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A Widely Linear Complex Unscented Kalman Filter
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Abstract—Conventional complex valued signal processing

algorithms assume rotation invariant (circular) signal distribu-

tions, and are thus suboptimal for real world processes which

exhibit rotation dependent distributions (noncircular). In non-

linear sequential state space estimation, noncircularity can arise

from the data, state transition model, and state and observation

noises. We provide further insight by revisiting the augmented

complex unscented Kalman filter (ACUKF) and illuminating its

operation in such scenarios. The analysis establishes a relationship

between the estimation error and the degree of second order

noncircularity (improperness) in the system for the conventional

complex unscented Kalman filter (CUKF), and is supported by

simulations on both synthetic and real world proper and improper

signals.

Index Terms—Augmented complex UKF, complex circularity,

improperness, unscented Kalman filter, widely linear Kalman
filter, widely linear model.

I. INTRODUCTION

K ALMAN filtering is a nonlinear sequential state estima-

tion technique which has found a wide range of applica-

tions and extensions, both in real- and complex-valued scenarios

, [1]. Applications of complex valued Kalman filters include

frequency estimation of time-varying signals [2] and training

of neural networks [3]. Standard complex valued approaches

have explicitly or implicitly assumed second order circularity

(properness), that is, rotation invariant data distributions. When

only second order statistics are considered, this amounts to equal

powers in the real and imaginary parts of the data. However,

real world signals have rotation dependent distributions and are

second order noncircular (improper) [4].

Problems in nonlinear state space estimation, when dealing

with noncircular signals, arise from the assumption that com-

plex second order statistics (SOS) is a simple extension of

real SOS (e.g., replace in with in .

In addition, nonlinearities in state space models may not be

differentiable in the standard Cauchy-Riemannn sense, thus

prohibiting the implementation of complex extended Kalman

filters (CEKF)s. The issues with data improperness in this con-

text are addressed by the widely linear model [1], [4], whereas

the linearisation of nonholomorphic functions is performed
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using the calculus [5]—leading to augmented (widely

linear) complex Kalman filters1 [1], [3].
Recent advances in the so called ‘augmented complex statis-

tics’ [4] have highlighted that for a general (improper) complex
vector , SOS based on the covariance matrix
is inadequate and the pseudocovariance matrix
is also required to fully capture the second order statistics. To in-
troduce an optimal second order estimator for the generality of
complex signals, consider first themean square estimator (MSE)
of a real valued random vector in terms of an observed real
vector , that is, . For zero-mean, jointly normal
and , the optimal estimator is linear, that is

(1)

where is a coefficient matrix. Standard, “strictly linear” esti-
mation in assumes the same model but with complex valued
, , and . However, observe that both the real and imag-
inary parts of the vector are real valued, and

(2)

Substituting and yields

(3)

and using (1) we obtain the widely linear complex estimator2

(4)

where the matrix comprises the coefficient matrices and

, and is the “augmented” input vector. The
full second order information is thus contained in the augmented
covariance matrix

(5)

Recently introduced widely linear adaptive filters include the
augmented complex least mean square (ACLMS) [1] and the
augmented complex recursive least squares (ACRLS) [7]. The
augmented complex Kalman filter (ACKF) and the augmented
complex extended Kalman filter (ACEKF) were introduced
in [3], while the augmented complex unscented Kalman filter
(ACUKF) was introduced in [1, Ch. 15.4] within the context
of neural network training using linear random walk state
models. The advantages of ACUKF over CUKF when dealing
with noncircular signals were illustrated, however, were not
elaborated for a general case where sources of improperness
include both the input data and system parameters.
To that end, we forgo the linear state model assumption, and

introduce ACUKF for general state space models, analyze its
performance for improper data, and illustrate its operation under
general state and observation noise (proper and improper). Illus-
trative simulations support the analysis.

1The Matlab toolbox for widely linear Kalman filters can be found at [6].

2The “widely linear” model is associated with the signal generating system,
whereas “augmented statistics” describe statistical properties of measured sig-
nals. Both the terms ‘widely linear’ and ‘augmented’ are used to name the re-
sulting algorithms—in our work we mostly use the term “augmented.”
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II. THE AUGMENTED COMPLEX UKF

The unscented Kalman filter (UKF)[8] has been proposed to
address the problems arising from the first order approxima-
tion of nonlinearities within EKFs, it approximates the statis-
tical posterior distribution rather than approximating the non-
linearity within EKF [9]. To illustrate the conventional complex
unscented transform (UT) and the augmented complex UT, con-
sider the mapping

(6)

where is a nonlinear function (holomorphicity is assumed
for clarity), is the output,
is the input with mean , covariance

, and pseudocovariance
, and . The Taylor series expansion (TSE)

of about is given by [5],

(7)

where the th order term in the TSE for about is [9]

(8)

with being the th component of . This expression is an
th order polynomial in whose coefficients are given by the
derivatives of . The mean of can be expressed as

(9)

where the th term is given by

The symbols
denote the th order central moments of the components with

. Observe that the th order term in the se-
ries for is a function of the th order central moment of
multiplied by the th derivative of . Hence if the moments
can be correctly evaluated up to the th order, the mean will
also be correct up to the th order. The covariance matrix

now becomes

and is correct if the th central moment of is correct. Within
the complex unscented transform framework, the -dimensional
random variable is approximated by a set weighted

(sigma) points , chosen so that their sample mean
and covariance are equal to the true mean and covariance .
The nonlinear function is then applied to each of these points
to generate transformed points, , with a sample mean
and covariance

which are correct up to the second order TSEs. For a second
order noncircular signal , the true output pseudocovariance

is given by

The conventional complex unscented transform [2] does not
cater for the input pseudocovariance and consequently the
output pseudocovariance, due to the method used for gener-
ating the sigma points, which are calculated as

(10)

where is the th column of the matrix square
root3 and is a scaling parameter. From (10) it is clear that the
conventional sigma points do not incorporate the input pseudo-
covariance, and to overcome this issue, we consider the “aug-
mented” sigma points given by

which are functions of the input mean, covariance and pseudo-
covariance, due to the use of the augmented covariance matrix,
and can fully propagate the second order statistics of improper
inputs. The weights associated with the augmented sigma points
are then given by4

(11)

To illustrate the benefits of the augmented complex UT
over the standard UT, consider the system defined by

, where the input is a Gaussian doubly
white random variable. Fig. 1(a) shows that for a circular input

( is the variance and
the pseudocovariance) the complex UT and the augmented

complex UT had similar performance in capturing the distribu-
tion of the output . Fig. 1(b) illustrates that for a noncircular

3If is the matrix square root of , then is the

th column of the matrix .

4The variables and are as defined in [9], and the output mean and covari-
ance are computed using the and superscripted weights, respectively.
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Fig. 1. Performance of the complex UT and augmented complex UT. (a) Cir-
cular input; (b) noncircular input.

input, , the augmented complex
UT captures the pseudocovariance of the output distribution
closely, while the complex UT maintains a circular posterior
distribution. Next, consider the state space

(12)

where , , and are the state with covariance matrix
, observed signal, state noise with covariance and obser-

vation noise with covariance respectively. In the unscented

Kalman filter framework, the vector
with covariance matrix is
normally used as the extended state vector [8], while for
ACUKF, summarised in Algorithm 1, we use the aug-

mented vector with covariance
. The novelty of ACUKF algorithm

presented in this work is that it does not assume a specific
state or observation model which makes it more general than
ACUKF presented in [1].

III. PERFORMANCE ANALYSIS OF CUKFs

Consider the complex valued scalar state space given by

(13)

(14)

where and are holomorphic nonlinear state and obser-
vation models respectively, and are the state and noisy
observation, while and are uncorrelated zero-mean white
complex-valued state and observation noises respectively. The
state noise has variance and pseudocovari-
ance , while the measurement noise has
a variance and pseudocovariance

. The unscented Kalman filter uses the update expres-
sion (15) to compute the estimate of the state,

Algorithm 1 The augmented complex unscented Kalman filter

Initialize with

Calculate sigma points

where .

Compute predictions

Measurement update

(15)

that is

(16)

where is the Kalman gain. The state estimate comprises of a
prediction term, , and a weighted innovation term,

.
Substituting the state (13) in to the observation (14) gives

(17)

Let , then the TSE of the function
about can be written as

(18)
where h.o.t abbreviates higher order terms, and the Jacobian

and Hessian are evaluated at
. The estimation error, , is given by

(19)

Substituting (17) and (18) into (19) yields

(20)

Observe from (20) that the mean square error (MSE) given by
, consists of a large number of terms, however, since

we are only interested in the effect of circularity on the MSE,
we restrict ourselves to analyzing the terms related to the state
and observation noise pseudocovariances, obtained from

(21)

where is the real part of a complex quantity.
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Fig. 2. Performance comparison between CEKF, CUKF and their corre-
sponding augmented versions for the AR(4) process. (a) Noncircular state
noise; (b) noncircular observation noise.

From (21) it can be seen that the MSE for the CUKF, for
the state space defined by (13) and (14), is dependent on the
pseudocovariance of the state noise, namely it is a function of

and , but does not depend on the pseudocovariance
of the measurement noise. Hence its mean-square behavior is
affected by the circularity of the state noise, if the observation
equation is nonlinear, regardless of whether the state equation
in linear or nonlinear.
For a linear state space model the Hessian term in (21)

vanishes, and so too do the four terms in the MSE expression
(21) that depend on the pseudocovariance. Therefore, the
mean-square characteristics of the conventional linear complex
Kalman filter do not depend on the circularity of the state or
observation noises, rendering it suboptimal.

IV. APPLICATON EXAMPLES

A. Complex Autoregressive Process

The performances of both the standard and widely linear
complex unscented Kalman filters were examined using the 4th
order complex autoregressive process given by [1]

and driven by doubly white Gaussian, zero-mean noise with
variance and pseudocovariance

. The observation equation was a
nonlinear function of the state, , and in
the presence of additive noncircular complex white noise, .
The ratio of the magnitude of pseudocovariance to covariance,

, was used as a measure for the circularity of the
noises [10], where a complex random variable is circular if

and maximally noncircular if . For a quantitative
assessment of the performance, the standard prediction gain

was used, where and are the powers
of the input signal and the output error.
Fig. 2 shows the performances of the standard, strictly linear,

CEKF and CUKF and their corresponding widely linear ver-
sions, ACEKF and ACUKF. Fig. 2(a) illustrates the results for a
circular observation noise and a state noise with various degrees
of noncircularity, while Fig. 2(b) shows the results for a noncir-
cular observation noise with a circular state noise. For both sets
of simulations, ACEKF and ACUKF had superior performances
compared to CEKF and CUKF, as the degree of noise noncir-
cularity increased. The CEKF and CUKF had decreasing
performance as the degree of noncircularity of the state noise

Fig. 3. Prediction performance of CUKF and ACUKF.

increased, while their performance was unaffected by observa-
tion noise noncircularity.

B. Multistep Ahead Prediction

The performances of the filters were next assessed for multi-
step ahead prediction of the noncircular Lorenz attractor and real
world noncircular and nonstationary Wind data (the speed and
direction are modeled as a complex number). Fig. 3 summarises
the performances; in all the cases, the ACUKF was able to cap-
ture the underlying dynamics of the signals better than CUKF.
This can be attributed to the use of the widely linear model,
which caters for the full second order statistics of the signals.

V. CONCLUSION

We have revisited the widely linear ACUKF and have per-
formed a rigorous analysis of its performance relative to the con-
ventional, strictly linear, CUKF, showing that ACUKF exhibits
superior performance for noncircular signals. The mean square
error of CUKF has been shown to be affected by state noise
noncircularity only if the observation equation is nonlinear and
unaffected by observation noise noncircularity. Simulation re-
sults support the analysis.
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