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Abstract. We present a well-posed and discretely stable perfectly matched layer for
the anisotropic (and isotropic) elastic wave equations without first re-writing the gov-
erning equations as a first order system. The new model is derived by the complex
coordinate stretching technique. Using standard perturbation methods we show that
complex frequency shift together with a chosen real scaling factor ensures the decay of
eigen-modes for all relevant frequencies. To buttress the stability properties and the ro-
bustness of the proposed model, numerical experiments are presented for anisotropic
elastic wave equations. The model is approximated with a stable node-centered finite
difference scheme that is second order accurate both in time and space.
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1 Introduction

Perfectly matched layers (PML) have since the introduction [3], emerged as a standard
non-reflecing boundary closure for many wave propagation problems. In this paper we
consider linear, anisotropic elasto-dynamics in two space dimensions. Equations describ-
ing the dynamics are usually derived via Newtons law connecting accelaration and force,
thus yielding a second order system (in both time and space) for the displacements. The
system is hyperbolic, and by introducing suitable variables the model can be rewritten
as a hyperbolic first order system. PMLs for elasto-dynamics are usully derived from the
first order formulation [4, 5, 23]. This is also the case for other hyperbolic systems that
naturally come in second order formulation, like the standard wave equation.

However, there are several advantages with using the second order formulation. The
first order formulation requires more variables, and it introduces a new wave with zero
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wave speed. Also, in many cases a straightforward discretization of the first order formu-
lation introduces high frequency spurious modes. In this paper we construct a PML for
the second order equations of linear, anisotropic elasto-dynamics in two space dimen-
sions without first rewriting the equations as a first order system. By construction the
PML is perfectly matched, but there is no guarantee that all solutions decay with time.
The analysis of temporal stability is therefore a main topic of research. In [4], the geomet-
ric stability condition was formulated, and found to be a necessary condition for stability
of the split field PML. In [5], it was proved to be necessary also for stability of a modal
PML, even though the complex frequency shift had a stablizing effect.

The aim of this paper is to construct efficient layers based on the second order equa-
tions, for all materials, and also those violating the geometric stability condition. The
PML equations are derived using a complex coordinate stretching technique, [6, 17]. We
include a grid stretching parameter and a complex frequancy shift. One advantage of this
approach is that we can choose auxilary variables so that the resulting system is strongly
hyperbolic.

In computations using standard second order central finite differences, our PML be-
haves dramatically better than the corresponding first order PMLs, for materials where
the geometric stability condition is violated. In many cases no growth is seen in the com-
putation even at very late times. To understand this behaviour we start by applying a
standard perturbation analysis to our PML at constant coefficients. The result is that our
PML suffers from the same high frequency instability as the above mentioned first order
PMLs for the geometric stability violating materials. A large part of the paper is dedicted
to understanding why our PML behaves in this stable way, and how the stable behaviour
can be enhanced.

From the analysis of the continous constant coefficient problem we know that the in-
stability appears only at sufficiently high spatial frequencies. If these frequencies are not
well resolved, the the discrete behaviour may be completely different. A straight forward
computation of the temporal eigenvalues corresponding to the discrete spatial operator
in a constant coefficient setting shows that if unstable modes are not well resolved, they
are in fact stable in the discrete setting. We have investigated how the grid stretching
parameter can be used to enhance this effect.

A second reason is the stablizing effect of corner regions. When the layers are used
as boundary closures completely surrounding a domain there are usually corner regions.
We use the same perturbation technique as above applied to a constant coefficient corner
problem, and find that our PML is stable in the corner region. In computations we have
observed that the bulk of an unstable mode typically is localized to part of layer and
propagating tangentially while the amplitude grows. Eventually the bulk of the unstable
mode moves into a corner region and is damped.

The paper is organized as follows. In Section 2 we introduce the elastic wave equa-
tion, the materials treated in the paper, and their corresponding dispersion relations. A
brief review of existing layers and there properties are given, followed by a derivation
of our layer. The basic mathematical properties such as perfect matching, hyperbolicity
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and wellposedness are discussed. Section 3 is devoted to stability analysis. In section 4
we present numerical calculations both as illustration of our theoretical results, and to
further explore the properties of our layer. We close section 4 by investigating the effi-
ciency of the layer. We present computations where we show that it is possible to chose
parameters related to the spatial step size yielding reflections from the layer that decay at
the same rate as the numerical discretization error (∼ h2). In section 5 a brief conclusion
is offered.

2 Elastic waves and damping Layers

In this section, the second order equations of linear elastodynamics (in orthotropic media)
in two space dimensions will be stated and we will derive the PML model using complex
coordinate stretching technique.

2.1 Elastic Waves

Using Einstein’s convention of summation and neglecting body forces, the equation of
continuum can be written

ρ
∂2ui

∂t2
=

∂σi,j

∂xj
, i, j=1,2. (2.1)

Here ρ is the density and u1,u2 are the displacement, σi,j is the stress tensor, which is
related to the tensor of deformation

ǫi,j(u)=
1

2

(∂ui

∂xj
+

∂uj

∂xi

)

.

By Hook’s law
σi,j =Cijklǫkl . (2.2)

The fourth-order tensor C of elastic coefficients satisfies the classical symmetries

Cijkl =Cjikl =Cklij.

It is also positive definite,

Cijklψijψkl ≥||ψ||2 =αψijψij,

for all symmetric tensor ψij, see [4]. The symmetry of C allows us to simplify the equa-
tions by using the scheme

Cijkl = cp(i,j),p(k,l),

where p(i, j)= i, if i= j, p(i, j)= i+ j, if i 6= j.
In an Orthotropic medium whose principal axes coincides with the (x,y) axes, we

have c13 = c23 =0, hence
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C=





c11 c12 0
c21 c22 0
0 0 c33



.

Now equation (2.1) can be formally written as

utt = A1uxx+A2uyy+A3uxy, (2.3)

where u=[u1,u2]T, A1 =

(

a 0
0 c

)

, A2 =

(

c 0
0 b

)

, A3 =

(

0 d
d 0

)

.

Here a = c11, b = c22, c = c33, d = c33+c21. For convenience we have also assumed ρ =1. It
is easy to show that (2.3) is strongly hyperpolic and strongly well-posed.

2.2 Plane waves and slowness diagrams

In order to understand the wave propagation properties of the model (2.3) it is useful to
consider wave-like solutions

u=u0est−ikxx−ikyy, u0∈Rn, kx,ky,x,y,z∈R, 0≤ t. (2.4)

In equation (2.4), (kx,ky)∈R2 is the wave vector, and u0 is a vector of constant amplitude
called the polarization vector. By inserting (2.4) in (2.3) we have a solvability condition
(2.5), often called the dispersion relation

F0(s,kx,ky)≡det(s2 I+Ψ(kx,ky))=0,

Ψ(kx,ky)= A1k2
x+A2k2

y+A3kxky.
(2.5)

The polarization vector u0 is the eigenvector of Ψ(kx,ky), with associated egeinvalue −s2.
By evaluating (2.5) for (2.3) we have

F0(s,kx,ky)≡s4+((a+c)k2
x+(b+c)k2

y)s2+ack4
x

+bck4
y+(ab+c2−d2)k2

xk2
y =0.

(2.6)

It should be noted that the polynomial (2.6) has four purely imaginary roots, correspond-
ing to the quasi-P and quasi-S waves. We will refer to these modes as the physical modes.

If we write s = iω(kx,ky), where ω ∈ R is called the temporal frequency, we can also
introduce

K =(
kx

|k|
,

ky

|k|
), the normalized propagation direction,

Vp =(
ω

kx
,
ω

ky
), the phase velocity,

S=(
kx

ω
,
ky

ω
), the slowness vector,

Vg =∇kω(kx,ky), the group velocity,

and |k|=
√

k2
x+k2

y.

(2.7)



5

By inspection (2.6) is homogeneous in ω, kx,ky, we can re-write (2.6) as

F0(i,S)=0. (2.8)

The wave propagation properties of a certain medium can be described by plotting the
slowness diagrams defined by points in the S−plane satisfying (2.8). If we further assume
c11 6= c33 and c22 6= c33, the group velocity can be expressed as

Vg =∇kω(kx,ky)=−
(∂F0(iω,kx,ky)

∂ω

)−1
∇kF0(iω,kx,ky). (2.9)

That is the group velocity is normal to the slowness curve.

In [4] Theorem 2, a necessary temporal stability condition for the split-field PML is es-
tablished see Figure 1. The condition states:

Definition 1. Geometric stability condition

1. The geometric stability condition in the x−direction (parallel to the vertical axis) is
Sx×(Vg)x ≥0, for all points on the slowness curve.

2. The geometric stability condition in the y−direction (parallel to the horizontal axis)
is
Sy×(Vg)y ≥0, for all points on the slowness curve.

Here Vg =((Vg)x,(Vg)y) and S=(Sx,Sy).

The material parameters we shall consider in this paper are presented in Table 1. The
anisotropic Material MA1 with the slowness diagram Figure 2(a) severely violates the ge-
ometric stability conditions in both x− and y−directions, it is also the same as Material III
in [5]. The anisotropic material MA2 (Apatite) marginally violates the geometric stability
condition in both x− and y−direction, see Figure 2(b) and has been studied in [16]. The
material MA3 violates the geometric stability condition only in the y−direction, see Fig-
ure 2(c) while the anisotropic material MA4 (Zinc crystal) violates the stability condition
in the x−direction, see also see Figure 2(d) and has also been studied in [16]. For the Ma-
terials MA1 and MA2 , the classical PML in both x− and y−directions will be unstable,
while the y−dependent PML for material MA3 will be unstable and the x−dependent
PML for material MA4 will be unstable. The anisotropic Material MB is the same as
Material I in [5] and does not violate the stability condition, the classical PML for the Ma-
terial MB will be expected to be stable. Though Material MC (same as Material IV in [5])
does not not violate the geometric stability condition, it has a generic weak instability as
demonstrated in [4].
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(a) Stable (b) Unstable

Figure 1: Geometric stability condition.

Elastic Coefficients
Material c11 c22 c33 c12

MA1 4.00 20.00 2.00 7.50

MA2 16.70 14.00 6.63 6.60

MA3 4.00 20.00 2.00 4.90

MA4 16.50 6.20 3.96 5.00

MB 4.00 20.00 2.00 3.80

MC 10.00 20.00 6.00 2.50

Table 1: Elastic coefficients of the orthotropic materials

2.3 Damping layers for elastic wave equations

Several damping layers exist for the elastic wave equations, [4, 5, 8, 23]. Many of these
layers are only weakly hyperbolic and weakly well-posed. In many cases the existing
layers also support exponentially growing solution. This shortcoming, for the classical
PML for elastic waves as reported in [4] was in part corrected in a paper by Appelö &
Kreiss [5] by adding an additional parameter (the complex frequency shift) in a modal
PML in first order formulation. For materials that violate the geometric stability condi-
tion, the construction of a stable and efficient absorbing layer has remained a challenge.

In a very recent work [16], Meza-Fajardo and Papageogiou proposed a new model,
the multi-axial perfectly matched layer (M-PML). Their model is based on a damping
profile that varies in more than one direction. This approach may give a stable model for
some materials but it generates non-trivial reflections from the interface of the layer and
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Figure 2: Slowness diagrams.

the computational domain and therefore is not perfectly matched. In numerical experi-
ments we have also observed that long-time solutions of the M-PML model may exhibit
growth as the solutions reach quiescent state.

2.4 Our perfectly matched layer

In this section, we will derive the PML equations using the complex coordinate stretching
technique, see [6,17]. The idea is to introduce new coordinates defined by special complex
metrics. The basic properties of a PML can be found in [6]. The PML can be viewed as
the complex change of variables in the Fourier transformed wave equation. We begin by
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taking Fourier transform in time,

u(x,y,t)=
∫

∞

−∞

û(x,y,ω)eiωtdω,

−ω2û= A1ûxx+A2ûyy+A3ûxy. (2.10)

To include PML in both x−direction and y−direction we follow the procedure:
still in the frequency domain we introduce the complex metrics,

s1 =α1(x)(1+
σ1(x)

η+iω
), s2 =α2(y)(1+

σ2(y)

η+iω
),

yielding

−ω2û= A1
1

s1
(

1

s1
ûx)x+A2

1

s2
(

1

s2
ûy)y+A3

1

s1

1

s2
ûxy. (2.11)

Here, η ≥ 0 is the complex frequency shift, α1,α2 > 0, are grid compression (or stretch-
ing) funtions and σ1,σ2 >0 are the damping functions. The functions α1,α2,σ1,σ2 are also
required to be smooth.

By choosing the auxiliary variables, and inverting the Fourier transform we have the
full PML formulation

utt =
1

α1
A1(

1

α1
ux)x+

1

α2
A2(

1

α2
uy)y+

1

α1α2
A3uxy

−
1

α1
A1(

σ1

α2
v−

σ2

α1
w)x+

1

α2
A2(

σ1

α2
q−

σ2

α1
p)y−(σ1+σ2)ut

+(σ1+σ2)η(u−r)−σ1σ2((u−r)−(r−z)),

vt =
α2

α1
ux+

α2

α1
σ2w−(σ1+η)v,

wt =ux−ηw,

pt =
α1

α2
uy+

α1

α2
σ1q−(σ2+η)p,

qt =uy−ηq,

rt =η(u−r),

zt =η(r−z).

(2.12)

In order to investigate some of the mathematical properties of the PML model (2.12) we
will consider the vertical layer (parallel to the y-axis). We set σ2 = 0, α2 = 1 in (2.12) and



9

we have the reduced system

utt =
1

α1
A1(

1

α1
ux)x+A2uyy+

1

α1
A3uxy

−
1

α1
A1(σ1v)x+A2(σ1w)y−σ1ut+ησ1(u−r),

vt =
1

α1
ux−(σ1+η)v,

wt =uy−ηw,

rt =η(u−r).

(2.13)

By construction the model (2.13) is perfectly matched if σ1 =0 and α1 =1 at the interface
between the physical domain and the layer.

2.5 Hyperbolicity and Well-posedness

For convenience we shall re-write (2.13) as a first order system in time and space. Without
loss of generality we consider η =0, α1 =1, introduce the auxiliary variables,

U1 =u, U2 =v, U3 =w,

U4 =
∫ t

0
(uy+σ1w)dτ,

and we have

Ut = BxUx+ByUy+σ1CU. (2.14)

Here

Bx =









0 A1 A3 0
I 0 0 0
0 0 0 0
0 0 0 0









, By =









0 0 0 A2

0 0 0 0
I 0 0 0
I 0 0 0









, C=









-I 0 0 0
0 -I 0 0
0 0 0 0
0 0 I 0









,

where 0 is a 2×2 null matrix and I is a 2×2 identity matrix.

It is easy to show that ∀S = (Sx,Sy)∈R2 normalized to satisfy (2.8), the matrix B̂ =
SxBx+SyBy has real eigenvalues and a complete system of eigen-vectors. It follows that
the PML model (2.13) is strongly hyperbolic, thus strongly well-posed, see [12]. However,
because of the lower order term σ1CU the system (2.13) may have solutions that grow in
time. It is important to note that strong hyperbolicity guarantees the well-posedness of
partial differential equations under all lower order perturbations. The first order split-
field or modal PML formulations for the elastic wave equation are only weakly hyper-
bolic and lack this important property [4, 5]. Including η 6= 0, will correspond to adding
more zeros to the columns and rows of the matrices Bx,By and the corresponding princi-
pal part is strongly hyperbolic.
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3 Stability Analysis

In this section we will explore the stability properties of the proposed layers. The per-
fectly matched layer is indeed a variable coefficient problem, but the mathematical tools
readily available only allows for the analysis of the corresponding constant coefficient
problem. Here we use standard perturbation techniques similar to the methods used
in [4, 5, 16], to analyze the corresponding constant coefficient Cauchy problem.

3.1 Stability of the Standard PML

To begin with, consider the model (2.13), we will show that at constant coefficients our
layer suffers from the so called geometric (high frequency) instability. By introducing the
modal ansatz W = W0est−ikxx−ikyy, where (kx,ky) is the wave vector, and W = [u,v,w,r]T,
we get the characteristic polynomial

F(s,kx/α1,ky,σ1,η)≡ (s+η)2F0

(

(s+σ1+η)s,(s+η)kx/α1,(s+σ1+η)ky

)

=0. (3.1)

F0 is defined in (2.6). The stability of the PML model (2.13) is characterized by the roots
s of the polynomial (3.1). In order to determine whether (2.13) is stable or unstable we
only need to know the sign of the real part of s, ℜs as we introduce damping.

First, we will characterize the roots of the undamped system. By setting σ1 =0 in (3.1)
we have

F(s,kx/α1,ky,0,η)=(s+η)6F0(s,kx/α1,ky). (3.2)

Clearly (3.2) has 10 roots, 4 of which are the purely imaginary ℜs = 0 roots of (2.6) and
correspond to the physical (quasi-P and quasi-S) modes. The remaining 6 roots are real
ℑs=0 and strictly negative correspond to the non-physical modes,

sm ={−η}, m=5,6,.. .,10. (3.3)

We observe that the system (2.13) with (σ1 = 0) zero damping has no zero root for all
kx,ky 6= 0. Since the roots depend continuously on the coefficients, it is apparent that at
intermediate frequencies and with small enough damping the roots s of the non-physical
modes will remain in the left half of the complex plane. Thus we have

Lemma 1. At intermediate frequencies, if η >0 and α1 >0, the non-physical modes s are
stable for all sufficiently small damping σ1≥0.

At high frequencies a more refined analysis is needed.

Lemma 2. For any α1 >0 and sufficiently small damping σ1 ≥0 the parameter η >0 will
stabilize the non-physical modes at high frequencies.
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Proof. We introduce the normalized variables,

λ=
s

|k|
, k1 =

kx

|k|
, k2 =

ky

|k|
, ǫ=

σ1

|k|
, γ=

η

|k|
, |k|=

√

k2
x+k2

y, (3.4)

in (3.1) and we have

(λ+γ)2F0

(

(λ+ǫ+γ)λ,(λ+γ)k1/α1,(λ+ǫ+γ)k2

)

=0. (3.5)

We know that the non-physical modes are continuous functions of ǫ and therefore can be
expanded by a Puiseux series, see [5],

λ(k1/α1,k2,ǫ)=−γ+Υ
γ(k1/α1,k2)ǫr+o(ǫr), r∈Q+. (3.6)

If r ≥ 1, then we know that the perturbed root λ will have a negative real part for suf-
ficiently high frequencies and ǫ

γ << 1, hence the non-physical modes are stable. Let us
assume that there exists a solution such that 0< r<1 and Υγ 6=0. By inserting the expres-
sion (3.6) in (3.5) we have

(Υ
γ(k1/α1,k2)ǫr)6F0(−γ+O(ǫr),k1/α1+o(1),k2+o(1))=0,

=⇒ (Υ
γ(k1/α1,k2)ǫr)6F0(−γ,k1/α1,k2)+o(1))=0,

=⇒ (Υ
γ(k1/α1,k2)ǫr)6F0(−γ,k1/α1,k2)=0.

Since F0(−γ,k1/α1,k2) 6=0 for all γ∈R+, it follows that Υγ =0, which is a contradiction.
We must have r≥1 and the lemma is shown.

We note that the proof of Lemma 2 is analogous to the proofs of Lemma 7 in [5] and
Theorem 1 in [4].

We see that if η 6=0 the instability in the standard PML at constant coefficients can not
come from the non-physical modes. In order to understand the stability of the physical
modes we perform the high frequency stability analysis due to [4]. The physical modes
are simple (distinct), therefore can be expanded in the powers of ǫ,

λ=λ0+ǫλǫ+O(ǫ2). (3.7)

Here λ0 is purely imaginary. At sufficiently high frequencies, γ,ǫ << 1, we can ignore
higher order terms in γ,ǫ, and the sign of the real part of λǫ determines the stability of
(2.13).

Consider
F0

(

λ,(1+
ǫ

λ+γ
)−1k1,k2

)

=0,

and expand in the powers of ǫ,γ and we have

F0

(

λ0,k1,k2

)

+ǫλǫ
∂F0

∂λ
−ǫ

k1

λ0

∂F0

∂k1
+γ

k1

|λ0|2
∂F0

∂k1
+O(ǫ2+γ2)=0.
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By ignoring higher order terms and knowing that λ0, ∂F0/∂λ are purely imaginary, we
have

ℜλǫ =−
k1

λ0

(

−
∂F0

∂λ

)−1 ∂F0

∂k1
. (3.8)

We see that the physical modes will be unstable if

k1

λ0

(

−
∂F0

∂λ

)−1 ∂F0

∂k1
<0. (3.9)

The relation (3.9) is the so called geometric (high frequency) stability condition, Defini-

tion 1. We have proved the following

Lemma 3. Consider α1=1 and σ1>0. If the geometric stability condition in the x-direction
is violated there are unstable physical modes at sufficiently high frequencies.

By computing the corresponding spectrum we also observed that increasing the com-
plex frequency shift η for a fixed σ1 can move most of the unstable physical modes into
the stable complex plane. However if η >> σ1 the whole spectrum move towards the
imaginary axis, indicating weak damping.

3.2 Grid compression and high-frequency analysis

Here we investigate the effect of the grid compression parameter α1 on the physical
modes. We set γ= k̃ǫ, where k̃>0. We use Maple to compute

λǫ =−
∂F0

∂ǫ

/∂F0

∂λ

∣

∣

∣

ǫ=0
, (3.10)

by implicit differentiation of (3.5). The result is

λǫ =−
f1α4

1+ f2α2
1+ f3

g1α4
1+g2α2

1+g3
. (3.11)

Where

f1 =−(2+3k̃)(b+c)k2
2|λ0|

2+(2+3k̃)|λ0|
4+(2+3k̃)bck4

2,

f2 =(ab+c2−d2)(1+3k̃)k2
1k2

2−(1+3k̃)(a+c)k2
1|λ0|

2,

f3 =3ack̃k4
1,

and

g1 =−4(b+c)k2
2|λ0|

2+5|λ0|
4+3bck4

2,

g2 =3(ab+c2−d2)k2
1k2

2−4(a+c)k2
1|λ0|

2,

g3 =3ack4
1.
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Qualitatively, if we fix k1,k2 and let α1→0 we see that, λǫ →
f3

g3
=−k̃<0.

More precisely, for any k0>0, if we choose α0=k0/
(

(2+3k̃)(1+max(1,|a|,|b|,|c|,|d|))
)

,

and k̃>0, we have

λǫ ≤−
f3

2g3
=

−k̃

2
<0. (3.12)

for all |k0|≤ |k1|≤1 and 0≤|k2|≤1. This proves

Lemma 4. Given η,σ1,k0 > 0 there exists α0 > 0 such that for all 0 < α1 ≤ α0 the physical
modes with the normalized frequencies (k1,k2) in the range |k0|≤|k1|≤1, 0≤|k2|≤1, are
stable at sufficiently high frequencies.

A direct consequence of Lemmas 2 and 4 is the corollary

Corollary 1. For sufficiently high frequencies |k| → ∞, if α1,η satisfy the conditions in
Lemmas 2 and 4, then the constant coefficient PML model (2.13) is asymptotically stable
for all relevant frequencies, |k0|< |k1|≤1, 0≤|k2|≤1.

In order to highlight the above result, we consider two materials, Apatite and Zinc
crystal violating the geometric stability condition, see Figures 3(a) and 3(c). These figures
are obtained by considering a discrete set of frequencies (kx,ky). In a discrete setting we
expect a vertical layer to be unstable at least if the modes violating the stability condition
are well resolved.

As we introduce grid compression, α1=1/7 for Apatite, and α1=1/8.9 for Zinc crystal,
the slowness diagrams change see Figures 3(b) and 3(d), if we use thesame set of frequen-
cies. This shows that on a fixed grid, grid compression can be used to avoid resolving the
unstable modes.

In the next subsection we demonstrate that unresolved modes are much more stable
than resolved modes.

3.3 Semi-discrete analysis

In the discrete setting, a finite number of grid points are used and derivatives are also
approximated (by finite differences). For a given discretization the instability or stability
in the continuous model can be strengthened or weakened. Here we demonstrate for
the chosen discretization, the grid compression parameter α1 can be chosen such that the
discrete PML is stable.

Replacing derivatives with standard second order central differences in (2.13), we
have the semi-discrete problem

utt+σ1ut = Lh(u,W), Wt = Jh(u,W). (3.13)

Here W =(v,w,r)T, and Lh, Jh are spatial discrete operators.
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We introduce the variable φ=ut, to obtain a first order system in time and take discrete
Fourier transform in space. Temporal stability is determined by the eigenvalue problem

sU=D̃hU. (3.14)

Where

D̃h =















0 I 0 0 0

Dh+ησ1I −σ1I iσ1
α1h A1sin(hkx)

iσ1
h A2sin(hky) −ησ1I

− i
α1h sin(hkx)I 0 −(η+σ1)I 0 0
i
h sin(hky)I 0 0 −ηI 0

ηI 0 0 0 −ηI















,

and

Dh =−
4

(α1h)2
A1sin2(hkx/2)−

4

h2
A2sin2(hky/2)−

1

α1h2
A3sin(hkx)sin(hky).

is the (discrete) Fourier transform of the discrete approximations of the right-handside
of (2.3). To investigate the stability of a numerical approximation at a certain resolu-
tion we compute the eigenvalues of D̃h for the same spatial frequencies as were used
for the slowness diagrams, Figures 3(b) and 3(d). Computations of the eigenvalues of
D̃h indicate that the semi-discrete problem is stable when the discrete slowness diagram
does not violate the geometric stability condition. In fact we have observed that for the
semi-discrete problem to be stable, it suffices to use an α1 so that the unstable modes are
poorly resolved. This shows that the semi-discrete PML (3.13) has more robust stabil-
ity properties than the corresponding continuous PML (2.13). However, as we refine the
mesh, unstable modes appear. These unstable modes can also be removed by reducing α1

further.We conclude that if the grid is chosen such that the unstable modes are not well
resolved, the discrete PML will be stable.
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Figure 4: The discrete spectrum of the vertical layer (parallel to the y-axis) for Materials MA2 (Apatite) and
MA4 (Zinc crystal)
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3.4 Stability of the corner region

If a Cartesian grid is surrounded by perfectly matched layers, corner regions are intro-
duced where both damping coefficients σ1,σ2 > 0. In order to understand the behavior
of the entire scheme, it is useful to investigate the stability of this corner region. In this
section we show that the full PML formulation (2.12) is asymptotically stable. We know
that in the continuous setting at sufficiently high frequencies the the complex frequency
shift η stabilizes the non-physical modes but does not guarantee the stability of the phys-
ical modes. We therefore consider the standard PML with η = 0, α1 = α2 = 1, (3.15) and
investigate the stability of the physical modes in the corner region.

utt = A1uxx+A2uyy+A3uxy

−A1(σ1v−σ2w)x+A2(σ1q−σ2p)y−(σ1+σ2)ut−σ1σ2u,

vt =ux+σ2w−σ1v,

wt =ux,

pt =uy+σ1q−σ2p,

qt =uy.

(3.15)

We will prove the following Lemma

Lemma 5. Consider the constant coefficient PML (3.15) with σ1=σ2=σ>0, at sufficiently
high frequencies |k|→∞, the physical modes are stable.

Proof. By assuming a modal solution W=W0est−ikxx−ikyy, and introducing the normaliza-
tion (3.4) we have the eigenvalue problem,

λW0 = D(k1,k2,ǫ)W0. (3.16)

We know that at ǫ = 0, the physical modes are simple roots, we therefore consider the
expansion (3.7) and study

λǫ =
∂λ

∂ǫ

∣

∣

ǫ=0
. (3.17)

The characteristics polynomial corresponding to (3.16) is defined by

F1(λ,k1,k2,ǫ)=det(Iλ−D(k1,k2,ǫ)).

With the symbolic mathematical software Maple we compute λǫ by implicitly differenti-
ation of F1(λ,k1,k2,ǫ) evaluated at ǫ=0,

λǫ =−
∂F1

∂ǫ

/∂F1

∂λ

∣

∣

∣

ǫ=0
, (3.18)

and we have

λǫ(k1,k2)=
f (k1,k2)

g(k1,k2)
. (3.19)
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Where

f (k1,k2)=−(4λ4+(3(a+c)k2
1+(b+c)k2

2)λ2

+2(ack4
1+bck4

2+(ab+c2−d2)k2
1k2

2),

g(k1,k2)=6λ4+5((a+c)k2
1+(b+c)k2

2)λ2

+4(ack4
1+bck4

2+(ab+c2−d2)k2
1k2

2),

At ǫ=0, the physical modes satisfy the dispersion relation (2.6). Thus if we add

−2(λ4+((a+c)k2
1+(b+c)k2

2)λ2+ack4
1+bck4

2+(ab+c2−d2)k2
1k2

2)=0,

to f (k1,k2), we have

λǫ =−1<0.

The physical modes are stable for sufficiently small ǫ≥0.

By the numerical computations of the eigenvalues of the symbol D(k1,k2,ǫ) we have
found that at constant coefficients the PML (3.15) is also stable when σ1 6=σ2.

We expect all waves entering the corner region to decay exponentially in time and
space. For a complete open domain problem, the corner regions enhance the stability of
the entire scheme.

4 Numerical Experiments

In this section, we present some numerical experiments. The experiments aim at validat-
ing the theoretical results and further exploring the efficiency and stability properties of
the proposed layers. Firstly, we shall briefly present the numerical method used. We will
then discuss each problem set up, perform numerical experiments, present and discuss
numerical results.

4.1 Numerical method

The numerical scheme is a node centered second order accurate (both in time and space)
finite difference scheme. We will start with the spatial discretization and the time step-
ping scheme will follow.
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4.1.1 Spatial discretization

Let the grid in (x,y) coordinates be defined by

xi = ihx, i=0,··· ,Nx−1, hx =1/(Nx−1),

yj = jhy, j=0,··· ,Ny−1, hy =1/(Ny−1).

We denote the grid function [ui,j], the standard finite difference operators are denoted:

hxDx
+ui,j =ui,j+1−ui,j, hyD

y
+ui,j =ui+1,j−ui,j,

hxDx
−ui,j =ui,j−ui,j−1, hyD

y
−ui,j =ui,j−ui−1,j,

2Dx
0 ui,j = Dx

+ui,j+Dx
−ui,j, 2D

y
0ui,j = D

y
+ui,j+D

y
−ui,j.

We also used averaging operators

2Ex
1/2(σi,j)=σi,j+1+σi,j, 2E

y
1/2(σi,j)=σi+1,j+σi,j.

Replacing spatial derivatives with differences in (2.12), we have the semi-discrete prob-
lem

utt+(σ1+σ2)ut = Lh(u)+Fh(u,Θ,σ1,σ2,η),

Θt = Jh(u,Θ).
(4.1)

Where Θ =[v,w,p,q,r,z]T, Lh, Jh are spatial discrete operators and the auxiliary function
Fh(u,Θ,σ1,σ2,η) ensures the perfect matching.

4.1.2 Temporal Discretization

We introduce the discrete time variable, tn=ndt, n∈N, dt is the time step and u(tn)≈un.
The usual finite difference operators (with respect to time) are denoted

dt2Dttun =un+1−2un+un−1, 2dtDt
0un =un+1−un−1, dtDt

+un =un+1−un.

The time integration scheme uses, the leap-frog scheme for the physical variable and the
Crank-Nicolson scheme for the auxiliary variables (Θ) and we obtain the full discrete
PML problem

Dttun+(σ1+σ2)Dt
0un = Lh(un)+Fh(un,Θn,σ1,σ2,η),

Dt
+Θ

n =
1

2
Jh(un+1,Θn+1)+

1

2
Jh(un,Θn).

(4.2)

If σ1 =σ2 =0, the discrete problem

Dttun = Lh(un), (4.3)

corresponding to the interior discretization of the elastic wave equation (2.3) can be
shown to conserve discrete energy, [13].
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4.2 Stability of the PML

Considering the strongly ’unstable’ material MA1, we numerically study the stability
of the second order PML model and the effect of the complex frequency shift η for a
monomial damping σ1(x) = (n+1)5|x|n, (x,y) ∈ [−1,1]2 with the spatial step-size hx =
hy =0.05. We use the initial condition

u1 =u2 =exp(−ln(2)
x2+y2

δ
), δ=0.02,

u1t =u2t =0.

(4.4)

for the displacement field and homogeneous initial data for the auxiliary variables. We
set homogeneous Dirichlet boundary conditions in the x−direction and periodic bound-
ary conditions in the y−direction.

As predicted by the analysis in the preceding section, at constant coefficients the PML
solutions grow in time and growth depends on maxσ1, see Figure 5(d). The growth also
remains for variable coefficients. With our choice of damping function the local values
of σ1 decreases with increasing degree of the monomial in a large part of the layer, and
therefore it is not surprising that the growth rate decreases with increasing monomial
degree, see Figures 6(b) and 5(b). However, with grid refinement this behaviour will
probably change. In conclusion, for a given resolution, using higher order monomials
seems advantagous as the damping power of the layer can be held constant by our choice
of damping function while reducing the severity of the growth.

Theoretical analysis at constant coefficients predicts that the complex frequency shift
stabilizes the non-physical modes. We see from Figure 6(b) and 5(b) that the introduc-
tion of the complex frequency shift reduces the growth rate signficantly. However, the
absorption power of the PML for a fixed width layer is weakened.

From Figure 5(c), we see that growth rate increases with resolution, also the growth
rate approaches a constant as we refine the mesh. The explanation is that if the mesh is
such that the growing modes are not well resolved the discrete PML is stable. For material
MA1 at constant coefficients, the observed growth is strong because this material MA1
severely violates the geometric stability condition, see Figure 2(a). We also note that if
the violation of the geometric stability is mild (as in MA2, MA3, MA4), on a reasonably
fine mesh the discrete PML will be stable, see Figure 6.
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4.3 Ducted problem

Source

PML

PML

Figure 7: Computational domain

In this subsection we apply the PML to a ducted elastic wave problem. The phys-
ical domain is the infinite strip −5 ≤ x ≤ 5, −∞ < y < ∞. The problem is periodic in
the x-direction but extends to the infinite space in the y-direction. However, in order to
perform numerical experiments we truncate the domain in the y-direction such that the
computational domain is a square −5≤x≤5 −5≤y≤5. To simulate the infinite space, we
add two additional layers, having 5≤|y|≤ 6, which corresponds to 10% of the width of
the computational domain as shown in Figure 7, in which the PML equations are solved.
For the displacement field we use the initial data

u1 =u2 =exp(−ln(2)
x2+y2

δ
), δ=0.2,

u1t =u2t =0.

(4.5)

and homogeneous initial data for the auxiliary variables. In the y-direction we set ho-
mogeneous Dirichlet boundary conditions, and periodic boundary conditions in the x-
direction, for all variables.

The damping profile is the monomial of the form

σ2(y)=

{

0 if |y|≤y0,

d0

(

|y|−y0

y1−y0

)n
if |y|≥y0,

d0 >0, n=4, y0 =5, y1 =6.
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We choose d0 = 4.5(n+1)/(2(y1−y0))log(1/Re f ) such that the reflections from the
outer boundaries is of the magnitude Ref, see [4, 23]. Here, 4.5 is the maximum wave
speed for the elastic materials considered.

In order to highlight the effectiveness of the proposed layers we shall consider the
difficult elastic material MA1 (and the strongly ’unstable’ horizontal layer). From the
slowness diagram Figure 2(a) we see that the material MA1 severely violates the geomet-
ric stability condition, and we expect the standard PML to be unstable.

We discretize the domain by introducing the uniform mesh-size hx=hy=0.1 such that
the initial pulse is well resolved. We set Re f =10−3, introduced the complex frequency
shift η = 1+0.1σ2 and compute the solutions until T = 70.0 The behavior of the PML is
illustrated in Figure 8, showing how the initial pulse spreads, enters into the layer and it
is being absorbed. After a long time T=70 the growing solutions corrupts the solution in
the interior of the domain, see Figure 9(a) .

We coarsened the mesh hx = hy =0.2 and compute until T =100. There was no grow-
ing solutions, see Figure 9(b). From the numerical experiments performed the materials
MA2, MA3, and MA4 where the violation of the geometric stability condition is mild, we
have found that if the violations of the geometric stability condition are not severe, on
a reasonably fine mesh the discrete PML is stable. We set the complex frequency shift
η = 0 the growing solutions reappear as shown in Figure 9(c), highlighting the stabiliz-
ing effect of the complex frequency shift. In order to further investigate the behavior of
the layer we repeat the above experiment (with η = 0,h = 0.1) and zoom very close to
the layer ((x,y)∈ [−5,5]×[5,6]) as shown in Figures 10 and 11. We carefully study the
dynamics of the waves transmitted into the layer. We observe that the solutions in the
layer are smooth and waves propagating normal to the boundary are perfectly absorbed.
The remnant propagates tangentially unabsorbed in the layer. Because of the periodic
boundary conditions in the tangential direction, with increasing time waves propagate
back and forth in the layer and grow slowly, see Figures 10 and 11.

In order to make a comparison we apply the split-field PML [4, 23] to the first order
(velocity-stress) formulation of the elastic wave equation. Considering the same set-up
and resolution h=0.1, as above we discretized the equations using standard second order
accurate centered finite difference approximations in space and standard second order
Runge-Kutta method in time. We compute the solutions until a final time T. Since we are
interested in the behavior of the layer we zoom very close to the layer ((x,y)∈ [−5,5]×
[5,6]) as show in Figure 12. We see that as the slower S-wave penetrates the layer, at
approximately t = 4.0 the solution in the layer in this case grows destructively in time.
However, as we coarsened the mesh the solutions remained unstable but with a slower
growth rate. We believe the strong instability observed here and reported in [4, 5] is
related to the high-frequency parasitic numerical modes that are present in the standard
discretizations of the first order formulation. Analysis of the discrete behaviours of PML
models is a topic of future work.
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Figure 8: The dynamics of
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u2
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2 for the new second order PML for the ’unstable’ Material MA1.

4.3.1 Grid compression

From the analysis, we expect that for a given resolution, the introduction of a grid com-
pression parameter will stabilize the physical modes. This idea was tested for material
MA1 and the resolution hx =hy =0.1. For that case we observed growth, see from Figure
9(a). A grid compression α2 =1−0.5exp(−1/(5(|y|−5)) was introduced in the layer and
it resulted to a stable solution, see Figure 9(d). However, as we refine the grid we expect
the growth to reappear, the growth can also be removed by reducing the size of α2. The
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Figure 9: The maximum energy ‖
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u2
1+u2

2‖∞ in the interior of the domain.

drawback here is that the problem becomes stiff with decreasing α2 and will consequently
restrict the time step.

However, it is important to mention that the materials MA2, MA3, and MA4 where
the violation of the geometric stability condition is mild, no growth was observed at this
resolution, and does not require any grid compression yet. We believe that this would
probably change with finer resolutions.
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4.4 Complete open-domain

Here we consider a complete open domain problem. The computational domain consists
of the rectangular two-dimensional domain (x,y)∈ [−10,10]×[−10,10], surrounded by a
PML of width 2. The damping parameter d0=50, and the complex frequency shift η=1.0.
We force the first component of the displacement vector with

F(x,y,t)= f (t)
1

δ2
e−7((x−8)2+(y+8)2)/δ2

,

f (t)=(2π2(0.9t−1)2−1)e−π(0.9t−1)2
, δ=0.5.

An equidistant grid hx = hy = 0.125 is used everywhere. We compute the solution
until T =50.0. The behavior of the model is displayed in Figure 14 for material MA1 and
in Figure 15 for material MA2, showing how the wave generated by the forcing F(x,y,t)
spreads, penetrates the PML and it is being absorbed. Figure 13, shows the time history of

the maximum energy ‖
√

u2
1+u2

2‖∞ in the interior of the computational domain, showing

the stability of the layer and long time decay of the energy.
For material MA1, we observed a slowly growing solution in the layer ((x,y)∈[−12,12]×

[10,12]). But the growing solution enters the corner region ((x,y)∈ [10,12]×[10,12]) and
decays in time, (note the factor 10−3 in Figure 14). Furthermore, if we set the damping
to a 6th degree monomial (for h = 0.125) or coarsen the mesh h = 0.2 (for the 4th degree
monomial), in these cases we did not observe any growth in the layers. For the material
MA2 there was no growth observed with these resolutions, but with further refinement
we may expect to see growth also for material MA2.
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Figure 10: The dynamics of
√

u2
1+u2

2 inside the PML for the ’unstable’ Material MA1. All figures are with

contours between -1 and 1 at intervals of 0.01, exempting the zero contour.
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Figure 11: The dynamics of
√

u2
1+u2

2 inside the PML for the ’unstable’ Material MA1. All figures are with

contours between -1 and 1 at intervals of 0.01, exempting the zero contour.
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Figure 12: The dynamics of
√

u2
1+u2

2 inside the split-field PML for the ’unstable’ Material MA1. All figures

are with contours between -1 and 1 at intervals of 0.01, exempting the zero contour.
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Figure 13: The maximum elastic energy (‖
√

u2
1+u2

2‖∞) inside the computational domain, with h=0.125,n=4.

(a) t=2. (b) t=6.

(c) t=10. (d) t=20.

Figure 14: The dynamics of
√

u2
1+u2

2 for MA1, with h=0.125,n=4.
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(a) t=2. (b) t=6.

(c) t=10. (d) t=20.

Figure 15: The dynamics of
√

u2
1+u2

2 for MA2, with h=0.125,n=4.
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4.4.1 Convergence
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Figure 16: Numerical reflection

When a PML model is used in a numerical computation, errors can be divided into 3
different categories: the discretization error, numerical reflection, and the modeling error. The
discretization error is the generic error that comes with any numerical method (by approx-
imating derivatives by differences). numerical reflections, are the spurious discrete effects
introduced by discretizing the PML and seen in the interior domain. The modeling error
is introduced because the layer has a finite width. The discretization error and numerical
reflection should vanish as the mesh-size approaches zero and the modeling error decreases
as the magnitude of damping coefficient or the PML width increases.

Here we show that we can choose the PML parameters (for a fixed PML width) as a
function of the grid-size such that the total PML error (modeling error + numerical reflection)
converges at the same rate as the discretization error. We consider the elastic material MA1
and the domain −d−2≤ x≤2+d, −d−2≤ y≤2+d, where d =2 is the PML width. The
initial data is same as (4.5) with δ=0.05.

The damping profiles are monomials of degree 5. We set d0=4.5(3)/(d)log(1/(C0h2))
so that numerical reflection from the interface will be small compared to to the modeling
error. C0 = 0.01 has been empirically determined. In this case the numerical scheme
converges quadratically. Therefore the discretization error ∼ O(h2), the modeling error∼
exp(−

∫

σdξ) = O(h2) and the numerical reflection ∼O(d0h2) = O(h2|log(h)|). The total
PML error is expected to approach zero at ∼O(h2|log(h)|).

We compute the solution until T =1.5 so that the modeling error affects the solution in
the interior. We a also compute a reference solution in a larger domain without the PML.
By comparing the PML solution in the interior of the domain to the reference solution
in the ∞-norm we obtain an accurate measure of the PML error. In Figure 16 we plot
the time history of the PML error. The fast P-waves with velocity Cp = 4.5 completely
penetrate the layers at about t = 0.45 and generates numerical reflection which level off
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Mesh-size (h) Reflections Rate

0.2000 2.9000×10−3 –
0.1000 4.7060×10−4 2.6326
0.0500 8.7565×10−5 2.4261
0.0250 2.3856×10−5 1.8760

Table 2: Numerical reflections as a function of h

before t = 1. At about t ≈ 1 the slow S-waves with velocity Cs = 2.3 penetrate the lay-
ers while the modeling error due to P-waves are simultaneously returning from the outer
boundaries. At t≥1 the numerical reflection from the interface and modeling error from the
outer boundaries superimpose, impact the solution in the interior but level off as time in-
creases. However, from the choice of our damping coefficient we have almost quadratic
convergence of the total PML error, see Figure 16 and Table 2.

Remark 1. We note that no growth was seen in the layer for these short-time compu-
tations. Since the continuous PML for material MA1 is unstable at sufficiently high fre-
quencies, we expect late time growth in the layer for sufficiently small mesh-sizes. If the
damping in the corner region is not sufficient growth can be reduced by introducing grid
compression as discussed in sub-section 4.3.1

5 Conclusions

In this paper we derive a PML for the second order formulation of linear, anisotropic
elastodynamics in two space dimensions. The layer equations are derived by applying
a complex coordinate stretching directly to the second order equations. The resulting
system is strongly hyperbolic. By a standard perturbation argument our PML at con-
stant coefficients suffers from the same high frequency instability as the modal PML and
the split field PML if the geometric stability condition is violated, while the complex fre-
quency shift has a stabilization effect. However, in computations using standard second
order finite differences our PML behaves much better than a standard first order PML.
We have found several reasons for this.

In a discrete setting the unstable modes may be of higher frequency than can be rep-
resented, or well represented, on the grid. The temporal behaviour of such modes cannot
be expected to be predicted by continous analysis. In fact, a straight forward compu-
tations of the temporal eigenvalues corresponding to our discrete spatial operator in a
constant coefficient setting shows that if unstable modes are not well resolved they are in
fact stable. Computations using different resolutions verifies the conclusion also for the
variable coefficient setting. We also show that this effect can be enhanced by coordinate
compression in the layer. However, coordinate compression increases the stiffness of the
problem.
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Secondly, we observe that the geometric instability gives rise to growing modes, with
bulk localized to part of the layer, and propagating tangentially. If a Cartesian domain
is surrounded by layers, the bulk of the unstable mode eventually moves into a corner
region, and decays. We analyze the stability properties of the corner region as before,
finding that there is no high frequency instability. We have also observed that even if the
geometric stability condition is severely violated, on a reasonably fine mesh the discrete
PML is stable.

Due to these types of behaviour we have been able to construct discretely stable
layers that yield reflections below the level of interior numerical errors for a veriety of
anisotropic materials. However, if the violation of the geometric stability condition is
strong, and a very low error level is required, the computational work required may in-
crease dramatically.
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