
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 8, AUGUST 2006 1749

A Wideband 77-GHz, 17.5-dBm Fully Integrated
Power Amplifier in Silicon

Abbas Komijani, Student Member, IEEE, and Ali Hajimiri, Member, IEEE

Abstract—A 77-GHz, +17.5 dBm power amplifier (PA) with
fully integrated 50-
 input and output matching and fabricated
in a 0.12- m SiGe BiCMOS process is presented. The PA achieves
a peak power gain of 17 dB and a maximum single-ended output
power of 17.5 dBm with 12.8% of power-added efficiency (PAE).
It has a 3-dB bandwidth of 15 GHz and draws 165 mA from a
1.8-V supply. Conductor-backed coplanar waveguide (CBCPW) is
used as the transmission line structure resulting in large isolation
between adjacent lines, enabling integration of the PA in an area of
0.6 mm2. By using a separate image-rejection filter incorporated
before the PA, the rejection at IF frequency of 25 GHz is improved
by 35 dB, helping to keep the PA design wideband.

Index Terms—BiCMOS, integrated circuits, microstrip, phased
arrays, power amplifiers, radio transmitters, SiGe, silicon, silicon
germanium.

I. INTRODUCTION

T
HE millimeter-wave (mm-wave) bands offer exciting

opportunities for various applications such as short-range

communication (e.g., the 60-GHz band) and automotive radar

(e.g., the 77-GHz band) [1]–[3]. There have been several recent

efforts to implement critical mm-wave blocks such as low-noise

amplifiers (LNAs), voltage-controlled oscillators (VCOs), and

power amplifiers (PAs) in silicon [2]–[5]. Penetration of silicon

integrated circuits to these bands can bring the unchallenged

reign of compound semiconductors at these frequencies to an

end. Although the performance of silicon-based implementa-

tions needs to improve to match that offered by III-V-based

technologies, the true strength of silicon lies in its unmatched

capability for integration, which will enable a new level of com-

plexity encompassing microwave, analog, and digital blocks

[6]–[8]. This unprecedented integration will result in new system

level architectures at these frequencies previously impractical

using lower yield compound semiconductor processes, resulting

in globally optimum solutions in terms of cost and performance.

Perhaps the most challenging building block at mm-wave fre-

quencies is the power amplifier (PA). Prior work in silicon PAs

involved a 77-GHz SiGe amplifier with 15.5-dBm output power

and 5% power-added efficiency (PAE) [4]. Also in [2] and [3] two

SiGe PAs at 77 GHz and 60 GHz with 10–13-dBm output power

and 3%–4% PAE have been reported. In [9], by using multiple

parallel transistors, the output power level has been increased to

21 dBm, but the PAE has still been limited to 3%. Although by

using power combining further improvement in the output power

is possible, the main challenge for the silicon implementation so

far has been improving the PAE. As a comparison point at similar
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Fig. 1. (a) Typical range and resolution for a long-range car radar. (b) The
required main beam width to be able to resolve two cars in two adjacent lanes.
(c) Calculation of the directivity of the transceiver.

frequencies, PAs using III-V technologies deliver 23–28 dBm of

output power with 20%–40% of PAE [10]–[13].

In this paper, a 77-GHz power amplifier with 17.5 dBm of

output power and a peak PAE of 13% is described. The amplifier

represents the best combination of output power and efficiency

reportedforanintegratedsilicon-basedPA.InSectionII, theauto-

motiveradarsysteminwhichtheamplifieris intendedtobeusedis

briefly described, and the required amplifier output power is cal-

culated. In Section III, the choice of transmission line structure to

provide a high level of on-chip isolation is discussed. The large

degree of isolation offered by this transmission line is necessary

for compact realization of the PA and facilitates integration of the

PA with sensitive elements of a single-chip transceiver. Design of

the amplifier is detailed in Section IV, followed by measurement

results presented in Section V.

II. THE REQUIRED AMPLIFIER POWER FOR AUTOMOTIVE

RADAR APPLICATION

In long-range radar for cruise control and collision avoidance,

the need to detect distant vehicles and to discriminate between

closelyspacedvehiclesdemandsasmallradiationbeamwidthand

fine beam steering resolution. As shown in Fig. 1, the required

azimuthal resolution for the long-range radar should be around

3 . To avoid reflections from entrance of tunnels and bridges,

the required beam width in the elevation plane (vertical plane)

should also be less than 3 . The corresponding system directivity,

as shown in Fig. 1, will be 36 dBi. For traditional car radar ap-

plications, the beam steering has been achieved using a dielec-

tric lens or a Rotman lens [14]–[17]. Instead, in the radar system
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for which the amplifier in this work is designed, a phased-array

transceiver with beam steering in both transmit and receive (TX

and RX) paths is employed [7], [8]. In this case, the directivity

requirement of each path is relaxed; hence reducing the required

array aperture. The 18-dB required directivity at each path can be

achieved with 16 elements providing 12 dB of array directivity

combined with a typical directivity of a patch or dipole antenna

( 5 dB). Since there is no need to scan in the elevation plane,

the required directivity in the elevation can be realized by nar-

rowing the antenna beam in the elevation plane (e.g., using se-

rially fed patches [17]–[19]). In this case, just four elements for

beam steering in the azimuthal plane will be enough.

Assuming 18 dB of directivity for transmit and receive paths

and 3 dB of insertion loss for the antenna, if each power ampli-

fier in the 4-element phased array generates 15 dBm of output

power, the received signal power calculated using the standard

radar equation will be 116 dBm [20]. In this case, the target is

assumed to have a radar cross section of 1 m located at 100

meters away. Using a 4-element phased array system with a

6-dB signal-to-noise ratio (SNR) improvement due to the un-

correlated noise of different antennas and assuming a receiver

noise figure of 8 dB [8], the radar SNR for a 300-MHz band-

width will be 11 dB. By using multiple scans or pseudo-noise

(PN) modulation [16], the radar sensitivity can be improved.

By employing a commonly used frequency modulated

continuous wave (FM-CW) or pulse-Doppler technique, the

transmitter power amplifier will experience a constant-envelope

signal, relaxing its linearity requirements.

III. CONDUCTOR-BACKED COPLANAR WAVEGUIDE

AS THE TRANSMISSION LINE STRUCTURE

The conductor-backed coplanar waveguide (CBCPW) struc-

ture, shown in Fig. 2, is used for impedance matching. The use of

vias to connect back and side ground planes eliminates unwanted

parallel-plate modes [21]. Fig. 2(b) shows the magnetic field dis-

tribution in the transmission line, simulated with Ansoft HFSS

3-D field solver [22]. The characteristic impedance of the trans-

mission line in this simulation is 50 . The bottom plate carries

very little current (small tangential component of the magnetic

field) while the side-shield carries most of the return current.

The tub shape reduces surface wave propagation in the silicon

substrate, improving isolation between lines. Fig. 3 shows the

isolation between two adjacent 50- lines versus their center-to-

center spacing simulated using IE3D [23]. The lines are im-

plemented using the top three metals of the process. The side

shields increase isolation by more than 20 dB. The coupling in

the secondary line is larger in the direction opposite to the wave

direction of the primary line.

There is a tradeoff between the isolation of lines and their

insertion loss. Since the side-shield increases unit length capac-

itance, in order to keep the characteristic impedance constant,

the width of the line should be reduced. This increases the loss

of the transmission line. The 50- line without shield has a loss

of 0.5 dB/mm, while the loss for the line with side-shield is

0.75 dB/mm. Since the PA is intended to be used in a single-chip

transceiver [7], [8], it is imperative to minimize the interference

generated by the high-power PA to sensitive elements such as

the on-chip VCO. Therefore, the transmission lines were always

Fig. 2. (a) Conductor-backed coplanar waveguidemicrostrip tub transmission
line structure used for impedance matching in the amplifier. (b) The simulated
magnetic field distribution of the structure, showing most of the return current
is coming from the side shields.

used with side-shield. The unloaded quality factor of the trans-

mission line can be found by the expression

(1)

where is the guided wavelength and is the attenuation in

nepers per meter. The corresponding quality factor for this par-

ticular CBCPW line at 77 GHz is 9.2.

IV. AMPLIFIER DESIGN

The power amplifier has been designed in a 0.12- m

BiCMOS process featuring SiGe transistors with

GHz and GHz [24]. The process has five metal

layers with three copper bottom layers, and two thick 1.25 m

and 4 m aluminum layers as top metals. The breakdown

voltages of the bipolar transistors are and

. The substrate resistivity is 14 cm.

A. Circuit Architecture

The schematic of the amplifier is shown in Fig. 4. The am-

plifier consists of four gain stages, where the output stage is

designed for maximum efficiency and the other stages are de-

signed for maximum gain. The last three stages use one, two,

and four identical transistor cells, respectively. This geometric
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Fig. 3. The simulated isolation between two side-by-side 400-�m, 50-
 CBCPW lines (W = 5 �m, S = 7:5 �m) and two microstrip lines with the same
characteristic impedance and length (W = 13 �m).

Fig. 4. Schematic of the 77-GHz power amplifier including element values.

scaling of transistor size from each stage to the next ensures

that as long as the preceding stages have at least 3 dB of gain

the output transistors will enter compression first. All the tran-

sistors have single emitter stripe, use minimum emitter width of

0.12 m, and have two base and two collector contacts (CBEBC

configuration). For a reliable operation, the collector junction

has more than the minimum number of possible contacts (three

rows of long rectangular vias in parallel). The amplifier is biased

in class-AB mode. With 1.2 mA of current per 1 m of emitter

length, the transistors are biased at their maximum .

When the PA is driven into saturation, the collector voltage

of the output transistor can exceed twice the supply voltage.

For a large base impedance, the low open-base collector-emitter

breakdown voltage, , of 1.7 V limits the possible supply

voltage to about 0.9 V. In a normal silicon transistor, the max-

imum dielectric breakdown field and velocity saturation pose

a fundamental breakdown voltage versus speed tradeoff [25],

[26]. The limitation is set by the impact ionization ef-

fect, in which the generation of electron–hole pairs by acceler-

ated electrons constitute the necessary base recombination cur-

rent. If the base is driven with a lower source impedance, the

extra generated majority carriers will be extracted from the base

and hence the breakdown voltage will increase [27]. In this case,

the voltage swing is limited by rather than . In

the process used, for equal to 300- , is around

4 V [3]. Consequently, the bias circuitry is designed to pro-

vide a base resistance of 300 at low frequencies, while the

matching networks provide the necessary low base impedance

at high frequencies. Stress tests for advanced SiGe technologies

have shown a slight degradation of forward DC current gain at

very low bias currents [28], [29]. Since the transistors in the

PA are biased with a high current density, the operation above

will not create a reliability issue. Degradation of the

transistors’ high-frequency performance is not observed [30].

B. Design of the Matching Networks

The matching networks use series transmission lines and par-

allel shorted stubs for power matching between stages as shown

in Fig. 4. At the input of the last stage an open stub provides a

lower matching network loss than a shorted stub does. At the

output of second stage, the same objective was achieved with a

parallel MIM capacitor .

The capacitors at the end of shorted parallel stubs are in par-

allel with a series RC network (which for simplicity is not shown

in Fig. 4). A proper choice of R and C reduces the gain of the

amplifier at low frequencies, enhancing stability.

The optimum impedance at the collector of each stage is de-

termined with a large-signal power match. Similar to the design

presented in [31], a load-pull simulation is performed to find the

bestloadforthetransistor.Fortheoutputstage,thispointischosen

to maximize the efficiency and for the other stages to maximize

the gain. Fig. 5 shows the result of the load-pull simulations for

all of the four stages. These gain and PAE contours have peak

values of 6 dB and 30%, and step sizes of 1 dB and 4%, respec-

tively.The contours becomedenseras wemove toward theoutput

stage, indicating larger sensitivity of the amplifier to matching er-

rors. The contours are opened and this sensitivity is reduced if a

lower characteristic impedance is used for the transmission lines

at the output stage. By having an initial assessment for the losses

in the matching network, the load-pull simulations also provide

an estimation for the transistor size. The exact size of the tran-

sistor is chosen by iterating through the design procedure after

the matching network is designed and its corresponding insertion

loss is determined. By knowing the insertion loss of the matching

networks, the transistor sizes are scaled such that they can pro-

vide the necessary output power for the next stage (or the output
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Fig. 5. Load-pull simulation of the four stages of the power amplifier, together
with the actual realized load impedances.

load).Unlike the linear load-linematching techniquedescribed in

[32] and used in [4], the large-signal load-pull methodology for

choosing transistor size and optimum load impedance captures

the large-signal nonlinear behavior of the transistor, as depicted

in the noncircular shape of the contours of Fig. 5. The constant

gain and output power contours for a transistor with linear param-

eters have a circular shape [20].

The realized impedance is not located exactly at the peak of

the contours. This is most evident in the output stage where the

realized load provides a PAE that is 4% lower than the maximum

possible PAE. This is because the optimum load impedance

is not the only constraint in the design of the matching net-

work; loss of the matching network also needs to be minimized.

Similar to the design presented in [31], a weighted least-mean-

square optimization with gradient-descent scheme was utilized

to choose the length and characteristic impedance of the lines.

The optimization goal was to minimize the weighted sum of the

squares of the distance to the optimum load point and the loss in

the matching network. Therefore, for having a reasonable pas-

sive efficiency, the realized load is not exactly at the center of

load pull contours.

C. Output Stage Power Combining

When the power level of the output stage of a PA is increased,

many parallel transistors can be used to generate the output

power. This reduces the size of each transistor, and hence the

compact lumped model of the transistor becomes more accu-

rate. Division of the power generation core into smaller cells has

additional advantages in terms of uniform on-chip heat distribu-

tion and also relaxed impedance transformation ratio [33], but

necessitates the use of a power-combining structure. As shown

in Fig. 4, this was done in the output stage of the PA.

In power-combining circuits with hybrid or corporate com-

biners, the power-combining network is matched to each tran-

Fig. 6. (a) Power combining without individual branch match, but satisfying
global match to the load. (b) Scattering behavior for one of the incident waves
at the combining point. (c) Scattering behavior when all the branches are driven
in-phase. (d) Cancellation of branch reflection through superposition and sym-
metry.

sistor cell [34]. In this case, the output power degradation due

to individual device failure will be graceful [35]. In a low-yield

compound III-V process, there is a chance that one of the tran-

sistor cells in the power-combining network will fail to operate

properly. In a silicon process with a high yield, the extra con-

straint of individual match can be traded for a simpler power-

combining network with lower loss and, hence, higher ampli-

fier efficiency. As shown in Fig. 6, as long as there is a global

match between load and effective parallel impedance of all the

branches, there will not be any reflection at the combining node.

In Fig. 6, is the incident wave in branch , and is the

reflected wave in branch caused by the incident wave in branch

. Using Kirchhoff’s Current Law (KCL), it can be shown that

(2)

Therefore, when all the branches are driven in-phase, due to

superposition, reflection of each branch is canceled out. In other

words, simply by connecting different branches and having a

global power match, there would be no power loss due to reflec-

tion. By eliminating the complex corporate power-combining

network, the passive loss is significantly reduced.

D. Simulation and Layout Methodology

The die photo of the amplifier is shown in Fig. 7. The cir-

cuit was simulated in ADS [36]. Electromagnetic simulations

using IE3D [23] were performed to design the coplanar tapers

and verify transmission line models and nonidealities, such as

bends and T-junctions. Modal analysis of the combining stage

using the method described in [37] showed no sign of odd-mode

instability.
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Fig. 7. Die micrograph of the 77-GHz power amplifier, chip size:
1:35 � 0:45 mm .

Fig. 8. Layout of one of the output parallel branches consisting of two transis-
tors (depicted as Q in the amplifier schematic and layout).

Parasitic capacitors are extracted on local nodes where the ca-

pacitance is not part of the distributed transmission-line struc-

ture. These nodes include connections to transistors, where the

signal line is closer to the substrate. Parasitic collector-base ca-

pacitance is very important as it will be multiplied by the Miller

factor and will appear at the input or might even cause oscilla-

tion. A careful layout minimizes the overlap of the collector and

base connections.

The largest ratio of parasitic capacitance to device capaci-

tance (around 60%) occurs at the output of the first stage, with

16.5 fF of parasitic capacitance. The layout of one of the output

stage parallel branches is shown in Fig. 8. Each transistor has

two base and collector contacts, where the spacing between tran-

sistors is dictated by design rules. Instead of a larger transistor

with 32- m emitter length, which has a lower , two 18- m

parallel transistors are used.

E. Transmitter Image-Rejection Filter

The power amplifier is designed to be used in a 77-GHz super-

heterodyne transmitter employing 26 GHz as the IF frequency

[7]. In this case, the upconversion from 26 GHz to 77 GHz

is done with a double-sideband mixer and the image signal at

26 GHz needs to be attenuated. While this can be achieved by

making the PA narrowband, a better approach is to design broad-

band RF stages that are immune to process variations and use a

separate image rejection filter. The notch frequency in the filter

is controlled by the physical length of the transmission lines,

which is set by lithography. Therefore, a third-order high-pass

Chebyshev-I filter was designed and incorporated prior to the

PA. Fig. 9(a) shows the schematic of the image-rejection filter.

By using perfectly shorted parallel stubs, the attenuation of the

filter at 26 GHz was 18 dB. By adding small capacitors to the

end of the parallel stubs, a notch was introduced at the image

frequency and the rejection of the filter was increased to 35 dB.

To test the filter separately, a test structure was fabricated and

connected to GSG pads through tapered lines [Fig. 9(b)]. Mea-

surement results of the filter test structure shown in Fig. 9(c)

and (d) reveal a good match with the simulation results. The in-

sertion loss of the filter at 77 GHz, tested separately in a wave-

guide-based setup, is 2 dB.

V. MEASUREMENT RESULTS

The small-signal gain of the amplifier has been measured with

an HP 8757E scalar network analyzer. The network analyzer

sweeps the output frequency of a high-power W-band back-

wave oscillator (BWO) from Resonance Instruments Inc. This

is done with a 705B millimeter-wave sweeper from Micro-Now

Instrument Company. The signal is fed through a WR-10 wave-

guide to a Pico-Probe WR-10 GSG probe. To calibrate the net-

work analyzer, first a thru measurement was done and then the

thru was replaced by the PA.

The BWO output power changes with frequency. To measure

large-signal parameters of the amplifier, as shown in Fig. 10,

a variable attenuator (Millitech DRA-10-R000) with Agilent

W8486A W-band power sensor was used. The loss of the probe

was measured and de-embedded.

The simulated and measured small-signal gain of the stand-

alone PA is shown in Fig. 11. The amplifier has a peak gain of

17 dB around 75 GHz. Normally, the W-band waveguide mea-

surement setup is used for the 75–110-GHz band. The TE10

mode cutoff frequency for this waveguide is 59 GHz, and it will

not significantly affect the measurement results in the 65–75

GHz range. The amplifier has a 3-dB bandwidth of at least

15 GHz and has more than 6 dB gain up to 92 GHz. An accept-

able match between simulated and measured results is observed.

The ripple in the gain measurement is due to the BWO output

power fluctuations and detector nonlinearity in the scalar net-

work analyzer.

The large-signal parameters of the amplifier are measured

and plotted in Fig. 12. This measurement is done with a supply

voltage of 1.5 V. The amplifier can generate up to 16 dBm of

output power, with a compressed gain of 10 dB. A peak PAE

of 12.8% is achieved at the peak output power. The output-re-

ferred 1-dB compression point of the amplifier is 14.5 dBm.

Additional gain and power in the input stages force the output

stage to compress first.

The variation of the saturated output power and amplifier

PAE versus supply voltage is measured and shown in Fig. 13.

Here the amplifier is driven with a constant 6-dBm input

power. Peak output power of 17.5 dBm can be generated with a

supply voltage of 1.8 V. The amplifier reliably operates above

the limit with no performance degradation observed

during measurements.

The measured saturated power, gain, and PAE of the am-

plifier versus frequency are shown in Fig. 14. In this case the

supply voltage is 1.5 V. Peak power and maximum PAE happen

at 77 GHz, showing the effectiveness of the large-signal power

match design methodology outlined in Section IV-B. The mea-

sured performance of the amplifier is summarized in Table I.

VI. CONCLUSION

Conductor-backed coplanar waveguide (CBCPW) structure

with a high degree of on-chip isolation has been used to make a
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Fig. 9. (a) Schematic of the transmitter IF filter. (b) Layout of the filter test structure. (c) Simulated and measured reflection coefficient (S ). (d) Transmission
coefficient (S ) of the filter test structure.

Fig. 10. Measurement setup for the large-signal characterization of the PA.

Fig. 11. Small-signal gain (S ) of the amplifier simulated and measured
between 65 and 100 GHz.

77-GHz power amplifier, fully integrated in a 0.12- m BiCMOS

SiGe process. The use of side-shields improves the on-chip

isolation between adjacent parallel transmission lines by more

than 20 dB. This large isolation enables tight meandering of

the transmission lines, resulting in a small area of 0.6 mm for

the amplifier. It also facilitates the realization of a single-chip

77-GHz transceiver with on-chip power amplifiers co-integrated

Fig. 12. Measured large-signal parameters of the amplifier at 77 GHz.

with sensitive elements, such as an on-chip VCO and antennas

[7], [8]. The amplifier has more than 6-dB small-signal gain

over a frequency range of 65–92 GHz. The measurement of the

gain at the frequencies lower than 65 GHz is limited by fre-

quency range of the waveguide measurement setup. Interstage

large-signal power matching has resulted in the peak power and

PAE occurring at the desired frequency of 77 GHz. By proper
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TABLE II
COMPARISON

Fig. 13. Measured saturated power and PAE for a supply range of 1–2.5 V.

Fig. 14. Measured saturated power, gain, and PAE versus frequency.

choice of the bias circuitry impedance in the base, the amplifier

operates reliably above the range and can be used with

a supply voltage range of 1 to 2.5 V. The amplifier achieves the

best combination of output power, efficiency, and gain using

silicon technology at mm-wave band. A comparison of the power

amplifier in this work and previous work on single-path (not

externally-combined) mm-wave power amplifiers is presented

in Table II.1

1References [2]–[4] add 3dBm to the measured output power, as two amplifiers
in parallel can deliver 3 dBm higher power to a 100-
 differential load. This
is true for any single-ended amplifier matched to a 50-
 load, therefore for
comparison this extra 3-dBm factor was not included in Table II.

TABLE I
AMPLIFIER PERFORMANCE SUMMARY
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