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Abstract

A variation of the extended finite element method for 3D fracture mechanics is

proposed. It utilizes global enrichment and point-wise as well as integral matching

of displacements of the standard and enriched elements in order to achieve higher

accuracy, optimal convergence rates and improved conditioning for two and three
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dimensional crack problems. A bespoke benchmark problem is introduced to deter-

mine the method’s accuracy in the general 3D case where it is demonstrated that

the proposed approach improves the accuracy and reduces the number of iterations

required for the iterative solution of the resulting system of equations by 40% for

moderately refined meshes and topological enrichment. Moreover, when a fixed en-

richment volume is used, the number of iterations required grows at a rate which is

reduced by a factor of 2 compared to standard XFEM, diminishing the number of

iterations by almost one order of magnitude.

Key words: XFEM, geometrical enrichment , point-wise matching, dof gathering,

global enrichment, conditioning

1 Introduction

It is well known that the simulation of three-dimensional (3D) crack propaga-

tion problems using the finite element method (FEM) [1] can be problematic.

The difficulties emanate from the fact that the finite element (FE) mesh has

to conform to the crack surfaces as well as the boundaries of the analyzed

domain. One additional requirement, which further complicates the situation,

is that the mesh has to be refined in the vicinity of the crack front in order to

∗ Corresponding author: stephane.bordas@alum.northwestern.edu (Stéphane P. A.

Bordas)
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adequately represent the singularity that occurs in the stress fields. Moreover,

for every crack propagation step, local remeshing is necessary which makes

the whole procedure computationally infeasible.

An alternative to the above procedure, which has produced accurate results,

is the boundary element method (BEM)[2] where only the crack surfaces and

domain boundaries have to be meshed. The boundary element method has

recently been coupled with isogeometric analysis [3,4].

Meshless methods, and more specifically the element free Galerkin (EFG)

method [5], have also been applied to crack propagation problems [6] elim-

inating the need for remeshing and greatly simplifying the process of local

refinement. In those methods the concept of “enrichment” [7] was introduced

which consists of augmenting the EFG basis in order to include asymptotic

near tip fields or special enrichment functions produced from those near tip

fields. Several other variations have also been proposed [8,9,10,11] which ex-

tend the applicability of the method.

The concept of enrichment combined with the partition of unity property

[12] was also employed in the development of the extended finite element

method (XFEM) [13,14] which, while retaining the basic properties of the fi-

nite element method, does not require any remeshing in order to handle crack

propagation problems. Additionally, since asymptotic tip enrichment func-

tions are used, the need for local mesh refinement is minimized. The method

3
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was successfully extended to 3D problems [15,16,17] and industrial problems

[18,19,20,21,22].

Since the introduction of the method, numerous attempts have been made

towards the improvement of some of the initial method’s weaknesses. One of

these weaknesses is the lack of optimal convergence which was remedied by

enriching elements in a fixed area around the crack tip [23,24,25]. The addi-

tion of enriched elements however, leads to poor conditioning of the resulting

system matrices which can be solved either by the use of special precondi-

tioners [24,26] or by using the so called degree of freedom (dof) gathering

[23] technique. Other drawbacks of the method include blending problems

between the enriched and the standard part of the approximation for which

several solutions have been given [27,28,29,30,31,32] and problems in numer-

ical integration which can be dealt with by using techniques such as element

partitioning and special mappings [23,24,33,34,31,35,36,32,37,38]. Some vari-

ations of the method have also been proposed which consist in adding higher

order terms of the near tip asymptotic fields in order to directly obtain stress

intensity factors [39,40,41]. Finally, significant effort has been devoted in the

development of special error estimators and methods for derivative recovery

specifically designed for XFEM [42,43,44,45,46].

A variation of the method which successfully handles several of the problems

discussed above, is the one proposed by Laborde et al. [23]. The present work

is aimed towards extending the concepts developed in the work of Laborde et

4
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Fig. 1. Cracked Body and boundary conditions.

al. [23] and other similar works [25,47] to three dimensional crack propagation

problems, a goal which is not straight forward. The resulting method’s accu-

racy and convergence properties are tested both for the 2D and the 3D case,

for the latter a novel benchmark problem is proposed.

2 Problem Statement

The governing equations of the elastostatics problem for a cracked domain

will be presented in this section, as well as the weak form of the equilibrium

equations.

5

Page 5 of 81

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



P
eer R

eview
 O

n
ly

2.1 Governing equations

Consider the problem of a cracked domain Ω bounded by the boundary Γ

consisting of the parts Γ0, Γu, Γt and Γc where Γ = Γ0 ∪ Γu ∪ Γt ∪ Γc and

Γc = Γt
c ∪ Γ0

c . The equilibrium equations and boundary conditions are:

∇ · σ + b = 0 in Ω (1a)

u= ū on Γu (1b)

σ · n = t̄ on Γt (1c)

σ · n = 0 on Γ0
c (1d)

σ · n= t̄c on Γt
c (1e)

where σ is the Cauchy stress tensor, n is the unit outward normal, b is the

body force per unit volume, u is the displacement field and ∇ is the gradient

operator. The kinematic equations for small deformations define the strain

field ǫ as the symmetric gradient of the displacement field u:

ǫ = ∇su (2)

Finally, the constitutive equations are given by Hooke’s law:

σ = D : ǫ (3)

where D is the elasticity tensor.

6
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2.2 Weak Form

For the derivation of the classical finite element formulation, the weak form

of the equilibrium equations can be stated as:

Find u ∈ U such that ∀v ∈ V0

∫

Ω

σ(u) : ǫ(v) dΩ =
∫

Ω

b · v dΩ +
∫

Γt

t̄ · v dΓ +
∫

Γt
c

t̄c · v dΓt
c (4)

where :

U =
{

u|u ∈ H1,u = ū on Γu and u discontinuous on Γc

}

(5)

and

V0 =
{

v|v ∈ H1,v = 0 on Γu and v discontinuous on Γc

}

(6)

Using the constitutive equations the weak form is obtained as:

Find u ∈ U such that ∀v ∈ V0

∫

Ω

ǫ(u) : D : ǫ(v) dΩ =
∫

Ω

b · v dΩ +
∫

Γt

t̄ · v dΓ +
∫

Γt
c

t̄c · v dΓt
c (7)
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3 Global enrichment XFEM

The method presented in this work can be viewed as an extension of the

method proposed by Laborde et al. [23] since some basic aspects such as

point-wise matching, degree of freedom (dof) gathering and geometrical en-

richment (enrichment in a fixed area around the crack tip/front) are common

in both methods. However, since this work is aimed towards a broader spec-

trum of applications, including three dimensional problems, several modifica-

tions/extensions are made to the original method. We first recall the general

ideas of the work of Laborde et al. [23] before introducing the aforementioned

modifications. It should be noted however, that while in the method of Laborde

et al. [23] higher order elements are considered, in the present work only linear

(P1) elements are used.

3.1 The method of Laborde

In the work of Laborde et. al it was observed that by enriching elements in a

fixed area around the crack tip, an optimal convergence rate could be achieved.

The above enrichment strategy, in the work of Béchet et al. [24], was referred

to as “geometrical enrichment” as opposed to “topological enrichment” where

only a layer of elements around the crack tip is enriched.

8
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The addition of layers of tip enriched elements however, would lead to a dras-

tic deterioration in the conditioning of the resulting system matrices. As a

remedy, dof gathering was proposed which consists in using a global func-

tion to weigh the enrichment functions rather than the shape functions of tip

enriched elements. This function is equal to 1 for all nodes lying inside the

enrichment area, assumes a value of 0 for all nodes outside the enrichment area

and varies linearly in-between. While this technique leads to a decreased num-

ber of additional dofs and improved conditioning, it also leads to sub-optimal

convergence rates.

The lack of optimal convergence was attributed to the problems occurring in

the transition layer between enriched and regular elements. These problems

were resolved by eliminating the transition layer of elements and matching

displacements between enriched and regular elements. The method used to

match displacements was point-wise matching.

The above concepts in addition to an improved numerical integration scheme

lead to a method of increased accuracy which provided optimal convergence

rates and improved conditioning. The equations related to the above ideas, as

well as the modifications and extensions made, will be presented in detail in

the following subsections.

9
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3.2 Crack representation

The proposed method is independent of the crack representation used. Con-

sequently, any of the available possibilities can be used such as level sets

[16,17,48], vector level sets [49] or a hybrid explicit implicit representation [50].

For the simple examples treated in this work, a level set representation [16,17,48]

was used and enrichment functions were evaluated using finite element approx-

imation of the level set functions as is commonly done in XFEM.

In the following subsections the level set functions will be denoted as φ and ψ

where, given an arbitrary point x in the domain:

• φ (x) is the signed distance from the crack surface

• ψ (x) is a signed distance function such that ∇φ · ∇ψ = 0 and φ (x) = 0

and ψ (x) = 0 defines the crack front.

The polar coordinates used for the definition of the enrichment functions are

defined as [16,17,48]:

r =
√

φ2 + ψ2, θ = arctan

(

φ

ψ

)

(8)
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3.3 Tip enrichment

The most important extension made to the method of Laborde et al. [23],

which enables the application of the idea to 3D problems, is related to the

tip enrichment scheme used and more specifically to dof gathering. In the

aforementioned method, tip enrichment functions were weighted by a global

function assuming a value of 1 for all tip enriched elements in order to decrease

the number of additional unknowns and improve the conditioning of the re-

sulting matrices. The above approach does not allow any spatial variation of

the tip enrichment functions. Nevertheless, in 3D problems, solution parame-

ters such as stress intensity factors (SIFs) vary along the crack front making

the direct extension of the method, as presented in [23], to 3D impossible.

In the present work, a novel approach is introduced for weighting tip enrich-

ment functions consisting of some global shape functions which allow spatial

variability of the enrichment functions along the crack front but not in any

other direction, thus preserving the advantages yielded by dof gathering and

enabling the use of geometrical enrichment in 3D problems. The enriched part

of the displacement approximation for tip enriched elements, evaluated at

x ∈ Ω, can then be written as:

ut (x) =
∑

k

N
g
K (x)

∑

j

Fj (x) cKj (9)
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where N g
K are the global shape functions which refer to a superimposed mesh

of special elements and will be presented in detail in Section 3.8, index K

refefers to nodes of the superimposed mesh, Fj are tip enrichment functions

and ckj are the corresponding tip dofs. Tip enrichment functions are defined

as in standard XFEM:

Fj (x) ≡ Fj (r, θ) =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]

(10)

The precise definition of parameters r and θ was given in Subsection 3.2. For

two dimensional problems, the above approach coincides with dof gathering.

In order to apply geometrical enrichment the radius of enrichment re has to

be defined. Subsequently, nodal values ri of variable r are computed. If the

condition ri < re is true for every node of a given element, then the element

is tip enriched (Figure 1).

3.4 Jump enrichment

Throughout this work shifted jump enrichment functions are used [51,19].

Moreover the jump enrichment functions are defined as:

12
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er

Tip enriched node

Tip and jump enriched node

Jump enriched node

Tip enriched elements

Jump enriched element

crack front

crack surface

Fig. 2. Enrichment strategies used for tip and jump enrichment.

H(φ) =



















1 for φ > 0

− 1 for φ < 0

(11)

The definition of φ was given in Subsection 3.2.

The nodal set of jump enriched nodes is defined in a slightly different way than

in standard XFEM. In order to justify the proposed approach some important

facts have to be considered. More specifically, the tip enrichment functions

used (Equation 10) are derived from the first term of the Williams expansion

and represent displacements in the vicinity of the crack tip. However, in the

general case, displacements around the crack tip consist of higher order terms

as well. This is especially true for the case where geometrical enrichment with

relatively large enrichment radii is used. Such higher order terms are also essen-

tial when computing T-stresses. In standard XFEM those higher order terms

can be represented by the FE part of the approximation, in addition since the

13
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tip enrichment functions are weighted by the FE shape functions, some addi-

tional flexibility is added, allowing the method to approximate higher order

terms by spatially adjusting the coefficients of the enrichment functions. In

the proposed method, higher order terms can only be approximated by the

FE part of the approximation, since no spatial variation of the tip enrichment

function coefficients is allowed in the plane normal to the crack front due to

the fact that all the coefficients (dofs) premultiplying the enrichment functions

vary only in the direction of the crack front. As a result, in elements which

contain the crack surfaces, displacement jumps caused by higher order terms

can not be represented. In other words, in elements that are tip enriched and

contain the crack surfaces, crack opening displacements can only assume the

form imposed by the tip enrichment terms.

The above situation has a negative impact on accuracy, and in order to remedy

this issue we introduce a special enrichment strategy which consists in using

both tip and jump enrichment functions for elements that contain the crack

and lie inside the area of enrichment (Figure 1). By employing this strategy,

crack opening displacements caused by higher order terms can be represented

in tip elements through jump enrichment functions whose weights are allowed

to vary spatially.

The aforementioned difficulties and associated improvements obtained by the

proposed solution will be demonstrated through a numerical example in Sec-

tion 4.
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3.5 Point-wise matching

The basic idea behind point-wise matching, which lies in directly matching

displacements between tip and jump enriched or tip enriched and regular

elements in order to avoid errors in blending elements, is retained in this

work. The implementation however is adapted to the specific demands of the

proposed approach.

3.5.1 Tip and Regular Elements

Firstly, displacement approximations of regular and tip enriched elements are

considered:

ur (x)=
∑

I

NI (x)uI +
∑

J

NJ (x) aJ (12a)

ut (x)=
∑

I

NI (x)uI +
∑

K

N
g
K (x)

∑

j

Fj (x) cKj (12b)

where NI are FE shape functions, uI are standard FE dofs (nodal displace-

ments) and aJ are additional parameters to be determined. Indices I and J

vary over the set of nodes that are common between tip enriched and regular

elements, while index K refers to the nodes of the superimposed mesh.

Subsequently, displacements are matched by imposing the condition 1 :

1 Note that this procedure also removes completely blending errors

[27,28,29,30,31,32].
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Tip enriched element Regular element

1u

2u

1a

2a
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2u

Kjc)2x(jFj

∑
K
g

NK

∑

Kjc)1x(jFj

∑
K
g

NK

∑

Fig. 3. Displacements along the edges of tip enriched and regular elements.

ur (x) = ut (x) (13)

at nodal points that are common between tip enriched and regular elements.

From the above constraint, the parameters ai are determined:

aI =
∑

k

N
g
K(XI)

∑

j

Fj(XI)cKj (14)

where Fj(XI) are the tip enrichment functions evaluated at nodal point XI .

The above procedure is illustrated in Figure 2 where the displacements of a

common edge between a tip enriched and a regular element are depicted.

From the above, it should be clear that parameters aI do not correspond to

any additional dofs since they are expressed in terms of the tip dofs cKj. Thus

Equation 14 can be reformulated as:

aI =
∑

K

∑

j

T t−r
IKjcKj (15)
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∑
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∑
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∑
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g
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∑
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∑
K
g

NK

∑

Fig. 4. Displacements along the edges of tip and jump enriched elements.

where T t−r
IKj are the components of a matrix correlating the two sets of param-

eters.

3.5.2 Tip and Jump Elements

Throughout this work shifted jump enrichment functions are used which as-

sume a value of zero at nodal points. As a result, point-wise patching has to

be adapted accordingly. More precisely, displacements for the jump and tip

enriched elements are (Figure 3):

uj (x)=
∑

I

NI (x)uI +
∑

J

NJ (x) aJ +
∑

K

NK (x) (H (x)−HK)bK +

+
∑

L

NL (x) (H (x)−HL)b
t
L , (16a)

ut (x)=
∑

I

NI (x)uI +
∑

J

NJ (x) (H (x)−HJ)bJ +

+
∑

K

N
g
K (x)

∑

j

Fj (x) cKj (16b)

where bK are jump dofs, bt
L are additional parameters to be determined, H
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is the Heaviside function, HK is the jump enrichment function evaluated at

node K.

As already mentioned, tip enriched elements that contain the crack are also

jump enriched. Moreover, parameters bt
I hold a similar role to parameters aI

and have to be determined. One possibility would be to treat those parameters

as additional dofs and let their values be determined as part of the solution.

However, our experience shows that this leads to a reduced accuracy. An

alternative procedure is introduced where those parameters are obtained in

terms of the tip dofs by imposing additional constraints at points located at

elements edges or faces (for 3D elements).

The point-wise matching condition assumes the form:

uj (x) = ut (x) (17)

at selected points in the domain. By evaluating the above condition at nodal

points parameters aI are obtained as in Equation 14. By evaluating the con-

dition at the additional points, parameters bt
I are obtained:

(H(Xl)−HI)b
t
I =

∑

k

N
g
K(Xl)

∑

j

Fj(Xl)cKj −
∑

I

NI(Xl)aI (18)

where Fj(Xl) are the tip enrichment functions evaluated at the additional

points Xl and H(Xl) are the jump enrichment functions evaluated at the

18
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additional points Xl.

It should be noted that Equation 18 represents a linear system of equations.

Nevertheless, due to the properties of shifted jump enrichment functions, the

equations are decoupled in most cases.

In a similar fashion to Equation 14 and by taking into account Equation 15,

Equation 18 can be reformulated as:

bt
I =

∑

k

∑

j

T
t−j
IKjcKj (19)

where T t−r
IKj are the components of a matrix which comes from the solution of

Equation 18.

An important step in the whole procedure is the selection of points where the

additional condition is applied. The basic restriction that applies in the selec-

tion of those points is imposed by the fact that shifted enrichment functions

vanish on one side of the crack and as a result the corresponding points have

to be selected on the opposite side in order to prevent the coefficient matrix

of Equation 18 from being singular.

In this work, the points for the additional constraint are chosen to be the

points where the two surfaces of the crack intersect element edges or faces.

In order to locate those points, for each edge where the additional condition

has to be applied, the point where the first level set assumes a value of zero

19
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jump node

jump element tip element

tip node

crack tip

1 2 3

4 5 6

a

b

points

point-wise matching

Fig. 5. Selection of points for the imposition of the additional point-wise matching

condition in quadrilateral elements. The additional condition is imposed at points

a and b.

is initially located. Subsequently, this point is moved by a small increment

towards either side of the crack. It should be noted that the size of this in-

crement has negligible effect in the accuracy and/or behavior of the method.

In our numerical experiments a value of 10−8 in the isoparametric coordinate

system was used.

This selection procedure is illustrated in Figure 4 for the 2D case, where

point-wise matching is taking place in the edge defined by nodes 2 and 5. The

points selected are points a and b where parameters bt
2 and bt

5 corresponding

to nodes 2 and 5 are defined respectively.

For the 3D case the selection of points is somehow more involved due to the

complex geometry. For linear hexahedral elements, which are used in this work,

point-wise matching can take place at an edge, a face, several faces or edges

and combinations of faces and edges as illustrated in Figure 5.
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c) Point-wise matching at several faces d) Point-wise matching at several faces
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matching
point-wise

Fig. 6. Selection of points for the imposition of the additional point-wise matching

condition in a hexahedral element for four different cases. The additional condition

is imposed at points a-f.

The selection of points, which is also demonstrated in Figure 5 is performed in

a similar way as for the 2D case. An additional requirement is that in the case

where point-wise matching takes place in several faces (Figure 5 (c) and (d)),

the selected points must coincide at edges that are common in those faces.

A case of special interest is the one of Figure 5 (d). In particular, at point f

which corresponds to node 6, the enrichment functions of nodes 3 and 5 do

not vanish and as a result the system of Equation 18 is no longer decoupled

for face 2-3-6-5.

The situation depicted in Figure 6 is also particularly significant. In this case,
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Fig. 7. Special case for the selection of points for the additional point-wise matching

condition.

point-wise matching would take place at the edges defined by nodes 3, 4 and

4, 7. However, the edge defined by nodes 3 and 4 does not belong to a tip

enriched element and as a result evaluating the tip enrichment functions for

a point on that edge would lead to errors. In order to avoid these errors, the

values of the parameters bt
4 obtained from edge 4-7 should be also used for

edge 3-4. Of course, similar situations occur also in the 3D case.

In order to implement the procedure described above, all elements where point-

wise matching occurs, should be identified and looped over prior to the assem-

bly of the stiffness matrix and wherever possible the values of the parameters

bt
i should be computed and stored. This way, the parameters bt

i can be com-

puted for every node using the correct element edges or faces. Moreover, the

whole procedure is computationally inexpensive.
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3.6 Integral matching

The proposed method is intended to be used both with geometrical and topo-

logical enrichment. In the latter case, for the P1 (linear) elements used in the

present work, a loss of accuracy is observed, which is more pronounced for

mode I loading. This can attributed to the geometry of the deformation and

more specifically to the displacement jump between regular and tip enriched

elements. This displacement jump also occurs for mode II crack loading, how-

ever in that case it can be considered to vanish in a weak (integral) sense, as

illustrated in Figure 8 , and as a result the loss of accuracy is smaller.

One possible solution to the problem is the addition of one layer of enriched

elements around the crack tip/front. An alternative solution is proposed here

which consists of the addition of hierarchical blending functions. Those func-

tions are added to elements where point-wise matching occurs and serve the

purpose of eliminating the displacement jump in a weak sense.

For linear quadrilateral elements those functions assume the form:

Nh (ξ1, ξ2) =
(1− |ξ1|) (1 + ξ2)

2
(20)

where ξ1 and ξ2 are the element’s isoparametric coordinates. Variables ξ1 and

ξ2 in the the above equation as well as their signs change depending on the

side on which the blending functions are added. For 3D brick elements those
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Fig. 8. a) Displacement jump along element edges. b) Hierarchical blending func-

tions.
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Fig. 9. a) Displacement jump along element edges. b) Displacements along an ele-

ment edge. It can be seen that gaps as well as overlaps occur which result in the

discontinuity almost vanishing in a weak sense.

functions assume a similar form.

Adding to the approximation the blending functions, displacements along the
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edges of regular and jump enriched elements take the form:

ur (ξ1, ξ2)=
∑

I

NI (ξ1, ξ2)uI +
∑

J

NJ (ξ1, ξ2) aJ +Nh (ξ1, ξ2) a
h (21a)

ut (ξ1, ξ2)=
∑

I

NI (ξ1, ξ2)uI +
∑

K

N
g
K (x)

∑

j

Fj (x) cKj (21b)

where ah are the coefficients of the blending functions.

Those coefficients could be obtained by imposing a point-wise matching condi-

tion in the midpoints of element edges which is similar to the approach used in

previous subsections. It was observed however that an increased accuracy can

be obtained in the general 3D case by applying an integral matching condition

of the form:

∫

S
(ur − ut) dS = 0 (22)

where S is the element edge length.

This approach shares some similarities with the work of Chanine et al. [47].

Nonetheless, in the present case integral matching is only used for the addi-

tional blending functions and nodal displacements are matched using point-

wise matching.

In a similar fashion as in the previous subsections, coefficients ah can be ob-

tained as functions of the tip dofs:
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Fig. 10. Imposition of integral matching condition. Integral matching takes place

along edges 1 − 11. The coefficients used for integral matching would be a
h
1 − a

h
11,

where the indices refer to edges 1− 11.

ah
i =

∑

K

∑

j

T h
iKjcKj (23)

In the above relation, index i refers to edges and not nodes (Figure 9).

In the general 3D case additional functions could be added to match dis-

placements along faces as well. In the present implementation however only

matching along edges was implemented.

For cases where the crack tip/front is in the close vicinity of element nodes,

the method’s accuracy decreases despite the use of those functions. In those

cases neighboring elements should be tip enriched as well in order to prevent

this loss of accuracy.
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3.7 Displacement approximation

Summarizing all the above, the displacement approximation for the whole

domain can be formulated as:

u (x)=
∑

I∈N

NI (x)uI +
∑

J∈N j

NJ (x) (H (x)−HJ)bJ +

+
∑

K∈N s

N
g
K (x)

∑

j

Fj (x) cKj + upm (x) + uim (x) (24a)

upm (x)=
∑

I∈N t1

NI (x)
∑

K

∑

j

T t−r
IKjcKj +

+
∑

J∈N t2

NJ (x) (H (x)−HJ)
∑

K

∑

j

T
t−j
IKjcKj (24b)

uim (x)=
∑

I∈Nh

Nh
I (x)

∑

K

∑

j

T h
IKjcKj (24c)

The sets mentioned in the above equation are defined as follows:

N is the set of all nodes in the FE mesh.

N j is the set of jump enriched nodes. This set includes all nodes whose

shape function support is divided in two by the crack. This definition

does not change when geometrical enrichment is used as discussed in Sub-

section 3.4.

N s is the set of superimposed nodes. This set does not refer to nodes of the

FE mesh but to nodes of the superimposed mesh which will be described

in the next section.

N t1 is the set of transition nodes between tip and regular and jump elements.

N t2 is the set of transition nodes between tip and jump elements.

N h is the set of edges where the blending functions are added.
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3.8 Definition of the Front Elements

In this subsection, the definition of the superimposed mesh and the corre-

sponding shape functions N g
K mentioned in Subsection 3.3 are given.

3.8.1 Approximation along the crack front

The superimposed mesh introduced in this work serves the purpose of provid-

ing a basis with which the singular enrichment functions will be weighted. The

desired properties for this basis are that it should satisfy the partition of unity

property, and additionally that it should allow spatial variation only along the

direction of the crack front. Those requirements can be fulfilled by elements

that share properties of both one-dimensional and three-dimensional elements.

Those elements are one-dimensional in the sense that their shape functions al-

low variation only along one dimension and are defined by two nodes (more if

higher order elements are used), and are three-dimensional in the sense that

their shape functions are defined in a three-dimensional domain and as a result

additional information other than their nodal coordinates is required for their

definition. An alternative way to view those elements, would be as 3D brick

elements with their nodes constrained in a way such that variation along only

one dimension is allowed.
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A concept which is very similar to the superimposed mesh used in this work,

is the analytical patch and the corresponding nodes and elements used in the

work of Langlois et al.[52]. The method also shares some similarities with the

s-finite element method [53], it differs however from both methods since in

the present method the superimposed mesh is only used to provide a basis for

weighting the singular enrichment functions. For this reason the superimposed

elements have no particular physical meaning other than that of providing a

means to introduce spatial variation of the enrichment functions.

For the definition of the superimposed mesh, a set of points that lie on the

crack front have to be identified. The appropriate thickness of the front ele-

ments has to be determined depending on the variability of the SIFs along the

front.

As far as the identification of the points on the crack front is concerned, the

location of such points is usually required also for the calculation of SIFs.

Moreover, the use of a hybrid crack representation [50] would further facili-

tate the whole procedure since this hybrid approach consists of meshing the

crack and as a result the location and connectivity of the points required for

meshing the crack front would be already available. Of course, a more dense

discretization of the crack front might be necessary, in which case some refine-

ment would be needed.

In the present work, only linear elements were implemented for meshing of the
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Fig. 11. a)Crack front discretization for open crack fronts. b) Vectors associated

with front elements

crack front. Several alternatives are possible for the definition of front element

boundaries. In the next subsections two approaches will be presented which

are best suited for open and closed crack fronts respectively. Moreover, for

both approaches continuous numbering of the front nodes will be assumed.

3.8.1.1 Open crack fronts Elements are defined by two consecutive nodes

and element boundaries are defined in the following way (see also Figure 10):

• For every element a unit vector ei is defined parallel to the direction of

the line connecting the two nodes belonging to the element: ei =
xi+1−xi

|xi+1−xi|
.

• For every nodal point i a unit vector ni is defined as the mean of the two

vectors corresponding to the elements adjacent to the node: ni =
ei+ei−1

|ei+ei−1|
.

• Additionally, a plane is defined that passes through the node and is nor-
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boundary
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Fig. 12. Volume corresponding to two consecutive front elements. Different element

colors correspond to different front elements.

mal to the vector ni corresponding to the node: ni · (x0 − xi) = 0.

• The volume corresponding to the element is defined by the planes cor-

responding to its nodes and the tip enriched elements around the crack

front. The geometry of front elements is illustrated in Figure 10 (a) and

in Figure 11 where part of a curved crack front is shown along with the

tip enriched element and the corresponding front element volumes.

In order to deal with cases were the crack intersects with free surfaces, the

first and/or last node can be moved in the direction of the crack front so that

all finite elements within the radius of interest lie inside the first and/or last

superimposed element.

3.8.1.2 Closed crack fronts For closed crack fronts the above approach

might lead to certain difficulties. More specifically, if the elliptical crack of

Figure 12 is considered, the element boundaries defined by the above approach
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a) b)

cx

Fig. 13. a) Application of the method used for open crack fronts to closed crack

fronts, it can be seen that front elements overlap. b) Method used for closed crack

fronts, it can be seen that ovelaps are avoided.

1−i

i

in

+1in

+1cin

cin

ie

cx

Fig. 14. Front element boundadries for closed crack fronts.

and depicted in Figure 12 (a) overlap which could cause problems in the

definition of front element boundaries if the area used for tip enrichment is

large enough to include the point where this overlapping occurs. In order to

avoid similar situations, a different approach is adopted according to which,

element boundaries are defined by using an additional point (xc) in the interior

of the closed curve defined by the crack front as in Figure 12 (b). For plane

cracks this point lies on the crack surface.

In more detail (see also Figure 13):
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• Vectors ei are defined for every element.

• A point xc in the interior of the crack front is defined as: xc =

n
∑

i=1

xc

n
.

• For every nodal point i, a vector nci joining that point to the internal

point xc is defined: nci = xc − xi.

• Vectors nni normal to the plane defined by vectors ei and nci are defined

as: nni = ei × nci.

• Vectors ni are defined as: ni =
nti×nci

|nti×nci|
.

• Planes normal to the vectors ni are defined: ni · (x0 − xi) = 0.

• Element volumes are defined by the planes corresponding to their nodes

as for the open crack front case.

As already mentioned, superimposed elements have no particular physical

meaning, nevertheless it is important to define their boundaries so as to be able

to relate every enriched element to its corresponding superimposed elements.

The problem described for closed cracks can also occur for open cracks or

parts of open cracks where the curvature of the crack front is large or if sharp

corners are present. In that case the closed crack front approach should be

used. The definition of point xc however, will have to be adjusted accordingly.

3.8.2 Front element parameter

In order to facilitate the interaction of the XFEM and crack front meshes, one

additional function, similar to the level sets, is defined which varies along the
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Fig. 15. Iso lines of the front element parameter.

direction of the crack front. This parameter takes integer values on the front

nodes and the planes defined by front nodes and varies linearly in-between

(Figure 14). Since front nodes are numbered continuously, the values of the

parameter at the nodes should coincide with node numbers.

For a point x0 this parameter is evaluated as follows:

For all front elements the plane equations corresponding to their nodes are

evaluated:

fi(x0)=ni · (x0 − xi) (25a)

fi+1(x0)=ni+1 · (x0 − xi+1) (25b)

• If fi < 0 or fi+1 > 0 the point lies outside the element volume and the

next element is checked.

• If fi = 0 or fi+1 = 0 the point lies on the plane corresponding to node i

or i + 1 respectively and it is assigned a front parameter value η = i or

η = i+ 1.

• If fi > 0 and fi+1 < 0 the point lies inside the element.

34

Page 34 of 81

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



P
eer R

eview
 O

n
ly

1x

2x
0x

ie

in

+1in

1t

2t

ie

Fig. 16. Front element parameter evaluation.

If the point is found to lie inside a certain element (Figure 15), the integer

part of the front parameter is equal to the number of the first element node

ηi = i. In order to evaluate the fractional part of the parameter a line is formed

which passes from point x0 and is parallel to vector ei. Points on this line have

coordinates:

x = x0 + tei t ∈ R (26)

where t is the line parameter.

At the point where the line intersects the planes defined by element nodes,

parameter t takes the values:

t1 =
ni · (x0 − xi)

ni · ei
(27a)

t2 =
ni+1 · (x0 − xi+1)

ni+1 · ei
(27b)
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The coordinates of those points are:

x1 =x0 + t1ei (28a)

x2 =x0 + t2ei (28b)

The fractional part of the front parameter for point x0 is:

ηf =
|x10|
|x12|

(29)

where:

x10 = x0 − x1 (30a)

x12 = x2 − x1 (30b)

Finally the value of the front parameter is writes:

η = ηi + ηf (31)

Parameter η is evaluated for every tip enriched node.

3.8.3 Front element shape functions

Shape functions of the linear front elements used in this work are linear 1D

shape functions:

Ng (ξ) =

[

1− ξ

2

1 + ξ

2

]

(32)
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Fig. 17. Front element parameter for shape function evaluation.

where ξ is the local coordinate of the superimposed element.

The coordinate ξ is defined in a similar way to the fractional part of parameter

η. The only difference being that while ηf assumes values form 0 to 1, ξ assumes

values from -1 to 1 as illustrated in Figure 16.

The evaluation of ξ is almost identical to the evaluation of ηf :

ξ =
2 x12 · xm0

|x12|2
(33)

where

x12 =x2 − x1 (34a)

xm0 =x0 − xm (34b)

xm =
x1 + x2

2
(34c)

During the assembly procedure, the exact values of the ξ coordinate are used
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rather than their FE approximation. This means that the above procedure has

to be repeated for every Gauss point of every enriched element. In order to

simplify the procedure, the nodal values of parameter η can be used to restrict

the range of front elements that are checked for each Gauss point.

For the evaluation of shape function derivatives the derivatives of ξ with re-

spect to the spatial coordinates are also needed. These can be calculated from

the derivatives of the expressions given above. Further details about the as-

sembly procedure used for the front elements are given in AppendixA.

4 Numerical examples

In this section numerical examples demonstrating the accuracy, convergence

properties and computational cost of the proposed methodology are presented.

4.1 Implementation details

Some details regarding numerical integration and SIF evaluation will be given

before presenting the benchmark problems solved.
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4.1.1 Numerical integration

In XFEM in general and in the present methodology in particular, integration

of enriched elements is of vital importance if optimal convergence and high

accuracy are to be achieved. For elements containing the crack front, the ap-

proach used herein consists of combining the element partitioning algorithm

proposed in Loehnert et al. [32] with a transformation as the one used in

Minnebo [37] in order to integrate the singular tip enrichment functions as

accurately as possible. For tip enriched elements that do not contain the crack

front, a large number of Gauss points (10 × 10 × 10) was used and for jump

enriched elements a simple element partitioning scheme as in Moës et al. [16]

For the 2D examples, a similar approach was used utilizing almost polar in-

tegration ([23,24]) for elements containing the crack tip, a large number of

Gauss points (20× 20) for the rest of the tip elements and element partition-

ing for jump elements. Two attractive alternatives for numerical integration

would be the methods of Natarajan et al. [54,36] and Chevaugeon et al. [38],

however for the 3D case an extension of both methods would be required.

An additional difficulty that arises in the present work is the treatment of mesh

interactions. More specifically, since enriched elements can be intersected by

several front elements, those intersections should be appropriately taken into

account by the numerical integration scheme in order to accurately integrate

the enrichment functions and the front element shape functions. In the present

work, the integration scheme described was used and element intersections
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were ignored. This simplified strategy, which is similar to the one used in the

s-finite element method [53], could introduce errors, thus there might be some

room for improvement for the results presented in Section 4.

4.1.2 Integration of crack surface tractions

The contribution of the crack surface tractions in the final system of equations

is obtained by substituting the displacement approximation of Equation 24 in

the third integral of Equation 7. This integral is evaluated in an element wise

fashion by locating the points where the crack faces and front intersect ele-

ments. The possible numbers of points are 3, 4 and 5 and the resulting surfaces

to be integrated, which are assumed to be flat, are triangles, quadrilaterals and

pentagons which are in turn divided into triangles. Those surfaces are moved

by a negative and a positive increment along the direction of the level set

gradient that is normal to the crack surface in order to obtain the upper

and lower crack faces Γt
c+ and Γt

c−. A large number of Gauss points (20× 20

for quadrilaterals and 175 for triangles) was used to accurately integrate the

surface integral.

4.1.3 Stress intensity factor estimation

For the evaluation of the SIFs an interaction integral was used. An additional

term was added as in Walters et al. [55] in order to account for surface tractions

applied at the crack faces:
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I =−
∫

V
qi,j

(

ǫauxkl δij − σaux
kj uk,i − σkju

aux
k,i

)

dV

−
∫

V
qi
(

σaux
kl,i ǫklδij − σklu

aux
k,li − σaux

kl,l uk,i
)

dV −
∫

Γt
c+∪Γt

c−

(

tju
aux
j,i

)

qidΓ (35)

where ǫaux, σaux and uaux are the auxiliary stress, strain and displacement fields

respectively which are defined as in Moës et al. [16] and tj are the applied

surface tractions. The additional term is integrated over the crack faces Γt
c+

and Γt
c−.

Tensors in the above equation refer to a basis defined by the level set gradients

as in Moës et al. [16]

4.1.3.1 Three dimensional domain integral For the 3D case the vol-

ume integrals of Equation 35 are evaluated in a parallelepiped mesh around

each point of interest as in Moës et al. [16] and Sukumar et al [15]. Function

q is also defined as in Sukumar et al [15].

Special attention has to be given to the evaluation of the third integral of

Equation 35. In Walters et al. [55] a procedure is introduced to accurately

integrate this term, in the present case however it is impossible to implement

this procedure as the FE mesh does not conform to the crack geometry. The

procedure used instead involves the detection of the points where the crack

faces and front intersect elements of the parallelepiped mesh used in a simi-

lar manner to Subsection 4.1.2. The crack surfaces obtained this way are an
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approximation of the FE surfaces in the SIF mesh. In order to make this ap-

proximation as accurate as possible, a large number of elements (8× 8× 8) is

used for the SIF mesh. Moreover, since the surface integrals are important for

the overall accuracy of the SIFs a large number of integration points, equal

to the one used for the evaluation of the contribution of surface tractions, is

employed.

The above procedure is both computationally expensive and of limited accu-

racy. Nevertheless, it is only used to provide an estimate of the accuracy of

the SIFs computed by the proposed method. In the case where no surface

tractions were present, a smaller number of elements could be used for the

SIF mesh which would make the procedure faster.

4.1.3.2 Two dimensional domain integral For the 2D case the inter-

action integral is evaluated in a ring of elements around the crack tip and

function q assumes a value of unity for nodes within a predefined distance

from the crack tip and a value of zero for the rest of the nodes as in Moës et

al. [14].

In addition, no surface tractions were considered so the third integral of Equa-

tion (35) vanishes. It should be noted however that in the 2D case a procedure

similar to the one proposed by Walters et al. [55] would be possible to imple-

ment making the evaluation of this integral more accurate.
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4.2 Benchmark problems

The energy and L2 error norms used throughout this subsection are defined as

follows, where it is noted that vectors and tensors are written in matrix form:

E=

(
∫

Ω(ǫ− ǫ
h)TD(ǫ− ǫ

h) dΩ
∫

Ω ǫTDǫ dΩ

)1/2

(36a)

L2 =

(
∫

Ω(u− u
h)T (u− u

h) dΩ
∫

Ω uTu dΩ

)1/2

(36b)

where ǫ and u are the strains and displacements obtained from the analytical

solution and ǫ
h and u

h are the corresponding numerically obtained values.

The two dimensional version of the method was implemented in Matlab while

for the three dimensional version a C++ code was created utilizing the Gmm++

library [56] for linear algebra operations. For the solution of the systems

of equations in the 3D examples the conjugate gradient (CG) solver of the

Gmm++ package was employed in combination with a diagonal precondi-

tioner. The convergence tolerance for the solver was set to 10−8.

4.2.1 2D convergence study

The first problem considered in this section is also investigated in several other

works and is usually employed in order to examine the convergence behavior

of the numerous variations of the XFEM. It consists of an L × L square

with an edge crack of length a, as depicted in Figure 17. The displacements
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Fig. 18. Edge crack problem geometry and discretization. The boundary conditions

are those provided by the Griffith crack problem so as to mimic the infinity of the

domain. The dimensions of the problem are L = 1 unit, a = 0.5 units.

corresponding to the first term of the Williams expansion are imposed to the

square as (Dirichlet) boundary conditions. The dimensions of the problem are

taken as L = 1 unit, a = 0.5 units and the material parameters are E = 100

units and ν = 0.0.

The domain is meshed using n × n linear quadrilateral elements where n =

11, 21, 41, 61, 81, 101. The problem is solved using both topological and geo-

metrical enrichment. In the latter case an enrichment radius re = 0.12 units

is used, this value was chosen so that for the 21 × 21 mesh a full layer of

enriched elements is added. For this example the jump enrichment strategy of

Subsection 3.4 is not used since displacements only consist of the first term of

the Williams expansion.
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Acronym Description

FEM The FE part of the approximation

XFEM Standard XFEM

XFEMpm1 XFEM using dof gathering and point-wise matching

XFEMpm2 XFEMpm1 with the additional condition of subsection 3.5.2

GE-XFEM XFEMpm2 with integral matching (Global Enrichment XFEM)

Table 1

List of acronyms used for the 2D convergence study.
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e
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Fig. 19. Edge crack problem. L2 and energy (E) norms versus the number of el-

ements per side (n) for topological enrichment (re = 0.00 units) for modes I and

II. The crack length is a = 0.5 units and the size of the domain is L = 1 unit.

A description of the different methods mentioned in the figure is given in Table 1,

while the corresponding convergence rates are given in Table 2.

The problem is solved for several variants of the method which are described

in Table 1. For the second case (XFEMpm1) the additional condition of Sub-

section 3.5.2 is not imposed and the jump dofs of elements in contact to tip

elements are treated as additional unknowns.
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Fig. 20. Edge crack problem. L2 and energy norms versus the number of elements

per side (n) for geometrical enrichment with an enrichment radius re = 0.12 units

for modes I and II. The crack length is a = 0.5 units and the size of the domain is

L = 1 unit. A description of the different methods mentioned in the figure is given

in Table 1, while the corresponding convergence rates are given in Table 2.

4.2.1.1 L2 and energy norms In Figures 18 and 19 the L2 and Energy

error norms are depicted for Mode I and II fracture, for topological and ge-

ometrical enrichment for four cases. In Table 2 the convergence rates for all

the above cases are given.

It can be noted from Figures 18 and 19 that the additional point-wise matching

condition significantly improves results for Mode II cracks. More specifically,

the application of the additional constraint decreases errors by more than 75%

for the L2 norm and more than 50% for the energy norm. Moreover, integral

matching mostly influences Mode I cracks when topological enrichment is used

while it improves results only slightly for the rest of the cases. The final curves

achieved (GE-XFEM) provide significant improvement compared to standard

XFEM since for all the cases examined the errors for the proposed method
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re = 0.00 re = 0.12

Mode I Mode II Mode I Mode II

XFEM E 0.491 0.493 1.030 0.982

XFEM L2 0.908 0.928 1.980 1.955

XFEMpm1 E 0.483 0.489 1.243 1.211

XFEMpm1 L2 1.044 0.984 2.355 1.773

XFEMpm2 E 0.483 0.479 1.245 1.179

XFEMpm2 L2 1.022 1.414 2.311 2.151

GE-XFEM E 0.477 0.476 1.156 1.140

GE-XFEM L2 1.326 1.446 2.086 2.100

Table 2

Edge crack problem. Convergence rates for the curves of Figures 18 and 19 for

the energy (E) and L2 norms for topological (re = 0.00 units) and geometrical

(re = 0.12 units) enrichment. Note the superconvergence property of the global

enrichment approach in the L2 norm. The method is slightly suboptimal in the

energy norm.

were reduced by more than 50% for the L2 norm and 25% for the energy norm.

Moreover, it is interesting to note that for all the cases considered, the global

enrichment approach provides similar convergence rates and lower errors than

standard XFEM while also reducing the number of enriched dofs. We will see

in the following that this advantage is compounded by the fact solution times

are reduced considerably thanks to the improved conditioning of the system

matrices.
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Fig. 21. Edge crack problem. Mode I and II stress intensity factors predicted by

XFEM and GE-XFEM versus the number of elements per side (n) for topological

(re = 0.00 units) and geometrical (re = 0.12 units) enrichment. The crack length is

a = 0.5 units and the size of the domain is L = 1 unit. The convergence rates for

all cases are given in Table 3.

r = 0.00 r = 0.12

Mode I Mode II Mode I Mode II

XFEM 1.071 1.005 2.195 2.021

GE-XFEM 0.759 1.246 2.545 2.029

Table 3

Edge crack problem. Convergence rates for the SIFs of Figure 20.

4.2.1.2 Stress Intensity Factors Stress intensity factors of the proposed

method and standard XFEM are compared in Figure 20, convergence rates for

all cases are given in Table 3. A radius rd = 0.15 is used for SIF evaluation.

In the results produced by the proposed method some fluctuations occur which

were also observed in Laborde et al. [23].Nevertheless, despite the fluctuations,

the accuracy is substantially improved and the convergence rates are similar

to standard XFEM. It should be noted that the convergence rates of the
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Fig. 22. Edge crack problem. Condition numbers of the system matrices produced

by XFEM and GE-XFEM versus the number of elements per side (n) for topological

(re = 0.00 units) and geometrical (re = 0.12 units) enrichment. The crack length is

a = 0.5 units and the size of the domain is L = 1 unit. Condition numbers of the

FE part of the approximation are also plotted for reference.

computed SIFs for this example are almost equal to the convergence rates

obtained for the displacements (L2 norm).

4.2.1.3 Conditioning In Figure 21 the condition numbers for standard

XFEM and the proposed method are illustrated. The condition numbers of the

FE part of the corresponding matrices are also plotted. The proposed method

performs significantly better than standard XFEM in every case. When topo-

logical enrichment is used condition numbers corresponding to the global en-

richment approach are one order of magnitude lower than standard XFEM

and increase in a similar rate, while for the geometrical enrichment case the

rate of increase is reduced by 4 times resulting in condition numbers several

orders of magnitude lower. Furthermore, when geometrical enrichment is used,
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condition numbers of the proposed method change only slightly compared to

topological enrichment, and for the cases considered are even smaller than the

ones corresponding to standard XFEM for the topological enrichment case.

4.2.2 3D convergence study

The accuracy and convergence properties of the proposed method for the

general 3D case are demonstrated through a novel benchmark problem. This

problem is based on the analytical solution for the problem of a penny crack

in an infinite solid subjected to uniform normal and shear loading [57]. Full

displacement and stress fields are available for this problem [57], which makes

possible the evaluation of L2 and energy error norms.

The displacement fields provided by the analytical solution are imposed as

constraints along the boundaries of the domain considered as in the 2D con-

vergence study. In addition, a uniform normal or shear load has to be applied

on the crack faces.

The proposed benchmark differs from the one used in 2D convergence studies

in several ways:

• Firstly, it includes the full solution for the whole crack, rather than only

the first term of the Williams expansion for a small part of the crack

around the crack front. Thus, the effects of higher order terms and most

importantly of the size of the enriched area in the accuracy of the various
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Fig. 23. Penny crack problem geometry and discretization. The boundary conditions

provided by the analytical solution are imposed along the boundaries of the domain.

Uniform normal and shear loads are applied to the crack surfaces. The dimensions

of the problem are Lx = Ly = 2Lz = 0.4 units and a = 0.1 unit.

methods can be investigated.

• Secondly, the proposed problem involves variation of the solution pa-

rameters (e.g. SIFs) across the length of the crack front. This feature is

important both for the general case where a three dimensional behavior

is preferable, and for the present case where the effectiveness of the su-

perimposed element approach needs to be studied.

• Furthermore, the crack front considered is curved which is the case in

practical applications ([18,19,20,21,22]).

For the above reasons, the proposed benchmark should provide a reliable

means of testing the accuracy of computational fracture methods in general,

and of the proposed method in particular.
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Acronym Description

XFEM Standard XFEM

GE-XFEM The proposed method (Global Enrichment XFEM)

GE-XFEM1 The proposed method without the enrichment strategy of subsection 3.4

Table 4

List of acronyms used for the 3D convergence study.

A parallelepiped domain is considered with dimensions Lx × Ly × Lz. with a

penny crack of radius a as in Figure 22. The dimensions of the problem were

set to Lx = Ly = 2Lz = 0.4 units and a = 0.1 unit. A uniform normal and a

uniform shear load of magnitude 1 are applied at the crack faces (mixed mode

loading). The material parameters used are E = 100 units and ν = 0.3.

The domain is meshed using several meshes consisting of nx × ny × nz hexa-

hedral elements where nx = ny = 2nz = n and n ∈ {21, 41, 61, 81, 101}.

The acronyms used for the different methods tested are described in Table 4.

4.2.2.1 L2 and energy norms In Figure 23 the influence of the crack

front mesh on the accuracy of the results is investigated for two different en-

richment radii (re = 0.00 and re = 0.02) and for a mesh consisting of 31×61×

61 elements. The crack front meshes used consist of nf = 4, 8, 16, 32, 64, 128 el-

ements. Despite the fact that the solution parameters vary significantly along

the crack front, the influence of the front mesh density is minimal. More pre-

cisely, for all the discretizations except the first two (4 and 8 front elements)
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Fig. 24. Penny crack problem. Influence of the crack front mesh density (nf is

the number of elements along the front) in the energy (E) and L2 norms for the

proposed method for topological (re = 0.00 units) and geometrical enrichment with

an enrichment radius re = 0.02 units. The radius of the crack is a = 0.1 units and

the size of the domain is Lx = Ly = 2Lz = 0.4 units. Results refer to a mesh

consisting of 31× 61× 61 elements.

the difference is less than 5% in the L2 norm. A possible explanation for the

above situation is the fact that the interactions of the two meshes are ignored

during numerical integration as mentioned in subsection 4.1.1, consequently

for a more accurate numerical integration scheme a different behavior could

occur. For the following examples 32 elements were used for the 11× 21× 21

and 21× 41× 41 meshes and 64 elements for the rest.

Next, the influence of the enrichment radius re on the accuracy of the results is

examined. As already mentioned in Subsection 3.4, standard XFEM compen-

sates for higher order terms by allowing spatial variation of the coefficients of

the enrichment functions. The proposed method does not allow any variation

in the plane normal to the crack front, as a result when larger enrichment radii
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Fig. 25. Penny crack problem. Influence of the enrichment radius (re) in the en-

ergy (E) and L2 norms for two variations of the proposed method described in

Table 4. The radius of the crack is a = 0.1 units and the size of the domain is

Lx = Ly = 2Lz = 0.4 units. Results refer to a mesh consisting of 31 × 61 × 61

elements. h is the mesh parameter.

are used a loss of accuracy occurs. The situation is improved by employing

the enrichment strategy of Subsection 3.4, however as the enrichment radii

and the layers of enriched elements around the crack front increase, some loss

of accuracy in the displacements is still observed. The situation is illustrated

in Figure 24 where L2 and energy norms are plotted against the enrichment

radius re divided by the mesh parameter h since it was observed that the loss

of accuracy occurs when a certain number of layers of enriched elements is

added, rather than at some fixed value of the enrichment radius. Figure 24

refers to the 31× 61× 61 mesh.

Energy and L2 norms are shown in Figures 25 and 26 for four different cases:

topological enrichment (re = 0.00), topological enrichment with a fixed num-
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Fig. 26. Penny crack problem. L2 and energy (E) norms versus the number of

elements along the largest sides (n) for topological enrichment (re = 0.00 units

and re = 2.2h) for mixed mode loading. The radius of the crack is a = 0.1 units

and the size of the domain is Lx = Ly = 2Lz = 0.4 units. A description of the

different methods mentioned in the figure is given in Table 4, while the corresponding

convergence rates are given in Table 5.
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Fig. 27. Penny crack problem. L2 and energy (E) norms versus the number of

elements along the largest sides (n) for geometrical enrichment with enrichment

radii re = 0.04 units and re = 0.04 units for mixed mode loading. The radius of the

crack is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4 units.

A description of the different methods mentioned in the figure is given in Table 4,

while the corresponding convergence rates are given in Table 5.
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re = 0.00 re = 2.2h re = 0.02 re = 0.04

XFEM E 0.492 0.686 0.911 1.015

XFEM L2 1.009 1.405 1.824 1.976

GE-XFEM1 E - - 1.016 0.706

GE-XFEM1 L2 - - 1.481 0.289

GE-XFEM E 0.558 0.850 1.057 0.988

GE-XFEM L2 1.535 1.594 1.753 1.448

Table 5

Penny crack problem. Convergence rates for the curves of Figures 25 and 26 for the

energy (E) and L2 norms for topological (re = 0.00 and re = 2.2h) and geometrical

(re = 0.02 units and re = 0.04 units) enrichment. It is observed that when the pro-

posed enrichment strategy is not used (GE-XFEM1) convergence rates deteriorate

significantly.

ber of layers of enriched elements (re = 2.2h) and geometrical enrichment with

enrichment radii re = 0.02 and re = 0.04, the respective convergence rates are

given in Table 5. For the second case the enrichment radius was set to the

value which yielded the best results in terms of displacements, this value was

obtained from Figure 24 where it is observed than when the enrichment ra-

dius becomes larger than the aforementioned value, the L2 error norm starts

to increase. It can be observed that the proposed method performs better than

standard XFEM for almost all cases. Additionally, the proposed enrichment

strategy substantially improves results, especially as the enrichment radius

used increases. However, it should be noted that the behavior observed for
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the larger enrichment radius (re = 0.04) will also occur for the smaller one

(re = 0.02) for denser meshes, where the enrichment radius is larger than the

“optimal” value observed (2.2h), leading to loss of accuracy. This behavior,

which affects mostly displacements, can be attributed to the lack of spatial

variability of the coefficients of the enrichment functions and can be regarded

as a drawback of the dof gathering approach. A possible solution would be

the introduction of some spatial variability to the tip enrichment functions

which would not deteriorate conditioning significantly. Such a solution would

be possible within the framework of the proposed method, nevertheless it will

not be considered since it would exceed the scope of the present work which is

mostly to provide a means to extend dof gathering to 3D fracture problems.

4.2.2.2 Stress Intensity Factors Stress intensity factors were computed

for several of the above cases. In Figures 27 and 28 errors in the SIFs are

illustrated as functions of the angle θ for two different meshes (21 × 41 × 41

and 41 × 81 × 81) for topological (re = 0.00) and geometrical (re = 0.02)

enrichment. Due to symmetry only the values for 0◦ ≤ θ ≤ 90◦ are presented.

A virtual extension domain of dimensions r1 = 3h, r2 = 3h, r3 = h was used

in the calculations.

It is observed that although the errors are quite small, it is not possible to

obtain a convergence behavior like thse of Subsection 4.2.1.2 for the 2D case.

More specifically, although errors decrease slightly with mesh refinement for

57

Page 57 of 81

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



P
eer R

eview
 O

n
ly

0 10 20 30 40 50 60 70 80 90
0

2%

4%

θ

K
I

0 10 20 30 40 50 60 70 80 90
0

3%

6%

θ

K
II

0 10 20 30 40 50 60 70 80 90
0

5%

10%

θ

K
II

I

 

 

0 10 20 30 40 50 60 70 80 90
0

1.5%

3%

θ

K
I

0 10 20 30 40 50 60 70 80 90
0

2%

4%

θ

K
II

0 10 20 30 40 50 60 70 80 90
0

4%

8%

θ

K
II

I

 

 

XFEM

GE−XFEM

r
e
=0.00 r

e
=0.02

Fig. 28. Penny crack problem. Comparison of the mode I, II and III stress intensity

factors predicted by XFEM and GE-XFEM for topological (re = 0.00 units) and

geometrical (re = 0.02 units) enrichment for the 21 × 41 × 41 mesh. The radius of

the crack is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4 units.

most points, this accuracy improvement is not comparable to that of the 2D

case. In addition, for some points along the crack front (for instance θ = 80◦

for Mode III) errors increase for finer meshes.

The above behavior can be associated to the interpolation and integration

errors introduced by the use of the SIF mesh, as discussed also in subsection

4.1.3.1. An additional cause could be the fact that in the evaluation of the

interaction integral, the curvature of the crack front is ignored [58]. It should

also be noticed that problems in the extraction of SIFs for the 3D case have

also been observed for standard finite elements [59].
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Fig. 29. Penny crack problem. Comparison of the mode I, II and III stress intensity

factors predicted by XFEM and GE-XFEM for topological (re = 0.00 units) and

geometrical (re = 0.02 units) enrichment for the 41 × 81 × 81 mesh. The radius of

the crack is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4 units.

Finally, although it is not possible to get an accurate estimate, the accuracy

of the SIFs predicted by the proposed method is similar to the one provided

by standard XFEM. A more accurate SIF evaluation procedure, which is the

subject of future work, however would provide better insight.

4.2.2.3 Conditioning In this section the conditioning of the system ma-

trices produced by the proposed method is tested and compared to standard

XFEM for the general 3D case. Instead of evaluating the condition numbers of

the system matrices, the number of iterations required by the solver to reach

the predefined tolerance (10−8) is used as an estimate, this approach has the
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Fig. 30. Penny crack problem. Influence of the crack front mesh density (nf is the

number of elements along the front) in the number of iterations required to solve the

system of equations produced by the proposed method for topological (re = 0.00

units) and geometrical enrichment with an enrichment radius re = 0.02 units. The

radius of the crack is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4

units. Results refer to a mesh consisting of 31× 61× 61 elements.

additional advantage of providing also a comparison of the time needed to

solve the resulting system of equation for each method since solution times

are dominated by the conjugate gradient iterations. It should be noted that

the following figures refer to the number iterations required by a conjugate

gradient solver with a diagonal preconditioner.

The number of iterations required for the 31×61×61 mesh for different num-

bers of front elements is given in Figure 29 in order to estimate the influence

of the front mesh density in conditioning. It can be noted that the number

of iterations required increases as the front mesh is refined when geometrical

enrichment is used but remains fairly unaffected for topological enrichment.
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Fig. 31. Penny crack problem. Number of iterations required to solve the system

of equations produced by XFEM and the proposed method versus the number of

elements along the largest sides (n) for three different enrichment radii: re = 0.00

units (topological enrichment), re = 0.02 units and re = 0.04 units (geometrical

enrichment). The radius of the crack is a = 0.1 units and the size of the domain is

Lx = Ly = 2Lz = 0.4 units. The proposed method reduces the required number of

iterations in every case.

In Figure 30 the number of iterations required by the CG solver for XFEM and

the proposed method for topological and geometrical enrichment is presented.

Again, the number of iterations required by the proposed method is signifi-

cantly reduced. In fact, for the smaller enrichment radius used (re = 0.02) the

number of iterations for the proposed method is even smaller than the one re-

quired for XFEM with topological enrichment. Another important fact is that

even for topological enrichment the proposed method requires a significantly

smaller number of iterations than XFEM. For example, in the 51× 101× 101

mesh, where the difference is the smallest, standard XFEM requires 573 iter-

ations versus 330 for the proposed method. In addition, for the larger enrich-
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Fig. 32. Penny crack problem. Comparison of the performance of the PCG solver

for XFEM and the proposed method. Results are shown for two different meshes

consisting of 21 × 41 × 41 and 41 × 81 × 81 elements. Both topological (re = 0.00

units) and geometrical enrichment (re = 0.02 units) are considered.

ment radius (re = 0.04) the systems produced by XFEM are almost unsolv-

able as they require more than 50,000 iterations for the two denser meshes

(41×81×81 and 51×101×101) while the proposed method converges after a

far smaller number of iterations (less than 1,500 for both cases). As far as the

rates of increase are concerned, the change in the number of front elements

used is probably the reason why the proposed method presents a larger rate

of increase for topological enrichment. For the two cases of geometrical enrich-

ment studied, the rates of increase are reduced by a factor of 2 compared to

standard XFEM.

As an additional means to assess the conditioning of the system matrices, the

error achieved by the solver after different iterations is calculated as in Menk

and Bordas [26] and presented in Figure 31 for topological and geometrical

enrichment and two different meshes. Again, it can be deduced that the CG
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Mesh FE dofs XFEM dofs XFEM dofs XFEM dofs GE-XFEM dofs

(re = 0.00) (re = 0.02) (re = 0.04)

11× 21× 21 17,424 2,232 2,232 5,856 696

21× 41× 41 116,424 5,376 11,904 42,288 1,920

31× 61× 61 369,024 9,456 37,752 137,280 4,464

41× 81× 81 847,224 14,424 84,696 320,664 7,512

51× 101× 101 1,623,024 20,376 162,528 620,184 11,544

Table 6

Penny crack problem. Comparison of the total number of enriched dofs added by

XFEM and the proposed method for topological (re = 0.00 units) and geometrical

enrichment(re = 0.02 units and re = 0.04 units). FE dofs is the number of regular

dofs. Note that for the proposed method the number of additional unknowns is

independent of the enrichment radius (re).

solver converges much faster for the proposed method in every case.

4.2.2.4 Number of enriched degrees of freedom For 2D problems

the number of additional unknowns is usually negligible compared to the to-

tal number of unknowns. For 3D problems however, the additional unknowns

associated to the enriched part of the approximation could significantly in-

crease the total number of degrees of freedom. For this reason the number of

enriched dofs added by the proposed method is considered in this section.

In Table 6 a comparison is made between the total number of enriched dofs

(both jump and tip) added by standard XFEM and the proposed approach
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for the cases examined in the previous subsections. In contrast to standard

XFEM, the number of additional unknowns for the global enrichment ap-

proach is completely independent of the enrichment radius. Additionally, the

total number of enriched dofs for the proposed method is reduced by 45%

to more than 98% depending on the mesh and enrichment radius. Finally,

and most important, the increase in the total number of unknowns for stan-

dard XFEM ranges from less than 1.5% to almost 40% while for the proposed

method this increase never exceeds a percentage of 4%. Thus the additional

cost and memory requirements are minimized by the global enrichment ap-

proach.

It should be noted that the dof numbers given above as well as the numbers

of iterations given in the previous subsections refer to the specific problem

examined and will vary for different problems depending on the size of the

crack and/or length of the crack front relative to the domain considered. Nev-

ertheless, although the rate decrease in the computational cost might change

for different problems, the proposed method will always be computationally

advantageous when compared to XFEM since the number of additional un-

knowns will always be smaller and unaffected by changes in the enrichment

radius and the conditioning of the system matrices will always be improved

as a result of dof gathering.
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5 Conclusions

A method was described which enables the use of global enrichment functions

for the extended finite element method. The method is almost always more

accurate than standard XFEM for a much reduced computational expense.

This efficiency is attributed to the use of much fewer enriched degrees of

freedom and a much improved conditioning of the system matrices.

The method relies on the principles introduced in the works of Laborde et.

al. [23] and Chanine et al. [47] in conjunction with a novel form of enrichment

in order to obtain some of the advantages of the two dimensional method in

the general three dimensional case. Although only plane cracks are treated

in the examples presented this work, the method is also applicable to more

general crack geometries.

A benchmark problem was proposed for testing numerical fracture methods

which enables the computation of L2 and energy error norms for the general 3D

case. The accuracy of the proposed global enrichment approach was tested and

compared to that of standard XFEM through the above benchmark problem.

From the above, it results that the proposed approach provides several advan-

tages. When topological enrichment is used it produces more accurate results

than the standard method requiring smaller solution times. Moreover, it makes
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possible the application of geometrical enrichment in 3d applications without

the use of special preconditioners, since it produces system matrices with sig-

nificantly improved conditioning compared to standard XFEM. In terms of

assembly time, the proposed method is also faster than standard XFEM be-

cause of the reduced number of shape functions evaluated for each element.

One possible drawback of the method is that, when the number of enriched

elements around the crack front exceeds a certain value, the error in the dis-

placements increases. Also, the method is not straightforward to implement in

existing XFEM codes. Finally, the additional point wise-matching constraints

introduced might be quite complex to implement for higher order elements.

Some directions of future work include:

• The improvement of the method in order to minimize the loss of accuracy

observed for large enrichment radii.

• The use of improved SIF evaluation [58] methods in order to better asses

the accuracy of the predicted SIFs.

• The combination of the method with goal oriented a posteriori error

estimators [42,43,44,45,46] and local front mesh and FE mesh refinement

in order to further improve the accuracy of the method.

• The application of the method to crack propagation problems through

the use of different crack representation methods [16,17,48,49,50].
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A Assembly of the front elements

Since the assembly of the stiffness matrices is done in an element wise manner

and finite elements will be usually intersected by several front elements, the

interactions between the two meshes have to be specified. In more detail, for

every tip enriched element the corresponding front elements and dofs, i.e. the

front elements that intersect this element and the dof numbers of their nodes,

have to be determined. This can be easily achieved by employing the front

parameter η.

Once the front parameter has been evaluated for every node of a given ele-

ment and since the numbering of front elements and nodes is continuous, it

is possible to associate elements of the two meshes. The association of the

two meshes is done employing the minimum and maximum value of the front

parameter for each element and a mapping between the nodal numbers of the

two meshes, these concepts are described next.

A.1 Minimum and maximum value of the front parameter

The minimum and maximum nodal values of the integer part of the front

parameter ηi are found (ηmin and ηmax) for a given element. All front elements

with numbers in the range between those two values are intersected by the

element. For closed cracks however, there might be cases where the above
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Fig. A.1. Front element parameter for shape function evaluation.

statement does not hold. In particular, if a closed crack front discretized with

n elements is considered as in Figure A.1, although elements in the vicinity of

the first front node will have a minimum value close to unity and a maximum

value close to n, front elements within that range will not be intersected.

Elements falling in the case described above can be detected by defining a

number nt < n and performing the following checks:

ηmin ≤nt (A.1a)

ηmax ≥n− nt (A.1b)

If those conditions are both true, the minimum and maximum values are

interchanged. The range of front element numbers intersected by the element

in this case is from ηmax to n and from 1 to ηmin.

The value of nt is an estimate of the maximum number of front elements that

could intersect any given finite element and should be defined by taking into
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account the relation between the mesh parameter and the length of the front

elements. For curved crack fronts, the value of the enrichment radius should

also affect the choice of that value.

For the case of Figure A.1, the above would mean that while the initial values

for element b would be ηmin = 2 and ηmax = n, those values would have to be

interchanged so that ηmin = n and ηmax = 2.

A.2 Local to global and global to local dof mapping

Using the above information, the number of enriched dofs for any tip enriched

element can be computed. In addition, mappings between local and global dof

numberings can be defined:

ig =



























il + ηmin − 1, il ≤ n− ηmin

il − n+ ηmin − 1, il > n− ηmin

(A.2a)

il =



























ig − ηmin + 1, ig ≥ ηmin

ig + n− ηmin + 1, ig < ηmin

(A.2b)

Applying the above relations to the case of Figure A.1 it can be easily found

that for element b, where ηmin = n and ηmax = 2, the first associated front

node (il = 1), is node n (ig = n). Conversely, front node 2 (ig = 2) is the 3rd

node (il = 3) associated with element b.
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A.3 Shape function evaluation and assembly procedure

Mappings of Equations A.2 are used in two occasions during the assembly

process.

Since every tip element is associated with several front elements, the enriched

parts of its shape functions are matrices of corresponding dimensions. Each

Gauss point however, is only associated with one front element, and the en-

riched shape functions evaluated at that point are matrices with dimensions

corresponding to two front nodes. In order to place the enriched shape func-

tions of every Gauss point in the correct position of the matrix corresponding

to the whole element, the integer part of the front parameter is evaluated and

the global to local mapping is used to obtain the correct location.

During the assembly of element matrices, the global front node numbers as-

sociated with every element have to be known. For this purpose, the local to

global mapping is employed.

The shape function evaluation and assembly procedure for the enriched part

of the stiffness matrix for a given element can be summarized in the following

steps:

(1) Minimum and maximum value of front parameter.

The minimum and maximum values of the front parameter are found
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as described in subsection A.1

(2) Number of enriched dofs.

Using the minimum and maximum values of the front parameter, the

number of enriched dofs for the given element is found.

(3) Shape function and stiffness matrix size.

Using the number of enriched dofs the size of the shape functions and

of the enriched part of the stiffness matrix are found.

(4) Numerical integration/Shape function evaluation.

During the numerical integration the enriched shape functions are eval-

uated for each Gauss point. The global to local mapping is employed to

place individual Gauss point shape functions in the correct location in

the element shape function.

(5) Assembly.

Once the stiffness of an individual element is computed, the correspond-

ing global dof numbers can be obtained using the local to global mapping.
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Finally, as far as computational effort is concerned, since in the majority of

cases a tip enriched finite element should not be associated with more than

three or four front nodes and since every integration point is only associated

with two nodes, the number of shape function evaluations for each Gauss point

is significantly reduced compared to standard XFEM, resulting in reduced

assembly times.
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