galerkin (DG) method

and to the FV method: the solution is approximated by

means of piecewise continuous polynomials in each

element, as in the DG and SD methods, while the degrees

of freedom of the reconstruction are represented by the aver-

aged values of the conserved variables in the FV which

constitute a SV. The SV method has been applied to the
://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
solution of the shallow-water equations, both discarding

(Choi et al. ) or introducing (Cozzolino & Pianese

) the source terms. In the present section, we describe

a third-order SV method for the solution of the shallow-

water equations, which preserves the C-property and

which is able to cope with wet–dry moving frontiers.

Basics of the one-dimensional SV method

Consider the shallow-water equations system

@u
@t

þ @f uð Þ
@x

¼ sb(u, x)þ sf(u, x) (3)

where u is the column vector of the conserved variables,

whose generic component is u, f(u) is the column vector

of the fluxes, while sb(u, x) and sf(u, x) are the column vec-

tors of the bed-slope and friction source terms, respectively.

The following definitions hold:

u ¼ h hU½ �T , f(u) ¼ hU
1
2
gh2 þ hU2

� �T
,

sb(u, x) ¼ 0 �gh
dzb
dx

� �T
,

sf u, xð Þ ¼ 0 �ghSf½ �T (4)

and T is the symbol of ‘matrix transpose’. The one-dimen-

sional physical domain Ω¼ [a, b] is partitioned into NS

non-overlapping cells named ‘spectral volumes’ or ‘spectral

cells’, indexed by i:

Ω ¼
[NS

i¼1

Si, Si ¼ [xi�1=2, xiþ1=2], i ¼ 1, 2, . . . , NS (5)

with x1/2¼ a and xNþ1/2¼ b. In order to attain the third

order of accuracy for the space discretization, the spectral

cells are in turn partitioned by means of three non-

overlapping FV, indexed by (i, j):

Si ¼
[3
j¼1

Ci,j, Ci,j ¼ [xi,j�1=2, xi,jþ1=2],

i ¼ 1, 2, . . . , NS, j ¼ 1, 2, 3 (6)

where xi,1/2¼ xi�1/2 and xi,3þ1/2¼ xiþ1/2 (see Figure 1).

 //http://www.iwaponline.com/jh/014/035.pdf


Figure 1 | Definition sketch of the third-order spectral volume discretization of the

computational domain.
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Let ui be the cell-averaged value of the conserved

variables vector u in Si and ui,j the FV-averaged value of u

in Ci,j. The following obvious relation between ui and ui,j
holds:

ui ¼ 1
Δxi

ðxiþ1=2

xi�1=2

udx ¼ 1
Δxi

X3
j¼1

ðxi,jþ1=2

xi,j�1=2

udx ¼ 1
Δxi

X3
j¼1

ui,jΔxi,j (7)

where Δxi is the length of the SV Si, while Δxi,j is the length

of the FV Ci,j. Congruently with the finite-volume represen-

tation of conserved variables, defined by Equation (7), the

bed elevation is represented in each FV Ci,j by its finite-

volume-averaged value zi,j.

Applying the method of lines, the balance laws (3) are

spatially integrated in each FV and the Green theorem

yields the following system of ordinary differential

equations:

dui,j

dt
¼ � 1

Δxi,j
(fi,jþ1=2 � fi,j�1=2)þ sbi,j þ s fi,j

i ¼ 1, 2, . . . , NS, j ¼ 1, 2, 3

(8)

where fi,jþ1/2 is the vector of the numerical fluxes at the

interface between the FV Ci,j and Ci,jþ1, while sbi,j and sfi,j
are the numerical discretization of the bed-slope and friction

source terms in Ci,j, respectively. From inspection of

Equations (7) and (8), it is apparent that the evolution of

the vector ui is driven by the evolution of three degrees

of freedom per cell.

In order to evaluate the right-hand side of Equation (8),

the values of the variables h, hU and ζ¼ hþ zb are needed in

properly defined quadrature points into the FV and at
om http://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
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interfaces. If u is the generic variable to be reconstructed

and ui,j is the cell-averaged value of u in Ci,j, it is possible

to build a function ui(x), which approximates u in Si, with

the third order of accuracy, by means of a linear combi-

nation of three second-degree polynomials ci,j(x):

ui(x) ¼
X3
j¼1

ci,j(x)ui,j, x ∈ [xi�1=2, xiþ1=2]: (9)

Of course, the polynomials ci,j(x) are chosen in order to

preserve the averaged values of u in the FV of Si (Wang

).

Once the conserved variables are reconstructed at the

interfaces, fluxes can be evaluated. In general, at the inter-

face between the SVs Si and Siþ1, two different

reconstructions of the conserved variables are available,

from the left and from the right, respectively: in this case,

the fluxes are calculated by means of a homogeneous Rie-

mann solver, approximate or exact. In contrast, the

reconstruction is continuous through internal interfaces

and fluxes can be calculated analytically, with savings in

computational resources: of course, discontinuities of the

conserved variables may arise also at internal interfaces of

a SV, due to variable limitations or to the presence of

wetting–drying fronts, and also in this case a Riemann

solver is needed.

At the generic interface where the reconstruction is dis-

continuous, let u�
i,jþ1=2 and uþ

i,jþ1=2 be the values of the vector

u reconstructed from the left and at the right, respectively:

the HLLE Riemann solver fi,jþ1=2 ¼ fHLLE(u�
i,jþ1=2, u

þ
i,jþ1=2)

is used to evaluate the numerical flux (Harten et al. ;

Einfeldt ). This solver has been chosen because it pre-

serves the non-negativity of the depth by interface

(Bouchut ), but alternative depth-positivity-preserving

numerical fluxes (Godunov, Rusanov and so on) can be

used as well.

It can be verified (Wang ) that uniform partitions of

the SVs cannot guarantee the stability and the convergence

of the method: this can be obviously attributed to the Runge

phenomenon, i.e. the oscillation of the polynomial recon-

struction at the boundaries of the reconstruction interval.

In contrast, stable and convergent results are obtained

when the FV are clustered at the boundaries of the SVs. In

this paper, the partition suggested by Van den Abeele

et al. (b) is used: if ξ∈ [0;1] is a local coordinate in the
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SV Si, such that x¼ xi�1/2þ (xiþ1/2� xi�1/2)ξ, then the exter-

nal cell interfaces are set at ξ¼ 0 and 1, while the internal

interfaces are set at ξ¼ 0.21 and 0.79, respectively. Nicely,

we observe that, if all the spectral cells are partitioned in

the same manner, the choice of the polynomials ci,j(x) is

unique, with savings in memory and computational time.

While first-order schemes are diffusive enough to

damp undesired numerical oscillations, the high-order

reconstruction of the conserved variables in the SVs

Si can cause the formation of undershoots and overshoots

at the cell interfaces: these oscillations eventually

increase, destroying the numerical solution and destabiliz-

ing the algorithm. In this paper, the total variation of the

reconstructed variables is limited in each FV using a pro-

cedure inspired by Cockburn & Shu () and Wang

(). Recalling the TVD minmod function:

m(a1, a2, :::, an)

¼
s min
1≤i≤n

jaij, s ¼ sgn(a1) ¼ sgn(a2) ¼ � � � ¼ sgn(an)

0, otherwise

(

(10)

the TVB minmod function can be defined as

~m(a1, a2, . . . , an) ¼ a1, if ja1j ≤ MuΔx2i,j
m(a1, a2, . . . , an), otherwise

(

(11)

where Mu> 0 is properly chosen as constant. With refer-

ence to the generic FV Ci,j, if one of the conditions

u�
i,jþ1=2 � ui,j � ~m(u�

i,jþ1=2 � ui,j, ui,jþ1 � ui,j, ui,j � ui,j�1) ¼ 0

uþ
i,j�1=2 � ui,j þ ~m(ui,j � uþ

i,j�1=2, ui,jþ1 � ui,j, ui,j � ui,j�1) ¼ 0

(

(12)

is not verified, then the linear reconstruction

ui,j(x)¼ ui,jþ λ(x� xi,j) is assumed, where the following

optimal formulation of the conserved variable slope is

used (Berger et al. ):

λi,j ¼ m 2
ui,jþ1 � ui,j

Δxi,j þ Δxi,jþ1
, 2

ui,j � ui,j�1

Δxi,j þ Δxi,j�1

� �
: (13)
://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
Discretization of bed-slope and friction source terms

In order to apply the bed-slope source term treatment by

Audusse et al. (), the conserved variables h and hU,

and the water surface elevation ζ, are reconstructed in

each SV. After the reconstruction, the values of the bed

elevation at the generic interface can be calculated as

z±i,jþ1=2 ¼ ζ±i,jþ1=2 � h±
i,jþ1=2, and the modified values ĥ of the

water depth, which are actually used for flux and source

term evaluation, are obtained by means of the following

upwinding rule (‘hydrostatic reconstruction’):

ĥ±
i,jþ1=2 ¼ max (0, ζ±i,jþ1=2 �max (z�i,jþ1=2, z

þ
i,jþ1=2)): (14)

After calculating the unmodified interface fluid velocity

values U±
i,j�1=2 ¼ hU±

i,j�1=2=h
±
i,j�1=2, one has the modified vec-

tors of the conserved variables at the interface

û±
i,jþ1=2 ¼ ĥ±

i,jþ1=2 ĥ±
i,jþ1=2U

±
i,jþ1=2

h iT
(15)

which are those actually used to calculate the numerical flux

fi,jþ1=2 ¼ fHLLE(û�
i,jþ1=2, û

þ
i,jþ1=2) at the interfaces between the

FV. The numerical bed-slope source term sbi,j is calculated as

sbi,j ¼
g

Δxi,j

0

(ĥþ
i,j�1=2)

2 � (ĥ�
i,jþ1=2)

2

2
�

ðx�i,jþ1=2

xþi,j�1=2

h
@ζ

@x
dx

2
6664

3
7775: (16)

The evaluation of the integral in Equation (16) can be

easily accomplished by means of a proper quadrature for-

mula, with the desired order of accuracy. Here, the

Romberg rule can be used, obtaining

ðx�i,jþ1=2

xþi,j�1=2

h
@ζ

@x
dx ¼ 1

6
[4(h1 þ h2)(ς2 � ς1)

þ 4(h2 þ h3)(ς3 � ς2)� (h1 þ h3)(ς3 � ς1)]i:j
(17)

where the following positions have been made:

h1 ¼ hþ
i,j�1=2, h2 ¼ hC , h3 ¼ h�

i,jþ1=2

ς1 ¼ ςþi,j�1=2, ς2 ¼ ςC , ς3 ¼ ς�i,jþ1=2

(
(18)
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and the subscript C stands for the quantities calculated at

the centre of the FV, while the subscripts 1 and 2 refer to

the quantities calculated at the left and at the right bound-

ary, respectively. The numerical friction source term is

sfi,j ¼
1

Δxi,j

0

� Ðx�i,jþ1=2

xþi,j�1=2

ghSf dx

2
64

3
75: (19)

and the integral in Equation (19) is approximated by means

of Simpson’s quadrature rule:

�
ðx�i,jþ1=2

xþi,j�1=2

ghSf dx ¼ � gΔxi,j
6

[(hSf)1 þ 4(hSf )C þ (hSf)2]i:j: (20)

Advancing in time of the numerical solution

After the space discretization, Equation (8) can be regarded

as a system of ordinary differential equations, and advancing

in time can be accomplished by means of a suitable algor-

ithm. If V is the vector of the unknown variables ui,j, the

system (8) can be succinctly rewritten as

dV
dt

¼ L(V) (21)

and its solution is approximated by means of the explicit

third-order TVD Runge-Kutta scheme. We obtain the follow-

ing sequence of sub-steps (Gottlieb et al. ):

V(0) ¼ Vn

V(1) ¼ V0 ← V0 ¼ V(0) þ ΔtL(V(0))

V(2) ¼ 3
4
Vn þ 1

4
V0 ← V0 ¼ V(1) þ ΔtL(V(1))

Vnþ1 ¼ 1
3
Vn þ 2

3
V0 ← V0 ¼ V(2) þ ΔtL(V(2))

8>>>>>><
>>>>>>:

(22)

where the superscripts n and nþ 1 refer to the time levels tn
and tnþ1¼ tnþ Δt, respectively, while L represents the space

discretization operator. Variable reconstruction and limit-

ation is needed at each sub-step in order to evaluate the

space discretization operator.

Of course, the direct application of this approach is not

appropriate when friction source terms are present, because
om http://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
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the time step restriction needed to ensure the algorithm’s

stability is well below the ordinary CFL condition near

wet–dry transitions (Murillo et al. ). This issue can be

overcome, and the time step restriction can be relaxed,

observing that the Runge-Kutta algorithm coincides with a

convex combination of Euler sub-steps, which can in turn

be treated in a semi-implicit fashion: at each sub-step the

fluxes and the bed-slope source term are treated explicitly,

while the friction source term is treated implicitly. We

obtain for the generic Euler sub-step

V� ¼ V(s) þ ΔtLc(V
(s))

V0 � ΔtLf(V) ¼ V�

�
(23)

where the space operator Lc refers to fluxes and bed-slope

source terms, Lf refers to friction source terms, the

superscript s is related to the sth Euler sub-step of

the Runge-Kutta scheme, while the asterisk refers to the

quantities calculated after the explicit sub-step. In order to

ensure the third-order accuracy in space of the implicit

sub-step, we observe that at the generic abscissa x the

implicit Euler sub-step is

hU(x)þ Δt g h�(x)Sf(x) ¼ hU�(x): (24)

We then also apply reconstruction and limitation of the

variables h* and hU* after the explicit sub-step, use the for-

mula (24) at each quadrature point of the friction source

integral (20) in the FV Ci,j and finally obtain

hUi,j ¼ 1
6
[hU1 þ 4hUC þ hU2]i,j: (25)

Since the implicit sub-step is unconditionally stable, the

global time step is bounded only by the time step restriction

defined by the CFL condition.
The well-balanced scheme in the case of moving

wet–dry transitions

The well-balanced SV model described in the preceding sub-

section cannot directly cope with the cases of moving wet–

dry frontiers, and slight modifications have to be introduced
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in order to ensure the positivity of the scheme and the

C-property when wet–dry transitions are present: these

modifications are based on the fact that in SV schemes a

sub-gridding property can be exploited, and we can switch

from spectral cell variable reconstructions to local finite-

volume reconstructions, where needed.

First, a wet–dry tolerance height εh, close to zero, is

defined: if hi,j> εh the finite-volume Ci,j is considered wet,

otherwise it is dry. Then, we consider a spectral cell as

wet only if all the FV contained are wet: if one or more,

but not all, FV are wet, the spectral cell is said to be partially

wet; if no FV is wet, the spectral cell is dry.

Finally, the following supplementary rules are applied:

• the fluxes between two dry FV are null by definition, and

do not need to be calculated;

• the high-order variable reconstruction is accomplished

only in wet spectral cells;

• if a wet FV is contained in a partially dry spectral cell, a

linear reconstruction of the variables is adopted, using

only the information available in surrounding wet FV;

• if the FV Ci,k is wet and Ciþ1,1 is dry, then variables are

limited in the cell Ci,k; similarly, if the FV Ci,1 is wet

and Ci�1,k is dry, then variables are limited in the cell Ci,1;

• if the FV Ci,j is wet, while Ci,j�1 and Ci,jþ1 are dry, no

reconstruction is accomplished in the FV;

• the reconstruction of the variables being at most quadra-

tic, the minimum value hmin
i,j of the depth h is immediately

known after the reconstruction: if hmin
i,j is less than εh,

then h, ζ and hU are limited (‘limitation by depth’), in

order to ensure the depth positivity of the reconstruction

in the whole FV;

• if momentum hU is limited, then Equation (13) is used to

linearly reconstruct the velocity U, instead of hU.

Positivity and well-balanced properties of the proposed

scheme

We have observed that the use of a numerical model for the

approximate solution of the shallow-water equations with

wet–dry transitions is feasible for practical purposes only if

there are sufficient guarantees about the stability of the

scheme and the physical soundness of its results. In particular,

the scheme is also required to satisfy the non-negativity of the
://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
solution in the case ofwet–dry transitions and to satisfy special

solutions such as the water-at-rest condition (C-property):

models which are not proven to satisfy these requirements

should always be rejected in engineering practice. The follow-

ing Theorem 1 states the satisfaction of the C-property and

supplies a guide for the choice of the time step length Δt in

order to preserve the depth-positivity of the solution.

Theorem 1. The third-order SV Scheme (8), for the

approximate solution of the shallow-water Equation (1),

satisfies the C-property exactly also in the case of emerging

bottom, and preserves the non-negativity of the water

depth h if the time step length Δt is chosen in order to satisfy

the following CFL condition:

Δt
Δxi,j

σi,j ≤
1
12

, i ¼ 1, 2, . . . , NS, j ¼ 1, 2, 3 (26)

where σi,j is a superior bound of the signal speed in the FV Ci,j.

The definition of σi,j, and the proof of Theorem 1, given

following the approach by Perthame & Shu (), are con-

tained in the Appendix (see http://www.iwaponline.com/

jh/014/035.pdf).

Despite the fact that all the calculations accomplished in

the following section are obtained with constant time step

Δt, the estimate (26) can be used in order to dynamically

enlarge or reduce the computational time step during calcu-

lations in practical applications (Mynett ).
NUMERICAL RESULTS

In this section, the results for a number of numerical stan-

dard tests, taken from the current scientific literature, are

presented in order to demonstrate the capability of the

numerical method to satisfy the C-property also in the pres-

ence of emerging bottom, to verify the order of accuracy of

the scheme and to confirm the ability of the scheme to solve

problems with moving wet–dry frontier, also in the presence

of friction. The gravity constant g was set equal to 9.81 m/s2.

All the numerical experiments were run on an x64-based

workstation, with six Intel Xeon processors X5650

(2.67 GHz), 12.0 GB RAM and Windows 7 operating

system. The numerical codes were written in Visual Basic

6, and run in executable form.

 //http://www.iwaponline.com/jh/014/035.pdf
 //http://www.iwaponline.com/jh/014/035.pdf
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C-property

This test, inspired from that by Gallardo et al. (), is

devoted to verify the C-property, when wet–dry transitions

are included. In a channel, 10 m long, we consider a bell-

shaped mound, 5 m high, whose bed elevation is defined by

zb(x) ¼ 5e�0:4(x�5)2 , x ∈ [0, 10] (27)

and the initial water surface level is set to ζ¼ 2.5 m

(see Figure 2).

The Manning formula is used for the friction source

term, with roughness coefficient n¼ 0.05. The numerical

model has been run in double precision until t¼ 0.5 s,

using NS¼ 67 uniform spectral cells, corresponding to 201

degrees of freedom, time step Δt¼ 0.0005 s and wet–dry tol-

erance εh¼ 10�7 m, while the valuesMh¼MhU¼Mζ¼ 50 of

the TVB limiter have been used: periodic boundary con-

ditions have been imposed, in order to constrain possible

spurious waves into the domain, with magnification of

errors.

The inspection of Table 1 shows that the stationary sol-

ution is preserved at the level close to the round-off error.
Figure 2 | Verification of the C-property with emerging bottom. Numerical solution

computed at t¼ 0.5 s.

Table 1 | L1 and L∞ errors for the stationary solution with Gaussian bottom

L1 error L∞ error

h (m) hU (m2/s) h (m) hU (m2/s)

1.70 × 10�14 4.38 × 10�14 7.55 × 10�15 2.17 × 10�14

om http://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
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No negative depths appeared during the simulation, con-

firming that the procedure proposed for the reconstruction

and limitation of variables satisfies the C-property and the

positivity of the solution also in the presence of wet–dry

transitions.

Accuracy test

This test, proposed by Xing & Shu (a), is used in

order to verify the third-order accuracy of the scheme

for smooth solutions. In a channel which is 1 m long,

the following periodic bed elevation and initial conditions

are assumed:

zb(x) ¼ sin2 (πx), h(x, 0) ¼ 5þ ecos (2πx),

hU(x, 0) ¼ sin ( cos (2πx)), x ∈ [0, 1] (28)

together with periodic boundary conditions. For the friction

source term, the Manning formula is used, with n¼ 0.05.

The numerical simulation is stopped at t¼ 0.1 s,

because later the solution becomes discontinuous and the

evaluation of the accuracy for smooth solutions is not poss-

ible anymore.

The calculations have been repeated for an increasing

number of uniform spectral cells, from 15 to 480, doubling

NS and halving the time step Δt, with Δt chosen to respect

strictly the rule CFL¼ 1/12 (see Theorem 1 in this paper).

The values Mh¼MhU¼Mζ¼ 1,000 of the TVB limiter

have been used in order to avoid excessive limitation of

data in a problem where the second-order derivative of the

solution is very high. Since there is no analytic solution

for this problem, a reference simulation has been calculated

at time t¼ 0.1 s on a very fine grid with NS¼ 7,680, and it

has been used as the exact solution in order to compute

the numerical errors. The results of calculations are sum-

marized in Table 2: from inspection of this table, the third-

order rate of convergence in the L1 and L∞ norms is clearly

confirmed also in the presence of friction source terms. In

Figure 3, the numerical solution obtained with NS¼ 30

SVs is compared with the solution obtained with the very

fine grid: these solutions match perfectly with the solutions

presented in the literature for the same test (Caleffi et al.

). It is interesting to observe how a modest number of

SVs is needed to reach sufficient accuracy for this test case.



Figure 3 | Convergence test at t¼ 0.1 s. Comparison between the solution with NS¼ 30

spectral volumes and the solution with NS¼ 7,680 spectral volumes.

Table 2 | Convergence test for the SV3RK3 scheme

L∞ L1

h (m) hU (m2/s) h (m) hU (m2/s)

NV NS Error Order Error Order Error Order Error Order Computational time (ms)

45 15 0.0180 0.156 4.39 × 10�3 0.0435 734

90 30 5.25 × 10�3 1.77 0.0446 1.80 7.22 × 10�4 2.61 6.37 × 10�3 2.77 2,933

180 60 1.60 × 10�3 1.71 0.0138 1.69 9.23 × 10�5 2.97 8.13 × 10�4 2.97 11,544

360 120 2.11 × 10�4 2.93 1.82 × 10�3 2.92 9.96 × 10�6 3.21 8.63 × 10�5 3.24 46,816

720 240 2.03 × 10�5 3.38 1.73 × 10�4 3.40 8.77 × 10�7 3.51 7.22 × 10�6 3.58 189,275

1,140 480 2.08 × 10�6 3.29 1.79 × 10�5 3.27 1.40 × 10�7 2.65 1.06 × 10�6 2.77 761,032
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In order to explain the tendency in the orders of accu-

racy which are found in Table 2, we observe that, for

increasing numbers of SVs, the order of accuracy tends to

increase from values which are lower than the nominal

ones, reaching the third order of accuracy in the so-called

‘asymptotic regime’ (which is attained for more than

NS¼ 120 spectral cells in this case). The effect of the

increase of the order of accuracy for the refining grid is con-

stantly observed in the literature (see, for example, Wang

, tables II, III and IV). Of course, oscillations of the

order of accuracy, especially in the case of complicated sys-

tems of differential equations, are also expected in the

asymptotic regime. It remains to explain the slight drop in

the order of accuracy which can be observed for NS¼ 480

spectral cells. We observe that the test case used does not

have an easily calculable analytical solution, and then

errors were evaluated using a reference solution computed
://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
on a very fine grid, consisting of 7,680 spectral cells. The

reference solution does not coincide with the analytical sol-

ution, of course: this means that, for NS tending to infinity,

the numerical solutions tend asymptotically to the analytical

solution and not to the reference solution: this observation

clarifies that, for values of NS approaching 7,680, the use

of an approximate reference solution for the evaluation of

the errors has no meaning. In our case this effect is sensitive

for NS greater than 480.

In Table 2 are also reported (column labelled ‘Compu-

tational time’) the durations of the numerical experiments,

expressed in milliseconds. Every spectral cell used for the

SV3RK3 scheme contains three FV, and then a grid of NS

spectral cells consists of NV¼ 3 NS degrees of freedom:

the first column of Table 2 (‘NV’) contains the number of

degrees of freedom used during the calculations.

Comparison with lower-order schemes

In order to compare the proposed SV numerical scheme

with existing methods, a standard second-order finite-

volume scheme, called FV2RK2 (see, for example, Audusse

et al. ), has been coded: the characteristics of this

scheme are summarized in Table 3.

As in the preceding section, the second-order accuracy

of the FV2RK2 scheme has been verified by means of the

convergence test by Xing & Shu (a), repeating the cal-

culations for an increasing number of FV NV, ranging

from 45 to 5,760, doubling NV and halving the time step

Δt, with Δt chosen to respect strictly the rule CFL¼ 1/4

(see Proposition 2.27 in Bouchut ). The results of



Table 3 | Characteristics of the FV2RK2 scheme

Variables reconstruction Linear

Reconstruction limitation Minmod

Time advancing TVD Runge Kutta 2

Numerical fluxes HLLE

Geometric source term treatment Hydrostatic reconstruction

Friction source term treatment Implicit

CFL condition 1/4
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calculations are summarized in Table 4: from inspection of

this table, the second-order rate of convergence in the L1

and L∞ norms for the conserved variables h and hU is

confirmed.

The SV method coincides with a finite-volume method,

where reconstruction of variables is made by grouping the

FV in clusters called spectral cells: a fair comparison between

the SV3RK3 and FV2RK2 schemes can then be made, con-

sidering computational grids composed of the same number

of FV. From inspection of Tables 2 and 4 it is apparent that,

for a given number of FV, the SV3RK3 scheme is more accu-

rate. In other words, we can say that the SV3RK3 scheme

allows us to attain a given solution precision with a reduced

number of computational degrees of freedom, if compared

with lower-order finite-volume schemes: this confirms what

is commonly found in the literature with reference to high-

order schemes (Kreiss & Oliger ; Fletcher ). Of

course, for a given number of FV, the SV3RK2 scheme is
Table 4 | Convergence test for the FV2RK2 scheme

L∞ L1

h (m) hU (m2/s) h (m)

NV Error Order Error Order Error

45 0.0810 0.849 0.0151

90 0.0350 1.21 0.399 1.09 4.28 × 1

180 0.0146 1.26 0.138 1.54 1.31 × 1

360 4.52 × 10�3 1.69 0.0279 2.30 3.38 × 1

720 7.74 × 10�4 2.55 7.25 × 10�3 1.95 1.14 × 1

1,440 3.07 × 10�4 1.33 2.80 × 10�3 1.37 2.11 × 1

2,880 7.67 × 10�5 2.00 7.00 × 10�4 2.00 5.25 × 1

5,760 1.90 × 10�5 2.02 1.73 × 10�4 2.02 1.30 × 1

om http://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
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slower than the FV2RK2: actually, the gain of accuracy,

obtained by considering more levels for the advancing in

time, and more complicated formulae for the reconstruction

and limitation of variables, does not come for free, and has a

computational cost.

More interestingly, we can compare the numerical

burden of the SV3RK3 and FV2RK2 schemes, for a given

level of accuracy required: the L∞ norms of the error with

reference to the specific discharge hU, contained in Tables 2

and 4, are represented as a function of the computational

time in Figure 4. The plots representing the error for the

SV3RK3 model (black triangles) and the error for the

FV2RK2 model (white circles) cross at about L∞¼ 2.5 ×

10�3 m2/s: if the level of error required is lower than the

error at the intersection point, the FV2RK2 model needs

greater computational resources, and the same observation

can be verified considering the other norms of the error.

Of course, the point of intersection of the two error curves

changes if we change the study case, or if we change the

end time at which the calculations are stopped.

The results of the simulations with the SV3RK3 and

FV2RK2 models confirm what is found in the literature,

without exception: despite the fact that the solution error

can be reduced by refining the computational grid, the grid

refinement with higher-order accurate algorithms is compu-

tationally more efficient for sufficiently fine grids, that is for

low error required (Abarbanel & Chertock ; Tkalich

). In the present case, a very short-duration one-

dimensional test case (t¼ 0.1 s) has been sufficient to
hU (m2/s)

Order Error Order Computational time (ms)

0.126 46

0�3 1.82 0.0434 1.54 156

0�3 1.71 0.0109 1.99 546

0�4 1.96 3.45 × 10�3 1.66 2,184

0�4 1.57 8.62 × 10�4 2.00 8,627

0�5 2.44 1.72 × 10�4 2.33 34,274

0�6 2.00 4.28 × 10�5 2.00 141,367

0�6 2.02 1.06 × 10�5 2.02 561,335



Figure 4 | L∞ norm of the error for the specific discharge hU as a function of the

computational time (SV3RK3: black triangles: FV2RK2: white circles).
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recognize this effect: actually, when long duration compu-

tations are considered, diffusive errors of low-order

schemes accumulate and the region of convenience of

high-order schemes widens (Shu ).
Parabolic bowl

Sampson () has proposed the analytical solution of the

one-dimensional shallow-water equations for the case of

unforced frictional flow in a parabolic channel, where the

linear expression Sf¼ g�1τU is assumed for the friction slope

and τ is a roughness parameter. In a channel, 10,000 m long,

the bed elevation is described by the quadratic function:

zb(x) ¼ h0
x
a

� �2
, x ∈ [� 5,000, 5,000] (29)

where h0¼ 10 m and a¼ 3,000 m. The analytical solution for

the water depth is defined by

h(x, t) ¼ max (0, η(x, t)� zb(x)), x ∈ [� 5,000, 5,000]

(30)

where

η(x, t) ¼ h0 � B2e�τt

4g
þ a2B2e�τt

8g2 ho

× �sτ sin 2stþ τ2

4
� s2

� �
cos 2st

� �

� xBe�(τt=2)

g
s cos stþ τ

2
sin st

� �
(31)
://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
and the following definitions hold: B¼ 5 m/s, τ¼ 0.001 s�1,

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8gh0=a2

p
and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � τ2

p
=2.

Equations (30) and (31) express the fact that the mass of

water oscillates, maintaining the free surface profile linear,

tending exponentially to an asymptotic condition of rest:

the initial conditions for the water depth h are obtained by

substitution of t¼ 0 in Equation (30), while the specific dis-

charge hU at time t¼ 0 is set to zero everywhere. For the

numerical calculations with the SV3RK3 scheme, the com-

putational domain has been subdivided into NS¼ 100

uniform spectral cells, corresponding to 300 degrees of free-

dom. The coefficients Mh¼MhU¼Mζ¼ 50 have been

chosen for the simulation, and the solution has been

advanced until t¼ 6,000 s, with Δt¼ 0.1 s and εh¼ 10�5 m,

In Figure 5, the results of the calculations at times t¼ 1,000,

2,000, 3,000, 4,000, 5,000 and 6,000 s are compared with

the analytical solution, with reference to the water surface

elevation ζ.

The agreement between numerical and analytical sol-

utions for this very long simulation is good: in particular,

the slowing down of the water mass due to the friction effects

is correctly reproduced, together with the linear profile of

the water surface, confirming the accuracy of the treatment

of the geometric and frictional source terms. No negative

water heights have been observed during the simulation

and the total mass has been conserved up to round-off

error, verifying the depth-positivity property of the algorithm,

also in the presence of moving wetting–drying fronts, when

a properly defined time step restriction is satisfied.

Steady transcritical flow with a shock over a hump

This test (Goutal & Maurel ; Alcrudo & Soares Frazão

) is widely used to evaluate the convergence of the

numerical scheme to a steady condition, where the analyti-

cal solution is known (Caleffi et al. ; Xing & Shu

a, b; Caselles et al. ), and it is difficult due to the

presence of a flow field discontinuity on a non-trivial

bottom. In a channel, 25 m long, without friction, the bed

elevation is described by

zb(x) ¼ 0:2� 0:05(x� 10)2, if 8< x< 12

0 otherwise

(
, x ∈ [0, 25]:

(32)



Figure 5 | Parabolic bowl. Water surface elevation at different times. Top left: t¼ 1,000 s, top right: t¼ 2,000 s, middle left: t¼ 3,000 s, middle right: t¼ 4,000 s, bottom left: t¼ 5,000 s,

bottom right: t¼ 6,000 s.
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For this test, the initial conditions are described by

h(x, 0) ¼ 0:5� zb(x), hU(x, 0) ¼ 0:36h(x, 0), x ∈ [0, 25]:

(33)

The left boundary condition is defined by setting the

water height h¼ 0.5 m and specific discharge hU¼
0.18 m2/s, while the right boundary condition is defined by

setting the water depth h¼ 0.33 m. The analytical solution

corresponding to the final steady condition can be found
om http://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
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by coupling the Bernoulli theorem with the Rankine–

Huguniot condition.

In order to apply the SV3RK3 scheme, the compu-

tational domain has been subdivided into NS¼ 200

uniform spectral cells, corresponding to 600 degrees of free-

dom, while Mh¼Mζ¼ 50 and MhU¼ 0; the solution has

been advanced until t¼ 300 s. In Figure 6, the results of

the calculations at time t¼ 300 s are represented with refer-

ence to the water surface elevation ζ: it is apparent how the

numerical model captures the steady analytical solution



Figure 6 | Steady transcritical flow with shock. Water surface elevation at t¼ 300 s.
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with great fidelity. In Figure 7, the numerical specific dis-

charge is plotted at the time t¼ 300 s: the overall accuracy

of the discharge evaluation is good, except at the hydraulic

jump location. This issue is shared by many other numerical

models (Caleffi et al. ) and is due to the shift between

the theoretical position of the shock and the actual cell

interface position.

Dam break over a triangular sill

In this test, the results of the numerical model are compared

with the experimental data of the laboratory dam break

(Hiver ; Soares-Frazão ). The experimental set-up

consisted of a 38 m long horizontal channel, of rectangular

cross section, with 0.75 m constant width, in which a gate

divided a 15.5 m long reservoir from the dry bottom portion

of the channel. A symmetric triangular-shaped sill, 6 m long

and 0.40 m high, was located 10 m downstream of the gate.

The right end of the channel consisted of a free outlet, and
Figure 7 | Steady transcritical flow with shock. Specific discharge at t¼ 300 s.

://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
the Manning coefficient n¼ 0.0125 was evaluated for the

channel bed. The initial conditions were characterized by

a reservoir filled with 0.75 m of water: the sudden removal

of the gate permitted us to reproduce the instantaneous fail-

ure of a dam. Seven gauges (G2, G4, G8, G10, G11, G13 and

G20) were collocated at different distances from the gate

(see Table 5) in order to measure the water depth variations

during the transient consequent to the dam failure: in par-

ticular, gauges from G2–G11 were collocated at the left of

the sill top, gauge G13 was collocated at the sill top while

gauge G20 was collocated at the right of the sill.

After the gate removal at t¼ 0 s, the toe of the dam-

break profile reached the sill at about t¼ 3 s, overtopped it

at about t¼ 4 s and then invaded the dry zone on the

right. Of course, the presence of the obstacle caused the par-

tial reflection of the dam-break wave towards the closed end

of the channel, where it was reflected again. Finally, the flow

slowed down towards the rest, due to the dissipation of

energy.

In order to perform this test, the computational

domain is subdivided into NS¼ 760 uniform SVs, and

the following parameters are used for the calculations:

Δt¼ 0.0001 s, εh¼ 10�7 m, Mh¼MhU¼Mζ¼ 0. In Figure 8,

a comparison is made between numerical results (line)

and experimental data (circles). It is apparent how the

numerical model captures with fidelity the time of arrival

of the first and subsequent reflected waves at all the

gauges from G2 to G13. The water height is accurately

predicted at gauges G2 and G4, together with the

sudden increases of the depth due to the wave arrival,

while it is slightly overpredicted at gauges from G8 to

G13. The numerical results are less satisfactory only at

gauge G20, where the water height is consistently
Table 5 | Gauge positions

Gauge Abscissa (m)

G2 17.5

G4 19.5

G8 23.5

G10 25.5

G11 26.5

G13 28.5

G20 35.5



Figure 8 | Dam-break over a triangular sill. Comparison between numerical results (line) and experimental data (circles).
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overpredicted, while the time of arrival of the transmitted

waves are slightly retarded. The main discrepancies

between the numerical solution proposed here and the

experimental data are shared with other solutions pro-

posed in the literature (Liang & Marche ): this

shows that there are real water effects (turbulence,

mixing with air, three-dimensional effects) which are not

taken into account by the mathematical model of the

shallow-water equations, and which can become impor-

tant, especially downstream from obstacles.
om http://iwaponline.com/jh/article-pdf/14/3/745/386803/745.pdf
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CONCLUSIONS

Many numerical schemes have recently been presented,

aiming at the high-order accurate solution of the shallow-

water equations: these schemes, which are well balanced for

water-at-rest states, or also for more general steady states,

often neglect the problemofmovingwet–dry frontiers and fric-

tion, which are fundamental for practical applications. In this

paper, a third-order SV model for the approximate solution of

the one-dimensional shallow water equations has been
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described, and the desired properties of the scheme, namely

the C-property and the depth-positivity, have been proven.

In particular, it has been shown that, when a non-negativity-

preserving numerical flux is used and the hydrostatic

reconstruction of depths is adopted for the evaluation of

geometrical source terms, the stability of the model can be

ensured by a depth-positivity-preserving reconstruction of

data and a properly defined CFL condition. This result shows

that it is possible to construct robust high-order numerical

schemes for the solution of the shallow-water equations

when wetting–drying fronts are present, and supplies a guide

for the choice of the time step during the calculations.

The numerical model proposed has been verified by

means of numerous theoretical tests from the recent litera-

ture, which have confirmed the third order of accuracy,

the exact satisfaction of water-at-rest conditions and the abil-

ity to manage wet–dry moving frontiers, also when non-

trivial bathymetries and friction are present. Finally, a

dam-break laboratory experiment has been reproduced

reasonably, without any calibration of parameters such as

the friction coefficient, showing the promising capabilities

of the model when realistic applications are considered.

In future work, the theoretical and practical results

obtained will be extended to approximate the solution of

the De Saint Venant equations and the two-dimensional

shallow-water equations, with moving wetting–drying fron-

tiers, in order to face real-world applications.
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