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A Wideband Waveguide Transition Design 
with Modified Dielectric Transformer Using 

Edge-B ased Tetrahedral Finite-Element Analysis 
Ruey-Beei  Wu 

Abstract-A waveguide transition analysis approach has been 
established to deal with arbitrary shaped three-dimensional (3-D) 
waveguide discontinuity problems, by hybridizing the edge-based 
tetrahedral finite-element method for the junction region and the 
analytic modal expansion technique for the waveguide region. 
Several unique features have been imbedded in the analysis, 
including a variational formula for the scattering coefficients, a 
modified Delaunay triangulation for the mesh generation, and 
a frontal solution technique for the sparse matrix solution. As 
a result, the analysis is verified to be accurate, versatile, and 
efficient through extensive comparisons with the theoretical and 
measurement data in the available literature. The approach is 
then applied to design a rectangular to dielectric-filled circular 
waveguide transition with less than -20 dB return loss over 
a 40% bandwidth by using a suitable modified dielectric rod 
transformer. 

I. INTRODUCTION 

IELECTRIC-FILLED circular waveguides have impor- 
tant applications in many microwave devices, e.g., iso- 

lators and phase shifters [ l ] .  In these devices, although the 
main bodies are in a circular shape, the input/output ports 
in standard rectangular waveguides are always required. In 
light of the abrupt change in the waveguide shapes and 
the constitutive dielectrics, it has been a great challenge to 
deal with such waveguide transition problems. To achieve 
good transition, the dielectric should somewhat intrude the 
rectangular waveguide portion by a certain length and with a 
suitable shape. Without available literature on this subject, the 
design of such a transition is up to now been accomplished 
mostly by trial and error, experimentally. 

In light of the vast applications, waveguide discontinuity 
problems have been dealt with by a lot of researchers for a long 
time. Traditionally, most of the investigations are based on the 
mode or field matching method originally proposed by Wexler 
121, which is basically limited to step-like discontinuities, 
say [3] ,  [4]. Recently, the numerically intensive but flexible 
finite difference time domain method has also been tried for 
waveguide junction problems [ 5 ] .  However, the applications 
have been plagued by its difficulty in modeling the curved 
boundary and its inaccuracy in handling waveguide boundary 
conditions. 
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Among the available techniques, the finite-element method 
(FEM) is probably the best one due to its capability of analyz- 
ing three-dimensional (3-D) waveguide junctions which may 
be inhomogeneously loaded and of arbitrary shape. In order to 
confine the solution region, FEM should be hybridized with 
some analytic expression, such as the eigenmode expansion, 
to include the field in the unbounded exterior region. In the 
beginning, the hybrid FEM was implemented to deal with 
scattering of dielectric coated cylinders [6] and propagation 
characteristics of dielectric waveguides [7]. Later on, it was 
applied to model two-dimensional (2-D) planar MMIC devices 
[8] and more recently, 3-D general waveguide discontinuity 
problems [9], [lo]. Together with the development of the edge 
elements [ 111 to eliminate the occurrence of spurious modes, 
the hybrid FEM has become a reliable method to deal with 
many practical 3-D problems. Based on this method, computer 
software has been developed and is available commercially 
[121. 

Even so. some fundamental problems still exist in FEM. One 
of them is the stationary property of the formulation. Basically, 
FEM relies on a functional which is in a form similar to the 
variational principle proposed by Chen et al. [13]. It is not 
difficult to show that the functional is stationary. However, as 
pointed out in [ 1 11, it remains unresolved whether the formula 
to calculate the desired physical parameters, e.g., the scattering 
coefficients, is stationary. As a result, the accuracy of the 
calculated results may not be the optimum one obtainable in 
the linear function space constructed to by the basis functions. 

Another problem is how to achieve a reliable mesh gen- 
eration for general 3-D objects. Although seldom addressed 
in previous literature, the difficulty in automatic tetrahedral 
mesh generation and the related database management has 
strongly hindered the popularity of FEM. The Delaunay tri- 
angulation [ 141 has already been successfully employed for 
2-D electromagnetic problems [ 151. Although theoretically 
straightforward [ 161, the generalization to 3-D problems is 
not so fruitful in practical applications. Some previous trail 
of this algorithm reveals, but fails to prove, that the resultant 
mesh includes a lot of undesired “sliver” elements and is not 
the optimal one for 3-D FEM applications. Furthermore, the 
algorithm for more complicated structures usually ends as a 
vain attempt due to the finite digit accuracy in numerical 
computation [ 171. 

This paper starts in Section I1 with a unified variational 
reaction derivation to the functional. which is then discretized 
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the tangential fields in the waveguide region (z < 0) can be 
expressed as 

30 
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Fig. I .  A typical waveguide discontinuity problem 

to yield a matrix equation for the unknown field by the edge- 
based tetrahedral FEM. Not only the functional but also the 
calculation formula for the desired scattering parameters are 
shown to be stationary over the solution field. Section I11 
describes a modified Delaunay triangulation algorithm for the 
automatic mesh generation. A program suitable for general 3- 
D waveguide junction problems has been !iuccessfully tailored 
in the personal computer. Accuracy of the program is vali- 
dated in Section IV via comparisons with available theoretical 
and/or experimental results in the literature. The design of a 
waveguide junction with a dielectric transformer is discussed 
in Section V. Finally, conclusions are drawn in Section VI. 

where is the tangential field distribution of the 
nth mode, yTL is the complex propagation constant, att is 
the given modal amplitude of incident wave, and a:; is the 
unknown modal amplitude of reflected wave. Due to the modal 
orthogonality 

+ zfn, x . 2 (ir = s,,,,, (4) I 
the unknown reflected wave can be obtained from the electric 
field along the boundary (z = 0) by 

The remaining requirement that .r' = 6 in the junction region 
is very difficult to accomplish analytically. Instead, we employ 

11. VARIATIONAL, REACTION FORMULATION a lot of testing functions and require that for each one of 
them, the weighted average over the junction region 12 should 
be zero, ie, Fig. 1 shows a typical waveguide discontinuity problem 

where several waveguides are connected through a junction 
region which may be of arbitrary shape and may include 
several different materials. To facilitate the formulation, con- 

(6) 

sider the simplest case of a single waveguide. With exact field 
distribution in the waveguide junction inaccessible, numerical 
methods should be resorted to in finding the approximate 
solution. 

Being not exact, the approximate field solution (I?? I?) must 
be supported by some source distribution 

It is required that the supporting source should be as close 
as possible to the exact source (&. Go), which is zero ev- 
erywhere in the present scattering problem. The requirement, 
however, is difficult to realize since it involves two vector 
continuums in an unbounded region. 

Fruitful constraints which reduce the requirement to a 
smaller region will make the numerical solution easier and 
more accurate. Several formulations are possible, among 
which the 2-formulation is to be emp1o:yed here. We ene rce  

= 6 everywhere, which is possi_ble if we treat E as 
unknown and express l? in terms of E by 

Note that -7 is expressible in terms of E' as depicted by (1) 
and (2). Intuitively, the supporting error source ;can be made 
arbitrarily small almost everywhere if sufficient number of 
testing functions are Lmposed. 

After substituting J by ( I )  and taking integration by part, 
(6) can be expressed by 

The field on the waveguide boundary can be written in 
terms of the boundary E' field by (3) and ( 5 ) .  The contribution 
from the remaining boundary, the metallic boundary of the 
junction region, is zero since the tangential electric field is 
enforced zero there. The_ 6 field in the function region can be 
expressed in terms of E by (2). As a result, (7) becomes 

It is not difficult to enforce that .r' := 6 inside the semi- 
infinitely long waveguide region. By the modal expansion, 
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which should equal zero for all the testing funcGons. 

can yield a variational equation 
Noting that (8) is symmetric with respect to E and E " ,  we 

6L 10; 

which can be shown to be stationary at the exact field I&. 
The functional L is expressed solely in terms of the unknown 
electric field in the solution region. In contrast to the previous 
approach, say [SI, [9], the present variational equation does not 
include any waveguide modal coefficients as the unknowns. 
Instead, the scattering parameters are obtained from the electric 
field a posteriori by employing (5). 

It is interesting to depgt _the physical meaning of the 
functional L. The term I ( E ,  E )  is zero since (8) is zero for 
arbitrary gu, including the case that ,@ = E'. The second term 
in the right-hand side of (9) is directly related to the modal 
amplitudes of the reflected waves as evident by ( 5 ) .  As a result, 
stationary L implies stationary reflection coefficient 5'11. This 
contradicts the statement made by Bossavit [ 111 claiming that 
the general variational principle proposed by Chen et al. [ 131 
is useless. 

The generalization of the expression (8) or (9) to junction 
structures consisting of more than one waveguides is straight- 
forward. To take into account the contributions from all the 
waveguides, one needs only to include a summation sign over 
all the waveguide ports in front of the series summation of 
the boundary terms. 

It is a typical procedure to discretize (8) for numerical 
computation by the edge-based tetrahedral FEM [SI. The 
junction region is first divided into many small tetrahedral 
e!ements, Inside each tetrahedral element, the electric fields 
E and E" are expanded by the Whitney one-form edge basis 
[ l l ]  with the tangential field components along the six edges 
as the expansion coefficients. Substituting the fields into (8) 
and taking the volume and surface integrals, (8) can be cast 
into the form 

where ea and e denote the column vectors _constitute_d by 
all the expansion coefficients for the fields E" and E ,  re- 
spectively, superscript T denotes the transpose, G is a sparse 
matrix obtained by assembling the volume integrals over all 
the elements, and b, is a column vector formed by assembling 
the surface integrals taken between the n th waveguide mode 
and all those elements with one facet on the waveguide 
boundary. Since (10) is zero for arbitrary ea, the resultant 
column vector inside the bracket should be zero. This yields 
a matrix equation for the unknown column vector e.  

111. MESH GENERATION 

It is well accepted that the tetrahedral elements are the 
most versatile to model 3-D structures of arbitrary shapes. 

However, how to devise a reliable and robust algorithm which 
can automatically generate a good mesh for almost any 3-D 
structures has been always a bothersome problem. 

The Voronoi tessellation and the dual Delaunay triangulation 
have proven the existence of the best mesh for given nodal 
points in the 2-D plane [14]. The resultant mesh is optimum 
in the sense that its minimum angle is maximum among all 
the possible meshes connecting those nodal points. It is well 
known that a mesh T is a Delaunay triangulation if and only if 
no vertex is interior to any circumcircle of a triangle of T .  This 
property can be generalized to 3-D space if the triangle and 
circumcircle are replaced by the tetrahedron and circumsphere, 
respectively. 

Based on this property, a node insertion algorithm which is 
easy to understand and applicable to multidimensional space 
has been proposed [16]. The algorithm starts from an initial 
mesh consisting of a single tetrahedron which is large enough 
to enclose all the nodal points. New internal tetrahedra are 
formed as the points are entered into the mesh one at a time. 
At each stage of the process, a search is made for all current 
tetrahedra to identify those whose circumspheres contain the 
newly entered point, say P. The union of all such tetrahedra 
forms what we call an insertion polyhedron, which contains 
P but no other previously inserted points in its interior. 
All the tetrahedra in the insertion polyhedron are cleared to 
make room for the new created tetrahedra which are formed 
by connecting P to all triangular facets of the polyhedron. 
When combined with the tetrahedra outside the polyhedron, 
the resultant new mesh defines a Delaunay triangulation which 
contains the newly added point. The process repeats until all 
the points are included. 

Although theoretically exact, the Delaunay triangulation 
usually fails due to the existence of the nearly degenerate cases 
in practice. Degenerate cases happen when the newly inserted 
point P appears to lie very close to the circumsphere surface 
associated with a certain existing tetrahedron. Whenever the 
distance of P to any existing circumsphere is less than the 
accumulated computer truncation error, there is the danger 
of making an incorrect or inconsistent decision regarding 
rejection or selection of the tetrahedron. This in turn produces 
structural inconsistencies, ie, overlapping tetrahedra or gaps 
in the mesh, and eventually halts the triangulation process. 
Fig. 2 shows a typical example where P is close to the 
circumcircles of the triangles AADB,  ABEC, ADGE, and 
AEGF.  Structural inconsistency happens when A E G F  is 
selected while ADGE is rejected. 

A simple remedy was proposed in [17], which suggested 
a slight perturbation of the coordinates of the newly entered 
nodal point whenever the degenerate case happens. For struc- 
tures with more nodal points, it becomes more probable that 
the newly inserted point is close to the circumsphere surfaces 
of many existing tetrahedra. As a result, it is difficult to 
properly tune the point into a region away from all these 
surfaces. Furthermore, the tuned point may become close to the 
circumsphere surfaces of other tetrahedra. The tuning process 
should be tried again and again. Our practice shows that 
this remedy is unsuccessful, even when the double precision 
computation is employed. 
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existing triangles. 

Degenerate case where the new point P is close to circumcircles ( 

This analysis adopts a better strategy which enforces the 
structural consistency in the node insertion process. The strat- 
egy is as regards selecting suitable tetrahedra to form the 
insertion polyhedron for the newly inserted point P. It is 
described as follows. 

1) Allowing a suitable threshold of computation error, 
all the tetrahedra whose circumsphleres may possibly 
enclose P are activated. 

2) Starting with the tetrahedron whose circumcenter is 
closest to P ,  the insertion polyheclron grows by in- 
cluding all those activated tetrahedra which can connect 
the polyhedron by at least one surface. The remaining 
tetrahedra are isolated from the insertion polyhedron. 
They are deactivated. 

3) Check the volume of the tetrahedron formed by P and 
each triangular facet of the insertion polyhedron. If 
the volume is negative, this implies that some overlap- 
ping tetrahedra will result. in that case, the activated 
tetrahedron which contributed the triangular facet is de- 
activated. Repeat steps 2) and 3) for all those tetrahedra 
remaining activated until the volume of each new created 
tetrahedron is positive. 

This strategy assures the structural consistency of the newly 
constructed mesh in each step, although the Delaunay property 
may be slightly sacrificed. The decision regarding the selection 
or rejection does not rely solely on the Delaunay property, 
which suffers from the computer truncati,on error. Rather, it 
sticks to the structural consistency which is combinatorial and 
will not deteriorate as the node insertion proceeds. 

Roughly speaking, the Delaunay triangulation results in a 
mesh which has well proportioned lengths (areas) among the 
comprising sides (surfaces) of all the generated triangular 
(tetrahedral) elements. A triangle can be uniquely defined by 
its three side lengths. However, it is not sufficient to determine 
the tetrahedron given the areas of its four surfaces. As a result, 
the Delaunay triangulation in the 3-D case may create some 
sliver tetrahedra, in which the four facets are well proportioned 
but the volume is very small. This problem usually happens 
if there are any four nearby points which are almost, but not 
exactly, coplanar. 

To explain this occurrence, consider a simple configura- 
tion in Fig. 3 that consists of five nodal points: A(0, 0, O), 

h '  7 h -  

(a) (b) 

Fig. 3. 
(b) Bad mesh. 

Two possible mesh division for five nodal points. (a) Good mesh. 

B(2;  0; 0 ) ,  C(2;  2 ,  e ) ,  D(O; 2 ;  0 ) ,  and E(1; 1, h),  where F 

is a small positive number and h > 0. Note that the four 
points A; B, C; D are nearly coplanar. Fig. 3 shows the two 
possible mesh divisions for this configuration. One consists 
of two tetrahedra, ABDE and BCDE,  while the other has 
three tetrahedra, ACDE, ABCE, and ABCD. Obviously, the 
latter is worse since it includes a sliver tetrahedron ABCD. 
For the former mesh, it is easy to verify that the center and 
radius of the circumsphere of ABDE are (1, 1; xg) and h-20, 

respectively, where z0 = - k. The mesh will satisfy the 
Delaunay property if and only if the point C is outside of the 
circumsphere, ie, 

( 1 ) 2  + ( 1 ) 2  + (ZO - fy > ( h  - 2")2. (1 1) 

In other words, the Delaunay triangulation yields to the bad 
mesh shown in Fig. 3(b) when h > \/z and 0 < e < h - ?. 

The sliver tetrahedra are undesirable since (8) requires 
taking the curl of its edge basis and the curl may be nearly 
singular. Once the bad submesh shown in Fig. 3(b) is located 
it should be rearranged into the good submesh shown in Fig. 
3(a) [17]. More general consideration is also available for 
complicated situations where the bad submesh involves more 
than three tetrahedra [ 161. 

Iv. NUMERICAL RESULTS AND COMPARISONS 

A general waveguide transition analysis program WG2WG 
has been established to deal with electromagnetic scattering 
off an arbitrarily shaped 3-D junction between several circular 
andlor rectangular waveguides. Based on the slicing approach, 
nodal points are chosen to discretize the solution region as 
well as reasonably model the shape of the conductor and/or 
dielectric interfaces [ 171. The modified Delaunay triangulation 
is applied to construct the merh, under the constraint that no 
tetrahedron may intersect different material regions. 

Applying FEM procedure yields to a matrix equation for 
the field unknowns. As far as the scattering parameters are 
concerned, only the unknowns along the boundary are relevant. 
It will be especially advantageous to solve the matrix equation 
by the frontal solution technique [19]. All the unknown5 
interior to the solution region are eliminated rather than 
solved [7]. The final boundary matrix, being independent of 
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Fig. 4. Calculated reflection coefficient for a dielectric loaded rectangular 
waveguide. Comparisons among finite difference method. rectangular ele- 
ments based FEM [IO],  and the present analysis. 

the excitation on the waveguide ports. is LU-decomposed. 
By specifying the excitation in the right-hand vector. the 
boundary unknowns can be solved by forward and backward 
substitutions and the desired scattering matrix can be obtained. 
This approach is very efficient in memory requirement such 
that the program can be executed in almost any computer 
platform. Actually, all the following results are executed using 
a notebook IBM/PC-486 personal computer. 

The number of waveguide modes should be truncated to 
perform the numerical computations. It is well known that 
the relative convergency problem inherent in the mode match- 
ing method may happen due to truncating a double series 
expansion [3] .  This analysis suggests a natural way in the 
truncation of modes according to their cutoff frequencies, 
which can apply to not only rectangular but also circular or 
more general waveguides. In addition, it will be advantageous 
to intentionally choose the waveguide boundary plane slightly 
away from the junction region. Although this unavoidably 
enlarges the solution region, it can assure that even the 
extremely high order modes that may be excited at the junction 
plane exponentially decay to be negligible after propagating 
through this short waveguide section. As a result, several 
tens of modes are more than enough to account for all the 
higher order modes' effects, free of any relative convergency 
problem. 

Being flexible, the WG2WG program has been applied 
to analyze many waveguide discontinuity problems available 
in the literature. The comparisons have been found to be 
satisfactory; two examples will be shown here. The first 
example considers a rectangular waveguide of size 2b x b 
loaded with a material of size 0.88% x 0.399b, length 0.8b, 
and dielectric constant = 6 [ lo ,  Fig. 31. Since the structure 
can be modeled as well by rectangular mesh, both the results 
by rectangular elements based FEM and the finite difference 
method (FDM) are available in the literature [ I O ,  Fig. 51. In 

0 

Fig. 5 .  Reflection coefficient for a step transformer between WR-62 and 
circular waveguides. (a) Magnitude. (b) Phase. Comparisons among mode 
matching method, measurement (41, and the present analysis. 

the present analysis, the tetrahedral elements are employed to 
model the structure. Two meshes with division sizes similar 
to those adopted in [lo, Fig. 41 have been tried. The results 
are shown in Fig. 4 by solid and dashed curves, respectively. 
Although requiring more unknowns, the present FEM analysis 
exhibits better accuracy than its counterpart using rectangular 
elements in [lo]. Nonetheless, both methods yield almost 
identical results when using the finer mesh, in this case at 
least IS division cells per wavelength in each material over the 
frequency band of interest. This verifies the capability of the 
present analysis in dealing with the dielectric loaded junctions. 

The second example considers a transition between a WR- 
62 rectangular guide and a circular guide of diameter 19.5 
mm through an intermediate rectangular guide of size 15 
mm x 12.4 mm and length 4.35 mm [4, Fig. 31. The transition 
is designed to achieve a less than -20 dB return loss over 
an 11% bandwidth. Note that the structure can not be well 
modeled by all those methods which rely on a rectangular 
mesh. In addition, the reflection coefficient, being very small 
in a wide frequency range, can not be predicted successfully 
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Fig. 6. 
d = 0.44 in and length I a5 a parameter. (c) Reflection coefficients of three matched designs. 

Transition WR-187 to circular waveguide formed by a dielectric rod of diameter d and length I .  (a) Structure. (b) Reflection coefficients with fixed 

by numerical methods without high accuracy. The magnitude 
and phase of the calculated results by the present FEM analysis 
are shown in Fig. S(a) and (b), respectively. The dashed and 
solid curves are obtained by using the meshes of at least 15 
and 20 division cells per wavelength in the frequency band 
of interest, respectively. They are found to be in excellent 
agreement with the measured data and ithe results obtained 
by the mode matching method [4]. This example verifies the 
capability of the present analysis in dealing with junctions of 
more general shapes. 

v. WAVEGUlDE TRANSITION WITH 'TRANSFORMER 
It is much more difficult to design thse transition between 

rectangular and dielectric-filled circular waveguides. The 
abrupt change in both the dielectric constant and the 
waveguide shape makes the analysis a :great challenge. Fig. 
6(a) shows a transition design between a standard WR-187 
rectangular waveguide and a circular waveguide of diameter 
0.44 in and filled with dielectric of t, = 16. In the transition 
section, the circular dielectric rod intrudes into the rectangular 

waveguide region by a certain length I .  FEM is very suitable 
for the analysis of such a transition structure. 

The case of 1 = 0 denotes a step junction without 
transformer. As shown by the calculated results in Fig. 6(b), 
the transition is bad over the whole operating frequency 
band. An additional transformer section can greatly improve 
the transition property, as shown by the dashed curves in 
Fig. 6(b). By varying the section length, one may even 
achieve a matched design, say 1 = 0.433 in in this case, 
with zero reflection at a certain frequency. It is also possible 
to design a matched transition at other frequencies but 
choosing the diameter of the inserted rod d as another 
parameter. For example, Fig. 6(c) shows three designs 
of ( d ,  1 )  = (0.50 in. 0.480 in), (0.44 in. 0.433 in), and 
(0.38 in. 0.384 in), which are matched at 5.17 GHz, 5.72 
GHz, and 6.43 GHz, respectively. However, the bandwidth in 
which the return loss is less than -20 dB is in general small, 
about S%, by such a single transformer design. 

To achieve a wideband transition, it would be advantageous 
to consider the modified transformer design shown in Fig. 7. 
The inserted circular rod is made of an intermediate dielectric 
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Rectangular guide 
A .522x.180 inch 

=13 t; =12  

unit: inch c---c----I 
.068 ,110 

Fig. 7. A wideband transition design o f  modified transformei 

constant to provide additional impedance match. It has a step 
cut in the diameter and can be offset from the joint of the two 
metallic waveguides by a distance s .  

The original design is performed for the case s = 0 in the 
industry by trial and error [ZO]. The solid curve in Fig. 8 shows 
the theoretical results obtained by using a mesh with at least 
ten cells per material wavelength. The convergency is assured 
by the comparison with the results obtained by employing a 
finer mesh of at least 15 cells per material wavelength. 

Fig. 9 shows a 3-D plot of the finer mesh which consists of 
17 301 tetrahedra. The three different material regions in the 
original structure are intentionally dissected to provide a closer 
look. Note the coarser mesh in the rectangular waveguide 
region, where the wavelength is about three times that in the 
material. The mesh includes 18 921 unknowns, although the 
matrix actually required in the program execution is symmetric 
and of a largest dimension of 739 only. The computation time 
for the scattering matrix per frequency is about 45 min by a 
notebook IBM/PC-486 with 8 mbyte RAM. It is interesting 
to compare the computation time of the present analysis with 
that of the commercial software HFSS (121. The HFSS was 
employed for the analysis of a dual DR filter which is divided 
into 8073 tetrahedra [21]. It was reported that the computation 
time for each frequency is about 12 h on a HP-720/9000 
workstation with 128 mbyte RAM. 

The measured data [20] are also included in Fig. 8 for 
comparison. In light of the great challenge in fabrication 
control and measurement calibration for both the nonstandard 
waveguides, the measured data show reasonable agreement 

FEM A h,/10 
FEM i A  [ h , / Z O ]  1 

0 0 0 0 measurement v, 

-0 
3 0.4 
+ .- 

g 0.2 v 
12 14 16 18 20 

Frequency  (GHz) 
Fig. 8. 
structure in Fig. 7 in case of zero offset (s = 0). 

Calculated and measured reflection coefficient for the transition 

Fig. 9. Mesh for the transition structiire shown in Fig. 7 

with the theoretical results. Both the theoretical and measured 
results confirm that this design, although more complicated 
in fabrication, can provide a larger bandwidth, about 15% in 
this case. 

Furthermore, a design with even larger bandwidth can be 
accomplished by choosing a suitable offset s .  Fig. 10 shows 
the magnitude of reflection coefficient with the offset as a 
parameter. With a small offset. it seems that there are two 
resonant frequencies: one nearly fixed at 13 GHz and the other 
inversely proportional to the length of the dielectric rod in the 
rectangular waveguide portion. Increasing the offset makes the 
two resonant mechanisms close to each other and consequently 
achieves a fruitful design at s = 0.03 in. The transition has 
a less than -20 dB return loss from 12.5 GHz to 18.5 GHz, 
which already covers the whole spectrum that the waveguides 
are designed for use. At a certain offset, say s = 0.045 in, 
the transition may even become a perfect match at 14.8 GHz. 
The return loss is smaller than -30 dB over a bandwidth of 
about 1.2 GHz. 
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Fig. 10. 
with offset as a parameter. 

Reflection coefficient for the transition structure shown in Fig. 7 

VI. CONCLUSION 

This paper employs a hybrid approach lo deal with general 
3-D waveguide junction problems, by combining the FEM 
for the irregular but finite-sized transition region and the 
mode expansion technique for the regular but semi-infinitely 
long waveguides. The approach is applied to design the 
transition between rectangular and dielectric-filled circular 
waveguides. Due to the change in both the dielectric constant 
and the waveguide shape, a simple design with abrupt step 
junction always results in intolerable return loss. Extending the 
dielectric into the rectangular waveguide portion significantly 
impruveb lhe transition performance. A p e r k t  niatch design 
can even be achieved by choosing the dielectric rod of a 
suitable diameter and length. However, the. bandwidth in which 
the return loss is less than -20 dB is in general small. A 
good transition of higher bandwidth can be accomplished by 
using material of intermediate dielectric constant. Based on 
this modified transformer, a nearly full band transition design 
has been demonstrated successfully. Even in some stringent 
systems which require a -30 dB return loss, successful 
transition design can be fulfilled by the imodified transformer 
with a bandwidth of about 10%. 
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