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All stellar mass black holes have hitherto been identified by X-rays emitted by gas that is

accreting onto the black hole from a companion star. These systems are all binaries with

black holes below 30 M⊙
1–4. Theory predicts, however, that X-ray emitting systems form

a minority of the total population of star-black hole binaries5, 6. When the black hole is

not accreting gas, it can be found through radial velocity measurements of the motion of

the companion star. Here we report radial velocity measurements of a Galactic star, LB-1,

which is a B-type star, taken over two years. We find that the motion of the B-star and

an accompanying Hα emission line require the presence of a dark companion with a mass of
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68+11
−13 M⊙, which can only be a black hole. The long orbital period of 78.9 days shows that this

is a wide binary system. The gravitational wave experiments have detected similarly massive

black holes7, 8, but forming such massive ones in a high-metallicity environment would be

extremely challenging to current stellar evolution theories9–11.

A radial-velocity monitoring campaign with the Large Aperture Multi-Object Spectroscopic

Telescope12 (hereafter LAMOST) has been carried out to discover and study spectroscopic binaries

since 2016, and has obtained 26 measurements each for about 3000 targets brighter than 14 mag

in the Kepler K2-0 field of the sky13. One of the B-type stars toward the Galactic Anti-Center,

hereafter LB-1, located at (l, b) = (188.23526,+02.05089) with V magnitude of ∼11.5 mag,

exhibited periodic radial-velocity variation, along with a strong, broad Hα emission line that

is almost stationary. Subsequent GTC/OSIRIS14 and Keck/HIRES15 observations between 2017

December and 2018 April have confirmed the periodic variations and the prominent Hα emission

line with higher spectral resolution. The spectra reveal three types of lines: stellar absorption lines

with apparent periodic motion, a broad Hα emission line moving in anti-phase with much smaller

amplitude, and interstellar absorption lines that are time-independent (see Fig. 1).

The overall spectral shape of LB-1 suggests a B-type star characterized by prominent Balmer

absorption lines without a significant Balmer jump. The metallicity, as measured from the SiII/MgII

lines, is about 1.2 ± 0.2Z⊙ (Z⊙ = 0.017), consistent with that expected for a young B-type

star in the Galactic plane. TLUSTY16 model fitting to the high-resolution Keck spectra leads to

Teff = 18, 100 ± 820K and logg = 3.43 ± 0.15, where g is the surface gravity. (The Hα and

Hβ lines were excluded from the fit because of contamination from emission.) Such Teff and logg

values fit stellar models17 around the main-sequence turn-off points with mass MB = 8.2+0.9
−1.2 M⊙,

radius RB = 9 ± 2R⊙, and age t = 35+13
−7 Myr. The best-fit model is a subgiant B-type star

about 0.2 Myrs after the main-sequence turn-off point. Its distance D and extinction E(B-V)

can be derived simultaneously from fitting its wide-band spectral energy distribution, resulting

in D = 4.23± 0.24 kpc and E(B-V) = 0.55± 0.03mag (see Methods). These values are consistent

with the 3D extinction map18 along LB-1’s direction, so supporting this model. A subdwarf star

with a similar temperature is strongly ruled out by the narrow Balmer lines, as shown in Figure 1a,

and also by the spectral energy distribution fitting.
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The radial motion of the star, as measured from the stellar absorption lines in 26 LAMOST,

21 GTC and 7 Keck observations obtained over two years, can be best fit with a period of P =

78.9 ± 0.3 days (see Methods). Fitting a binary orbit to the folded radial-velocity curve (see

Fig. 2) yields a semi-amplitude KB = 52.8 ± 0.7 km/s, an eccentricity e = 0.03 ± 0.01, and

a center-of-mass velocity V0B = 28.7 ± 0.5 km/s. For this binary with a nearly circular orbit,

the mass function is PK3
B/2πG = 1.20 ± 0.05M⊙, which is the absolute lower limit for the

mass of the dark companion to the B star. Given that MB is already known, the minimum mass

of the dark primary can be computed as 6.3+0.4
−1.0 M⊙ for the edge-on geometry with i = 90◦. It

must be a black hole (BH), since a 6 M⊙ main-sequence star is only about 4–6 times fainter than

the B star, and the line features would be easily detected from the Keck spectra. The BH mass

will be 7.8/20/84/245 M⊙ for lower inclinations at i = 60◦/30◦/15◦/10◦, respectively. The binary

separation is about 0.9–2.3 AU for a BH mass of 6–250 M⊙, making it a BH binary wider than any

previously-known Galatic BH binaries1, 2.

The prominent Hα emission line is too broad, with a full width at half maximum of 240 km/s,

to arise from an interloper M dwarf or surrounding nebulae, and nor can it be associated with a

background AGN/QSO, because this would have other prominent lines at non-zero redshift. Its

complicated multi-peak profile (see Fig. 2) suggests an origin from a gaseous Keplerian disk,

which can be around the B star, the BH, or the binary. However, the inferred gaseous disk cannot

be around the B star, because the Hα emission line is not tracing the motion of the B star, as clearly

shown in Fig. 1b. The line profile is distinctly different from a simple double-horned profile for

a Keplerian disk viewed at high inclinations. It shows a wine-bottle shape with multiple peaks in

the line center, which correspond to substantial non-coherent scattering components from a disk

viewed at low inclinations19, 20. A circumbinary disk would have an inner radius truncated at 1.7

times of the binary separation21, and its corresponding projected velocity is 1√
1.7

≈ 0.75 times

that of the visible star, i.e., about 40 km/s. The emission line from such a circumbinary disk will

be confined to within ±40 km/s, yet the observed line is three times wider with wings extended

beyond ±300 km/s. This supports that the Hα emission line does not come from a circumbinary

disk, but from a disk around the BH.

The BH mass can be obtained directly using the Hα emission line to trace the motion of
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the BH, and comparing it to the motion of the visible star. The radial velocities of the Hα line,

after folding with the period of 78.9 days, can be fitted with a sinusoid in anti-phase with the visible

star. However, the line center may contain contributions from circumbinary materials and accretion

spots that are not symmetrically centered on the BH, which would decrease the inferred BH motion

and should be masked out. We experimented with different masking schemes, and found that

unmasked line wings below 1/3 height can effectively avoid contamination from the line center,

yielding a semi-amplitudeKα = 6.4±0.8 km/s and a center-of-mass velocity V0α = 28.9±0.6 km/s

(see Fig. 2a and Methods). Note that V0α is always consistent with V0B in different schemes,

confirming that the Hα emission is indeed associated with the B star-BH binary. The BH mass MBH

can then be estimated as MBH/MB = KB/Kα, resulting in MBH = 68+11
−13M⊙ (with 90% errors

derived from the measurement uncertainties on KB, Kα and MB). Such a BH mass corresponds to

an inclination of i ≈ 15◦–18◦, fully consistent with the wine-bottle shape of the Hα emission line.

The LIGO/Virgo experiments have revealed BHs with masses of several tens of solar masses7, 8,

much higher than previously-known Galactic BHs1, 2. The discovery of a 70 M⊙ BH in LB-1

would confirm their existence in our Milky Way. However, while massive stellar BHs are expected

to predominantly form in low metallicity (i.e., < 0.2Z⊙) environments22, 23, LB-1 has a B-star

companion with solar metallicity. This would strongly challenge current stellar evolution models,

which only allow for the formation of BHs up to 25 M⊙ at solar metallicity9–11. Formation of more

massive BHs would require reducing mass loss rates substantially at solar metallicity, and even

require overcoming the well-accepted pair-instability pulsations that severely limit BH masses (see

Methods). These strongly-expected limits may suggest that the BH in LB-1 was not formed from

the collapse of only one star. One alternative is that LB-1 was initially a triple system, in which

the observed B star was the outermost, least massive component, and the present BH was formed

by the initial inner binary. Potentially a 70 M⊙ BH could be formed after a “normal” stellar-mass

BH merges into the core of a &60 M⊙ star during common-envelope evolution, followed by the

accretion of the massive star onto its BH core (see Methods). An exciting possibility is that the

dark mass still contains two BHs, orbiting each other in an inner binary to which the observed star

is a tertiary companion. This requires individual BH masses approaching 35 M⊙, posing less of

a challenge for their formation. In this case, this system would provide a laboratory to test the

formation of binary BHs in triple systems.
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Our interpretation of an extraordinary 70 M⊙ dark mass in LB-1 will be undermined if the

companion mass is substantially lower than the 8M⊙ for the adopted B sub-giant model. To

accommodate its high luminosity, we need to place the B sub-giant at a distance about twice as

large as the 2.14+0.51
−0.35 kpc inferred from the Gaia DR2 astrometry24. On one hand, this discrepancy

could naturally be explained because the binary wobble of the optical component of LB-1 is not

accounted for by that Gaia DR2 single-star astrometric solution. In particular, the Gaia DR2

solution shows exceptionally large covariances, suggesting that it is unwise to simply interpret

the astrometry as an accurate parallax measurement (see Methods). On the other hand, if LB-1

were indeed at that close distance, with E(B-V) = 0.41 mag for the appropriate line of sight at

that distance18, its derived luminosity L would be as low as about 1/6 of the luminosity for the B

sub-giant (see Methods). Taking L ∝ MT 4
eff/g, and retaining the same Teff and logg, this implies

a stellar mass M about 1/6 of our adopted value, and consequently a BH mass of about 10M⊙. No

natural stellar models would be consistent with such a companion, but we cannot rule out that the

star is in an extreme disequilibrium state (caused for example by a recent outburst or supernova

blast from the primary). However, the star should return to equilibrium on the Kelvin-Helmholtz

timescale, which for the inferred parameters is about 104 years. Thus, this low mass companion, if

true, represents a short-lived disequilibrium phase that would be extremely unlikely to observe.

This wide BH binary shows a surprisingly circular orbit that may shed light on its formation

process. Circularization of such a wide binary with tidal torque would take at least a Hubble time,

much longer than its age (see Methods). This rules out the possibility that LB-1 was formed by

dynamical capture of the B-type star by a BH evolved from a low metallicity star or by a binary BH,

as such a capture would result in an eccentric orbit that could not have been circularized by now.

In the case of a co-evolving binary, this indicates a very small natal kick along with negligible

mass loss when the BH formed. Assuming an initial e = 0 and a symmetric mass ejection of

∆M from the BH progenitor, the resultant orbit will have e = ∆M/(MB + MBH). Given that

e = 0.03± 0.01, ∆M must be less than 4% of the remaining mass, thus helping to form a massive

BH. Stellar evolution theories predict fallback supernova and direct BH formation under certain

conditions, and some observations might be in favor of their existence, but direct evidence is still

lacking despite observational efforts made in the last decade25, 26. LB-1 may be direct evidence for

this process.
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Unlike every other known stellar BH, LB-1 has not been detected in X-ray observations.

We searched for X-ray emission from this system with a 10-kilo-second observation with the

Chandra X-ray Observatory, placing an upper limit for the X-ray luminosity of . 2×1031 erg/s (see

Methods). This upper limit corresponds to ∼10−9 of its Eddington luminosity, and suggests a mass

accretion rate Ṁ . 10−11 M⊙/yr for a conversion efficiency of ∼10−4 at such low luminosity27.

Such low accretion levels could be supplied by the stellar winds of the B sub-giant28. Similarly

strong Hα emission lines have been observed in some low-mass X-ray binaries in the X-ray

quiescent state29, 30, where truncated accretion disks do not extend to the innermost BH orbits,

thus preventing the emission of measurable X-ray radiation. It is long believed that BH binaries

in X-ray quiescence can be revealed through radial-velocity monitoring campaigns. The discovery

of LB-1, with properties very unlike Galactic BH X-ray binaries, provides such an example. This

suggests that future similar campaigns will probe a quiescent BH population different from the

X-ray bright one.
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Figure 1: Optical Spectra of LB-1. a, LAMOST spectrum (thin black; R ≈ 1, 800) with stellar

templates (A1: red; B3: green; offset for clarity) overplotted. b, Keck/HIRES spectrum of the

wavelength range boxed in a (black; R ≈ 60, 000) with the best TLUSTY model (green; Teff =

18, 100K, logg = 3.43, Z =Z⊙, v sin i = 10 km/s) overplotted. The 90% confidence level (CL)

errors for the model are ∆Teff = 820K and ∆logg = 0.15. Also overplotted is a comparison

model with logg = 4.75 (blue), which is the highest logg of the model grid but still lower than the

typical value (logg > 5) for a B subdwarf. The Balmer absorption lines from this model are much

wider than the observed profiles. c, Phased line profiles from LAMOST (blue), GTC (red) and

Keck (green) observations for Hα emission line, HeI λ4471 absorption line of the visible star, and

interstellar NaI absorption lines. The dashed lines are plotted to guide the eye. The binary phase φ

is for the period of P = 78.9 days.
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Figure 2: Radial motions of the visible star and the dark primary. a, Folded radial-velocity

curves and binary orbital fits for the star and the dark primary as probed by the Hα emission line.

The observed data are from LAMOST (blue), GTC (red) and Keck (green). The error bars are the

quadratic sum of the wavelength calibration uncertainty and the measurement error. The best-fit

binary orbit model for the star (purple) has parameters KB = 52.8 ± 0.7 km/s, e = 0.03 ± 0.01,

and V0B = 28.7 ± 0.5 km/s with a reduced χ2 of 2.0. The best-fit model for the Hα emission

line (orange) has parameters Kα = 6.4 ± 0.8 km/s and V0α = 28.9 ± 0.6 km/s with a reduced χ2

of 0.8. The errors quoted here are for 90% CL. The gray line with V0 = 28.8 km/s is plotted to

guide the eye. b, Residuals for the binary orbital fits to the star (top) and to the Hα emission line

(bottom). The error bars are calculated as above. c, Representative Hα emission line profile from

one Keck spectrum with high spectral resolution (R ≈ 60, 000). The wine-bottle shape is caused

by non-coherent scattering broadening for a disk viewed nearly pole-on. The red line represents a

full width at half maximum of about 240 km/s.
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Methods

Discovery and follow up observations of LB-1 LB-1 was among the targets in the LAMOST

K2-C0 time domain survey (H.Z. et al., in preparation), which is designed to obtain time domain

spectra with LAMOST low resolution spectrograph (R ≈ 1,800 over the wavelength range of

3,690–9,100 Å) in a 20 square degree plate chosen from the Kepler K2 Campaign 0. The plate was

observed in 26 different nights from 2016 Nov. 7 to 2018 Mar. 23. The spectra were then reduced

with the LAMOST 2D pipeline31.

One aim of the survey is to evaluate the binary mass function PK3/2πG =
M3

BH

(MB+MBH)2
sin3 i

once the complete radial-velocity curve can be derived from the time domain spectral data. Here

P is orbital period, K is radial-velocity semi-amplitude, and i is viewing angle. Since the mass

of the brighter star in the binary can be estimated from its spectrum, the orbital eccentricity e and

radial-velocity semi-amplitude K can be calculated directly from the radial-velocity curve, then

the mass of the dimmer companion can be solved immediately from the mass function given the

viewing angle. About two hundreds out of 3,000 target stars turn out to be spectroscopic binaries

with periodic radial-velocity variation. Among these, LB-1 exhibits periodic radial-velocity variations

with K=52.8 km/s, P=78.9 days, and e ≃0.

From the relative line strength of HeI λ4471 vs. MgII λ4481, we classify the star in LB-1 as

a B3V star. Hot subdwarf B stars (sdBs) show spectra like B dwarfs but with much lower mass.

sdBs have a shorter Balmer series (n≈12), and the HeI λ4387 is much weaker than HeI λ447132.

In LB-1, the Balmer series extend to more than n≈15, which is at the blue end of LAMOST

spectral range, and the HeI λ4387 is clearly stronger than HeI λ4471. In addition, the LAMOST

spectra show negligible NII λ3995 and very weak SiIII λ4552 lines, which means LB-1 can not

be a supergiant (e.g., low mass post-AGB star). The information of the LAMOST observations is

listed in Extended Data Table 1.

We carried out follow up optical spectroscopic observations of LB-1 with GTC/OSIRIS

from 2017 Dec. 2 to 2018 Apr. 26, using the 0′′.4 slit with three gratings, R2500V, R2500R

and R2500I. The spectral coverage for the OSIRIS data is 450–1,000 nm, with a resolution of ≈

3,750. The spectra were reduced in a standard way with IRAF. After the bias subtraction and flat
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correction, the dispersion correction was carried out based on the line lists given in the manual

of OSIRIS (http://www.gtc.iac.es/instruments/osiris/). Raw spectra were then extracted with an

aperture size of ≈ 6′′, and a standard star taken at each night was used to make the flux calibration.

The wavelength calibration uncertainty is about 0.02 Å (≈ 1.2 km/s). The information of the

observations is listed in Extended Data Table 1.

In the period from 2017 Dec. 9 to 2018 Jan. 6, we observed LB-1 on seven individual

nights using the Keck I telescope and HIRES spectrometer. Exposure times range from 300 to

600 seconds, and the signal to noise ratio (S/N) per pixel near 550 nm ranges from 80 to 120.

Observations were collected using the standard California Planet Search (CPS) setup33, resulting

in a spectral resolution of ≈ 60,000. The C2 decker (0′′.87×14′′.0) was used to allow for removal

of night sky line emission features and scattered moonlight. We listed the information of the

observations in Extended Data Table 1.

Stellar Properties from high resolution spectra To derive the effective temperature (Teff) and

surface gravity (logg) of LB-1, we used the spectral libraries BSTAR200634, which is based on the

computer program TLUSTY16. The full set of the BSTAR2006 models cover Teff from 15,000 to

30,000 K with a step of 1,000 K, and logg from 1.75 to 4.75 with a step of 0.25 dex. These models

include six initial metallicities; a micro-turbulence velocity of 2 km/s is adopted.

The Keck spectra are used to estimate the stellar atmosphere parameters. Using the lines

SiII λ3856 and SiII λ5041, we measured the line width broadened by the stellar rotation. The

program iacob broad was used in this step, which is available from homepage of the IACOB

project (http://research.iac.es/proyecto/iacob/). The v sin i is estimated as ≈ 10 km/s, twice that

of the spectral resolution (R ≈ 60,000) of Keck.

We performed a rotational and instrumental convolution of the original theoretical libraries

to v sin i = 10 km/s and FWHM = 0.1 Å. Both the theoretical and observed spectra from the Keck

telescope were normalized to a continuum level of unity. We used a Bayesian approach to estimate

the stellar atmosphere parameters, in which each theoretical parameters is weighed by e−χ2/2,

where χ2 is the goodness fit of the model. We obtained a metallicity of 1.18 ± 0.18 Z⊙ with

SiII λ4131 and 1.17±0.11 Z⊙ with MgII λ4481. Finally, using the theoretical grids with solar
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abundances and the observed hydrogen lines in range of 3750–4150 Å, we obtained Teff as 18,104

± 825 K and logg as 3.43 ± 0.15 dex. The errors were estimated using the standard deviations of

the fitting results from the seven Keck spectra. These parameters prove that the optical counterpart

is a B star.

Assuming the solar metallicity (Z = 0.017), we determined the mass, radius, and age of the

B star. The evolutionary grid of Teff and logg for stars with different initial masses were constructed

based on the PARSEC isochrones17, 35 (Downloaded from http://stev.oapd.inaf.it/cgi-bin/cmd 3.1.).

In the Extended Data Figure 1, stars located in the ellipse are considered as acceptable for the B

star. We downloaded the sequences of isochrones at small steps of ∆(log t) = 0.0025, and

collected the points inside the ellipse as acceptable models. Finally, we find that at Z = 0.017, the

physical solutions (with 90% uncertainty) consistent with our constraints are: MB = 8.2+0.9
−1.2 M⊙;

RB = 9± 2R⊙; tage = 35+13
−7 Myr.

Distance and interstellar extinction The spectral energy distribution (SED) of LB-1 was extracted

from the UCAC4 catalog, 2MASS and AllWISE data release. We used the acceptable PARSEC

models to construct a grid of SEDs. By comparing the observed SEDs with the PARSEC ones,

we fitted the distance and E(B − V ) simultaneously. Considering that the accretion disk and

circumbinary materials can result in radiation in the near- and mid-infrared bands37, only the U ,

B, V magnitudes were used in the fitting. We presented the fitting results in Extended Data Figure

2. The excesses can be found from KS to W4 bands. The best fit yields the reddening value as

E(B − V ) = 0.55 ± 0.03 mag and the distance as 4.23 ± 0.24 kpc (with 90% uncertainty). For

such a distance, the Pan-STARRS 3D dust map returns an extinction of E(B−V ) ≈ 0.6, consistent

with our fitting result (Extended Data Figure 3).

The distance derived above is larger than the 2.14+0.51
−0.35 kpc value from the Gaia data release

2 catalog24. This is possibly because the Gaia DR2 solution has assumed a single star for LB-1,

and has mistaken the binary motion itself as part of the parallax, making the parallax and distance

unreliable. In Gaia DR2, the covariances between position parameters (ra, dec) and parallax of

LB-1 are much higher than other sources. The covariance dec parallax corr from the Gaia DR2 is

−0.62, higher than the absolute value of dec parallax corr of 98% sources between 10 and 13 mag

(G band). The covariance of ra parallax corr is 0.54 which is also higher than that of 96% sources
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in the magnitude range.

Given the mode of operation of the Gaia astrometric instrument and the actual along scan

single-CCD measurement error of 0.3 mas36, an astrometric error as small as 0.1 mas per visit can

be anticipated for the 11.5 magnitude of LB-1 (in each visit a star is measured on up to 9 different

astrometric CCDs). Given its location, a total of about 80 of such visits are predicted throughout

the Gaia 5-yr nominal mission lifetime (ending in September 2019). With these numbers in mind,

there is actual hope that the 0.4 mas astrometric orbital motion can be uncovered once the single

vist data are properly reduced and/or made available in the future.

The hot sdB scenario can also be rejected from the distance. The Gaia DR2 catalogue shows

hot subluminous stars have an absolute magnitude around 5 mag38. With the G-band magnitude

of 11.918 mag for LB-1, the distance estimation for a sdB would be less than 240 pc. This is

seriously inconsistent with the Gaia DR2 distance and our fitting result, also inconsistent with the

clear diffuse interstellar bands (DiBs)39 in the spectra which should be much shallower for a sdB

at this distance.

As a test, we calculated the radius and mass of the B star using the observational parameters,

including the V -band magnitude (≈ 11.51 mag), the reddening value, the distance, the effective

temperature, and the surface gravity. With the bolometric correction40 being ≈ −1.6, the bolometric

magnitude of the B star is MB,bol = −4.93 mag, and the bolometric luminosity is calculated

as LB,bol = L⊙,bol × 100.4(M⊙,bol−MB,bol) ≈ 7, 000 L⊙,bol. The solar bolometric magnitude and

luminosity are 4.74 mag and 3.828 × 1033 erg/s, respectively. The radius is calculated as RB =
√

LB,bol

4πσT 4 ≈ 8.7 R⊙, and the mass is calculated as MB =
gR2

B

G
≈ 7.5M⊙. Both of them are consistent

with the PARSEC model fitting results. The Kelvin-Helmholtz Timescale tKH = GM2

RL
is defined

as the time required to radiate current gravitational binding energy at its current luminosity, and

represents the timescale for a star in disequilibrium to adjust back to equilibrium. In our case, tKH

is around 2.7× 104 yr.

However, if we use the Gaia distance (≈ 2.14 kpc), which corresponds to an extinction of

E(B − V ) = 0.41 from Pan-STARRS 3D dust map, the bolometric luminosity can be estimated

as LB,bol ≈ 1,300 L⊙,bol. The radius and the mass would be RB ≈ 3.6 R⊙ and MB ≈ 1.3M⊙,
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respectively. Using these parameters, the Kelvin-Helmholtz Timescale would be tKH ≈ 1.1 × 104

yr.

Furthermore, if we use the Gaia distance (≈ 2.14 kpc) and assume an extinction of E(B −

V ) = 0.55 as derived from fitting the B subgiant model to the spectral energy distribution, the

bolometric luminosity can be estimated as LB,bol ≈ 1,900 L⊙,bol. The radius and the mass would be

RB ≈ 4.4 R⊙ and MB ≈ 1.9M⊙, respectively. The Kelvin-Helmholtz Timescale is then estimated

as tKH ≈ 1.4× 104 yr.

We conclude that if we place the companion at the Gaia DR2 distance, with E(B − V )

ranging from 0.41 mag to 0.55 mag, we will get a star in disequilibrium, with the Kelvin-Helmholtz

timescale of 11,000–14,000 years.

Radial velocity measurements For the B star, we measured the radial velocity by matching the

model templates using the cross correlation method. For LAMOST data, we removed the Balmer

lines and DiBs, and fitted the spectrum ranging from 4,000 to 5,200 Å. For GTC and Keck data,

we removed DiB and used the spectrum ranging from 4,000 to 6,000 Å.

Firstly, we Doppler shifted the best theoretical spectra to a set of radial velocities. Secondly,

we calculated the χ2 by comparing these model spectra with those observed ones, and used the

radial velocity with minimum χ2 as the best estimation. Also, we calculated the systematic

shifts between these exposures by comparing the absorption band of water vapor in range of

6,850–6,940 Å. We first used the first exposure as the reference spectra, and calculated the radial-velocity

shift by cross correlating it with the other exposures. Then we used the exposure with the median

value of shift as new reference spectra, performed the calculation again, and obtained the final

systematic shifts.

One key step before radial velocity measurements is to justify whether the Hα emission is

around the BH or from a circumbinary disk. For a circumbinary disk, the Keplerian velocity is
√

G(MBH +MB)/1.7a, where a is the binary separation and 1.7a is the typical inner radius21. The

velocity of the visible star is
√

G(MBH +MB)/aB, where aB is the distance from the visible star

to the barycenter (aB = MBH

MB+MBH

a). The projected velocity at the inner radius of the circumbinary

disk would be ≈
1√
1.7

≈ 0.75 times that of the visible star (52.8 km/s), i.e., about 40 km/s.
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However, the observed line is three times wider with an FWHM of 240 km/s. This means that the

Hα emission line comes from a disk around the BH rather than a circumbinary disk.

While it is clear that the Hα emission line is associated with the BH, it is tricky to track

the BH motion through the Hα line, because the complex structures in the line center may be

contaminated by components such as circumbinary materials, gravitationally focused accretion

streams, and hot spots in the accretion disk. These components are not symmetrically centered

on the BH, hence their motion will not be in exact phase with that of the BH disk,and will act to

decrease the BH motion if we include them in the calculation. Note that the line profiles can not

be fitted with simple analytic forms such as Gaussian or Lorentzian profiles, so we decided instead

to infer radial velocities using the barycenter of the line.

First we calculate the barycenter of the whole Hα profile. The derived radial velocities

over two years can be folded with the orbital period, resulting in a sinusoid with an amplitude of

1.7± 0.9 km/s in anti-phase with the B star velocity. Such a line velocity, if it should represent the

BH motion, would suggest a mass ratio of 20–67 given MBH/MB = KB/Kα, hence a BH mass of

140–600M⊙. Second we mask out the core of the line profile and calculate the barycenter from

the unmasked line wings. We start by measuring the barycenter from velocity bands constrained

between 1/2 FWHM up to 500 km/s, on each side of the line profile. This results in Kα = 4.4 ±

0.7 km/s, as shown in Extended Data Table 2. This demonstrates that the line center is indeed

contaminated by components not centered on BH that will act to decrease the measured BH motion.

To explore the systematics of the derived BH motion, we experiment with different mask

limits with inner edges in the range corresponding to from 2/3 to 1/5 heights of the Hα emission

line, and inner edges at 120/140/170/200 km/s from the barycenter. The resulting amplitudes vary

between 3.9 ± 0.8 km/s and 6.7 ± 1.0 km/s as summarized in Extended Data Table 2. It is clear

from the table that the anti-phased Hα motion has larger amplitudes as we move away from the

central part of the line, but begin to saturate after 1/3 height. This suggests that the unmasked line

wings outside 1/3 height can largely avoid contamination from the line center, and we decide to

use the 1/3 height masking scheme to represent the BH motion, i.e., Kα = 6.4±0.8 km/s as shown

in Table 2 and Table 3 again.
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If we had many more high resolution Keck/HIRES spectra covering all binary phases, we

would be able to reconstruct the morphology of the accretion disk and other components, giving a

detailed description of its asymmetric shape and sizes. This of course will give us a more accurate

determination of the BH mass, and we will pursue such a (costly) follow-up campaign in the

coming years. Our current LAMOST/GTC/Keck observations, however, are enough for a rough

estimate of the BH mass already.

For LAMOST and GTC observations, there are multiple exposures during a single night. We

used the averaged value as the radial velocity at that day. The measurement error was estimated

using the standard deviation of multi-exposures during one night. For Keck observations, we use

the measurement error, which is about 1 km/s. The system difference between days are calibrated

by both the telluric emission (for LAMOST) or absorption(for GTC and Keck) lines and the diffuse

interstellar absorption lines/bands at NaID lines, 5782Å and 6284Å. The uncertainty for the radial

velocity is the quadratic sum of the wavelength calibration uncertainty and the measurement error.

Period and orbital parameters Using the Lomb-Scargle41, 42 method, we measured the period of

LB-1 with the radial-velocity curve from LAMOST, GTC, and Keck observations. The period is

78.9±0.3 day (Extended Data Figure 4). We fitted the radial velocity data of the B star (54 points)

and Hα line wing (54 points) simultaneously, using the equation

V = K[cos(θ + ω) + e cos(ω)] + V0, (1)

where K is the simi-amplitude of the radial velocity curve, θ is the phase angle, ω is the longitude of

periastron, and V0 is the system velocity. The best fit parameters (i.e., eccentricity e, semi-amplitude

KB and Kα, velocity V0B and V0α) are listed in Extended Data Table 3. The best-fit for the B star

motion has a reduced χ2 of 2.0, while the best-fit for the Hα motion (for the 1/3 height scheme)

has a reduced χ2 of 0.8. To obtain the uncertainty of one parameter, we fixed other parameters at

the best fit values and re-did the fitting. Then, the uncertainty of that parameter was estimated with

∆ χ2 = 2.706 (in 90% confidence) and ∆ χ2 = 6.635 (in 99% confidence), respectively.

We compared the fittings of the Hα velocity using one sinusoid and one horizontal line. For

the sinusoid fitting, there are two free parameters (i.e., Kα and V0α); for the line fitting, there is

one free parameter (i.e., V0α). Therefore, the degree of freedom for the two fittings are 52 and 53,
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respectively. The χ2 for the two fittings are 109.49 and 219.24, respectively. Using the F-test, we

find the sinusoid fitting is statistically significantly better than the line fitting (P < 0.01%).

The separation a can be calculated from the Kepler’s Third Law a = [G(MB+MBH)P 2

4π2 ]
1

3 for

each pair of MBH and MB. The ranges of the separation a and the semi-major axis aB are shown in

Extended Data Figures 5 and 6 respectively under the limitations of MB and MBH, which clearly

show LB-1 is a wide binary.

BH formation

Individual stellar progenitor scenario First, let us assume that the dark object in LB-1 is a

single BH formed from an individual star. Its mass depends on three major factors: (i) initial

stellar mass; (ii) wind mass loss during the star’s life; (iii) BH formation process during the final

core-collapse/supernova. The initial stellar mass sets an upper limit to the BH mass, while winds

and collapse/explosion processes are responsible for removing stellar mass and reducing the BH

mass. All these aspects of stellar evolution are highly uncertain, which allows for a wide range of

possibilities when it comes to BH mass calculations.

Guided by observations (or the lack thereof), we constructed a set of models based on stellar

evolution calculations43 to estimate the maximum BH mass at solar metallicity (Z = 0.017). We

allow stars to form with initial masses as high as 200 M⊙; at least one such star has already been

discovered44. Recent observations indicate that stellar winds may be overestimated by as much as

a factor of 10 for some massive stars45, compared with standard values46; hence, in our calculation

we reduce the theoretically predicted wind mass-loss rates by a factor of 2 to 3. At the end of a

massive star’s life, we allow for direct BH formation with no supernova explosion or associated

mass loss25. Such mode of BH formation is supported by the low peculiar velocities observed in

the most massive Galactic BHs known to-date47, and by the claimed observation of a luminous

star disappearing without a supernova26. Finally, we also eliminate mass loss from pair-instability

pulsations during the supernova explosion; we note that, despite the large amount of theoretical

work on pair-instability mass loss and supernovae, so far there is no observational evidence to

support this mechanism.

We have incorporated all these options into the population synthesis code StarTrack48, 49
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to estimate the maximum BH mass in the Galaxy. In Extended Data Figure 7, we present our

models that challenge the currently accepted paradigms, but that can possibly explain the BH mass

in LB-1. Our first model (magenta line) shows the standard prediction of BH masses as a function

of initial stellar masses. BHs form only with relatively low masses of ≈ 5–15 M⊙, as a result

of strong stellar winds that remove most of the stellar mass before core-collapse. In our second

model (blue line), we reduce stellar winds by a factor of 2. This reduction factor is applied to

all types of winds: from O stars, B supergiants, luminous blue variables, and Wolf-Rayet stars9.

As a result, the BH mass can reach ≈30 M⊙. In our third model (red line), we reduce winds

by a factor of 3. The maximum BH mass is now ≈60 M⊙, from a star with an initial mass of

120 M⊙, which loses half of its mass in stellar winds before direct collapse. Stars more massive

than 120 M⊙ grow massive Helium cores (MHe > 45 M⊙) and are thus subject to pair-instability

pulsation supernova mass losses. Precise estimates of this type of mass loss are model-dependent,

but most models agree that the BH remnants are less massive than ≈50 M⊙
50, 51. In our model, BHs

formed after pair-instability pulsations are assumed to be always less massive than ≈40 M⊙
52. In

our fourth model (black line), we not only reduce stellar winds by a factor of 3, but also turn-off

pair-instability pulsation supernova mass losses. The maximum BH mass reaches ≈80 M⊙, for

a maximum initial stellar mass of 200 M⊙: enough to explain the dark mass in LB-1 as a single

stellar BH.

Binary progenitor scenario Let us suppose now that the progenitor of LB-1 consisted of a

massive (but not extraordinary) binary, with two stars of initial mass &60 M⊙ each, and a much

less massive third star (the B3 star we see today) orbiting around the O-star pair. The more massive

of the two O stars evolves first, forming a BH with a mass ≈10–20 M⊙ at solar metallicity. If the

other O star has a mass &3.5 times the BH mass, the system is thought to evolve through a common

envelope phase22, 53, 54. Let us then assume that the BH sinks towards the core of the O star before

the common envelope is ejected. What happens at this stage is an open question; one scenario

is that the core is tidally disrupted and accreted by the inspiralling BH, in a regime of radiatively

inefficient (advective), hyper-critical accretion55–57. If the radiative and mechanical feedback from

the accreting BH is not sufficient to destroy the star, or is collimated along the polar direction, most

of the O-star envelope may end up also being accreted into the BH core58, in a kind of triggered

direct collapse. The final result may be a single BH with a mass >60 M⊙ with the B3 star still
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orbiting around it.

An alternative scenario is that the O-star plus BH binary system is too wide to undergo a

common envelope phase, or the mass ratio is not high enough, and the system evolves instead in

a slower spiral-in54. At the end of this phase, the O star will also collapse into a BH, without

a merger. The dark mass measured in LB-1 may be a binary BH, with masses of ≈35 M⊙ for

each component. The advantage of this scenario is that the formation of two 35 M⊙ BHs from

two massive stars is less problematic than the formation of a 70 M⊙ BH from a single star. In this

scenario, too, the B3 optical counterpart is the small third component of the triple stellar system.

Circularization timescale Tidal interactions in a binary tend to circularize its initially eccentric

orbit. To estimate the circularization timescale of a B-BH binary, we use the MESA code59 to

simulate the orbital evolution. The B star mass and the orbital period are initially set to be 8 M⊙ and

79 days, respectively. During the evolution, we follow the evolution of the B star from the zero-age

main-sequence phase to the age of 50 Myr when the star slightly evolves off the main-sequence

stage. Since such a B star has a radiative envelope, we adopt the mechanism involving dynamical

tides with radiative damping60 to deal with the binary orbital evolution.

We vary the initial orbital eccentricity in the range of 0.1–0.5 and the initial BH mass in

the range of 40–1,000 M⊙ to test their influence on orbital circularization. Our calculations show

that the orbital eccentricity of the binary is nearly unchanged and the corresponding circularization

timescale is always larger than 1014 years over the whole 50 Myr. It is argued that a significant

enhancement of radiative damping is required to match the observed eccentricity-period distribution

in late-type binaries61, so our calculated circularization timescale may be overestimated in some

extent. Since the B star (with a radius less than its current value of 9 ± 2R⊙) is well within its

Roche lobe (with a size of 73–71 R⊙ corresponding to the BH mass of 10–100 M⊙), tides are not

expected to be important independent of the mechanism behind tidal damping.

If decreasing the masses of both components of the binary system by a factor of 6, the BH’s

companion is now a low-mass (≈1.3 M⊙) star with a convective envelope. We then apply the

mechanism involving equilibrium tide with convective damping60 to simulate the binary orbital

evolution. We find that the circularization timescale is still larger than 1012 years before the
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low-mass star climbs to the red giant branch (corresponding to the radius of ≈3 R⊙).

X-ray luminosity and Eddington ratio. We obtained a 10-ks DDT observation with Chandra

ACIS-S3 on 2018 Jan 13. We reprocessed the data with CIAO version 4.10; we used the CIAO task

scrflux for flux measurements. We do not detect the source, which places a 90% upper limit to the

0.5–7 keV net count rate of ≈3.8 ×10−4 ct s−1.

In order to convert this limit to an unabsorbed flux limit, we used a grid of plausible values of

photon index and column density. The typical power-law photon index of black hole binaries in the

quiescent state is Γ ∼ 1.5–2.162, 63. To constrain the column density, we used the best-fitting value

of the optical reddening E(B-V) = 0.55 mag. Applying the standard linear relation between the

hydrogen column density NH and the reddening64 NH = 5.8 × 1021/E(B − V ), we obtain NH ≈

3.2× 1021 cm−2. A similar result (NH ≈ (3.1–3.8)× 1021 cm−2) is obtained from the best-fitting

relation between AV ≡ 3.1E(B−V ) and hydrogen column density65, 66. The line-of-sight Galactic

column density in the direction of LB-1 provides a plausible upper limit67 NH ≈ 4.7× 1021 cm−2.

The saturated relation68 provides a lower limit NH ≈ 1.0 × 1021 cm−2 for E(B − V ) = 0.55

mag. The result of our analysis over this range of photon indices and column densities is that

LB-1 is not detected down to a 90% upper limit of f0.3−8 < 3.9 × 10−15 erg cm−2 s−1 for the

absorbed flux in the 0.3–8 keV band (assuming the softest slope), or f0.3−8 < 4.8 × 10−15 erg

cm−2 s−1 (assuming the hardest slope). At the adopted distance of 4.23 kpc, the 90% upper limits

for the emitted luminosity are L0.3−8 < 1.2 × 1031 erg s−1 (assuming the lowest limit of NH), or

L0.3−8 < 1.8× 1031 erg s−1 (assuming the highest value of NH). Finally, for our inferred BH mass

of ≈70 M⊙, this corresponds to an Eddington ratio LX/LEdd . 2× 10−9. This is the lowest value

recorded for a quiescent Galactic BH binary62, 69, 70, and similar or lower than in any quiescent

nuclear BH in nearby galaxies71–73.

At very low accretion rates, the radiative efficiency η is reduced: a standard scaling for the

ADAF model74, 75 is η ∼ 10ṁ where ṁ ≡ Ṁ/ṀEdd and ṀEdd ≡ LEdd/(0.1c
2). Here Ṁ is

the accretion rate, ṀEdd is the Eddington accretion rate, and ṁ is the Eddington ratio. A similar

scaling of η ≈ 0.7 (α/0.3) (L/LEdd)
1/2 was derived76. An even steeper dependence of η with

accretion rate (η ∝ ṁ1.3, L ∝ ṁ2.3) was proposed77, 78. Thus, our observed Eddington ratio

LX/LEdd . 2× 10−9 suggests Ṁ . 10−5ṀEdd ≈ 10−11M⊙ yr−1 (with an uncertainty of a factor
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Extended Data Table 1. Spectral Observations of LB-1.

Instrument Date Exposure Time Phase RVB RV a

α

(second) (km/s) (km/s)

(1) (2) (3) (4) (5) (6)

LAMOST

2016.11.07 600×15 0.47 39.5±3.4 20.9±4.9

2016.11.08 600×11 0.48 39.0±3.4 21.0±4.9

2016.11.23 600×12 0.67 −11.5±3.3 29.8±4.9

2016.11.26 600×13 0.71 −22.2±3.3 32.7±4.9

2016.11.28 600×13 0.74 −19.8±3.4 32.1±4.8

2016.12.01 600×14 0.77 −22.6±3.3 31.8±4.8

2016.12.02 600×14 0.79 −24.6±3.4 31.5±4.8

2016.12.05 600×12 0.83 −14.0±3.6 29.6±4.8

2016.12.06 600×7 0.84 −11.3±3.3 31.5±4.9

2016.12.17 600×13 0.98 18.0±3.4 28.8±4.9

2016.12.26 600×9 0.09 58.7±4.9 25.5±5.0

2017.01.04 600×8 0.20 79.6±3.4 24.2±4.9

2017.01.05 600×8 0.22 82.3±3.4 24.0±4.9

2017.01.06 600×7 0.23 81.9±4.0 21.1±4.9

2017.11.18 600×8 0.24 81.0±3.2 22.4±4.9

2017.11.19 600×8 0.25 85.2±3.6 21.7±4.9

2017.11.24 600×10 0.31 78.1±3.4 21.7±4.9

2017.12.11 600×11 0.53 20.5±3.7 23.7±4.9

2017.12.17 600×8 0.60 −2.9±3.4 24.9±4.9

2017.12.21 600×8 0.66 −11.6±3.5 25.7±4.9

2018.01.16 600×8 0.98 26.7±3.4 24.6±4.9

2018.01.23 600×9 0.07 49.6±3.8 25.0±4.9

2018.01.24 600×8 0.09 51.3±3.8 23.9±4.9

2018.02.12 600×8 0.33 79.1±3.4 22.2±4.9

2018.02.22 600×7 0.45 45.7±3.3 23.6±4.9

2018.03.23 600×3 0.82 −22.3±3.4 26.4±5.0

GTC

2017.12.02 V 30×3, R 30×3, I 30×3 0.41 59.5±1.5 24.7±2.8

2017.12.07 V 30×3, R 30×3, I 30×3 0.47 42.5±1.2 27.1±3.0

2017.12.10 V 30×3, R 30×3, I 30×3 0.52 26.6±1.3 33.5±2.9

2017.12.17 V 30×3, R 30×3, I 30×3 0.61 0.1±1.3 33.3±3.5

2017.12.21 V 30×3, R 30×3, I 30×3 0.66 −18.2±4.1 33.5±3.5

2017.12.26 V 30×3, R 30×3, I 30×3 0.72 −22.7±1.7 35.4±3.0

2017.12.31 V 30×3, R 30×3, I 30×3 0.79 −18.0±8.5 37.5±3.4

2018.01.03 V 30×3, R 30×3, I 30×3 0.83 −17.6±1.4 29.8±3.1

2018.01.10 V 30×3, R 30×3, I 30×3 0.91 3.7±3.0 32.2±2.9

2018.01.16 V 30×3, R 30×3, I 30×3 0.99 23.8±3.7 29.4±3.4

2018.01.20 V 30×3, R 30×3, I 30×3 0.04 42.6±1.2 28.3±3.3

2018.01.27 V 30×3, R 30×3, I 30×3 0.13 62.5±3.2 28.4±3.2

2018.01.28 V 30×3, R 30×3, I 30×3 0.14 69.7±4.4 22.2±3.1

2018.02.15 V 30×3, R 30×3, I 30×3 0.37 72.7±2.1 25.8±3.0

2018.03.04 V 30×3, R 30×3, I 30×3 0.58 6.1±1.2 30.8±3.3

2018.03.13 V 30×3, R 30×3, I 30×3 0.70 −19.8±1.7 29.8±2.9

2018.03.16 V 30×3, R 30×3, I 30×3 0.74 −28.9±1.2 33.9±3.2

2018.03.24 V 30×6, R 30×6, I 30×6 0.84 −25.2±1.5 29.5±2.9

2018.03.29 V 30×3, R 30×3, I 30×3 0.90 1.6±1.4 35.4±3.6

2018.04.07 V 30×3, R 30×3, I 30×3 0.01 29.0±2.8 29.5±3.0

2018.04.26 V 30×3, R 30×3, I 30×3 0.26 77.4±3.7 22.6±3.0

Keck

2017.12.04 600 0.44 52.8±1.4 26.0±1.5

2017.12.09 300 0.50 32.7±1.4 26.5±1.4

2017.12.10 300 0.51 28.2±1.4 31.7±1.5

2017.12.24 600 0.69 −18.3±1.4 37.2±1.3

2017.12.29 600 0.75 −22.9±1.4 37.0±1.4

2017.12.31 500 0.78 −21.8±1.4 36.2±1.3

2018.01.06 600 0.86 −13.5±1.4 34.5±1.3

See Methods section ’Discovery and follow up observations of LB-1’, ’Radial velocity measurements’ for details.

a The RVα corresponds to the 1/3 height method.
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Extended Data Table 2. Hα measurement with different methods.

Width/method Kα(km/s) Uncertainty V0α(km/s) Uncertainty

(90% ) (99% ) (90% ) (99% )

2/3 Height 3.9 0.8 1.2 29.1 0.5 0.9

1/2 Height 4.4 0.7 1.0 28.7 0.5 0.7

1/3 Height 6.4 0.8 1.3 28.9 0.6 1.0

1/4 Height 5.8 1.0 1.5 29.2 0.7 1.1

1/5 Height 6.7 1.0 1.6 29.1 0.8 1.2

120km/s 4.1 0.8 1.2 29.2 0.6 0.9

140km/s 4.8 0.8 1.3 29.0 0.6 0.9

170km/s 5.5 0.8 1.3 29.3 0.6 1.0

200km/s 6.0 0.9 1.4 29.4 0.7 1.1

Bary center (no mask) 1.7 0.9 1.5 29.5 0.7 1.1

See Methods section ’Radial-velocity measurements’ for details.
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Extended Data Table 3. Orbital parameters of LB-1.

Parameter Value Uncertainty

(90% confidence) (99% confidence)

(1) (2) (3) (4)

e 0.03 0.01 0.01

KB 52.8 0.7 1.0

V0B 28.7 0.5 0.7

Ka
α 6.4 0.8 1.3

V a
0α 28.9 0.6 1.0

See Methods section ’Period and orbital parameters’ for details.

a The K0α and V0α correspond to the 1/3 height method.
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Extended Data Figure 1. Using isochrones from PARSEC models. The grid of logg and Teff

was constructed using the PARSEC isochrones. The black ellipse indicates 90% uncertainty of the

Teff and logg of the B star; all points inside it are considered as acceptable models for the B star.
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Extended Data Figure 2. SED fitting results for the B star. a, E(B-V) versus distance, both of

which are from the SED fitting. The colorbar indicates the χ2. b, Distance versus stellar mass,

the latter being determined from the acceptable PARSEC models of the B star. The colour bar

indicates χ2. c, E(B-V) versus distance. The colour bar indicates logg. d, Several examples of the

SED fitting. The black squares are the data from the UCAC4, 2MASS, and AllWISE catalogues.

See Methods for details.
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Extended Data Figure 3. Variation of E(B − V ) with distance in the direction of LB-1. The

black circles represent the extinction values corresponding to different distances from 3D dust map.

The green points are the extinction and distances from SED fitting for each acceptable model of

the B star. The red cross marks the extinction value from the 3D dust map at 4.23 kpc, while the

red dashed line shows the Gaia distance of 2.14 kpc.
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Extended Data Figure 4. Search for periodicities for LB-1 with the Lomb-Scargle method.

The radial-velocity curve from LAMOST, GTC and Keck observations is being used here. The

highest peak corresponds to the orbital period of ≈ 78.9 day.
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Extended Data Figure 5. Separation a as a function of MB and MBH. Here a is calculated from

Keplers third law for each pair of MB (B-star mass) and MBH (black-hole mass). The contours and

colours both represent the values of a. The white dashed lines in the contour plot outline a valid

region of the separation of the binary system. It comes from the limitations for the MB (7∼9.1 M⊙)

and the MBH (55∼79 M⊙).
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Extended Data Figure 6. Semi-major axis of the orbit of the B star aB as a function of MB and

MBH. Here aB is calculated from Keplers third law for each pair of MB (B-star mass) and MBH

(black-hole mass). The contours and colours both represent the values of aB. The white dashed

lines in the contour plot outline a valid region for the semi-major axis of the B star. It comes from

the limitations for the MB (7∼9.1 M⊙) and the MBH (55∼79 M⊙).
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Extended Data Figure 7. Black hole mass versus initial mass in the zero age main sequence

(ZAMS) for single stars. For standard wind mass loss prescriptions only low-mass black holes

are predicted: MBH < 15M⊙. However, for reduced wind mass loss much heavier black holes are

formed: MBH = 30M⊙ for winds reduced to 50%, and MBH = 60M⊙ for winds reduced to 30%

of the standard values. Note that to reach MBH = 80M⊙ it is needed to switch off pair-instability

pulsation supernovae (PPSN) or pair-instability supernovae (PSN), which severely limit black hole

masses.
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