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Abstract

The role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to
contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted
gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation
mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to
contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive
phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and
consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we
discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it
contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the
prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus,
revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of
kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other
morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the
inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal
transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally
introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the
contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers.
These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion
arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to
reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often
differ by multiple chromosomal rearrangements.
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Introduction

Closely related species frequently differ by chromosomal

rearrangements such as inversions [1,2], and these chromosome

differences have long been thought to play a critical role in

adaptation and speciation [3–14]. Inversions can directly cause

hybrid sterility in chromosomal heterozygotes through the

production of unbalanced gametes due to crossing over in the

rearranged regions during meiosis [1,5,7,10]. A more recent view

is that the main evolutionary importance of inversions is that they

suppress recombination between alternative chromosomal ar-

rangements in hybridizing populations, and as a result become

associated with genes involved in local adaptation or reproductive

isolation [8,12,15,16]. There are several distinct ideas of how such

associations may arise. First, if initially allopatric, incompletely

isolated populations secondarily come into contact and begin to

hybridize, then reproductive incompatibility alleles from each

population will be purged by natural selection unless prevented by

recombination suppression in inverted regions [8,17,18]. Second,

differential purging of incompatibility alleles in co-linear regions

versus maintenance of incompatibilities within inversions might

also generate selection for prezygotic isolating alleles to accumu-

late through the process of reinforcement, especially if they are

linked to the inversions [8,19–21]. Third, alleles that are adaptive

within one species’ genetic background, but that cause hybrid

lethality or sterility when introgressed into another species, can

continue to accumulate in inversions that differentiate the species,

despite migration and hybridization [9].

However, these theories, which emphasize the resistance of

inversions to homogenization by hybridization, or the differential

accumulation in inversions of hybrid incompatibility factors,

cannot readily explain how inversions initially establish or why
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they often appear linked to loci involved in climatic or habitat

adaptation (reviewed in [16]). As long as selection is stronger than

migration between habitats, alleles involved in local adaptation

will be maintained at locally high frequencies regardless of local

recombination rates [22,23]. Alleles at such loci can actually cause

inversions to invade locally adapted populations when they

‘‘capture’’ linked alleles that are already near fixation as a result

of migration-selection balance [12]. In this scenario, an inversion

that happens to include locally adaptive alleles at two or more loci

will rapidly spread through populations where those alleles are

favored, because it has a fitness advantage over all recombining

haplotypes [12]. Thus, provided at least some migration,

inversions that capture multiple locally adapted alleles are

predicted to differentiate diverging populations. In contrast to

older ideas that explained the maintenance of polymorphic

inversions via coadapted gene complexes [4,24,25], the local

adaptation mechanism does not depend on epistasis between the

locally adaptive alleles. If inversions that differentiate hybridizing

populations or species tend to be associated with multiple loci

involved in local adaptation, then they should also contribute to

prezygotic isolation (i.e., immigrant inviability) and/or extrinsic

postzygotic isolation.

Numerous studies have found associations between putatively

adaptive phenotypes and inversions (reviewed in [16]). Many others

have found predictable distributions of inversion polymorphism

along environmental clines [12,24,26–30] and predictable shifts in

the frequency of inversions over the course of a season [31–33]. One

of the best examples is the In(3R)Payne inversion in Drosophilia

melanogaster that is latitudinally distributed along clines around the

world and has recently shifted its distribution in response to global

climate change [28]. However, definitive demonstration of the

involvement of an inversion in adaptation and ecological repro-

ductive isolation requires the following: (1) Inversion polymorphism

must be shown to be partitioned between reproductively isolated

groups, (2) replicable links must be made between an inversion and

the phenotypes responsible for isolation, and (3) field experiments

must be conducted to show that the inversion contributes to

adaptation and reproductive isolation in nature. While previous

studies have found associations between inversions and traits

involved in ecological reproductive isolation [27,34,35], to our

knowledge there are no reports of field experiments that directly

determine the relative contribution of an inversion to local

adaptation or whether putative adaptive inversions actually cause

ecological reproductive isolation in natural populations.

The yellow monkeyflowerMimulus guttatus is an excellent genomic

model system [36] to test whether inversions are involved in habitat-

mediated adaptation and ecological reproductive isolation. Wide-

spread inland annual and coastal perennial ecotypes of M. guttatus

have been shown to be locally adapted to their contrasting habitats

and, as a result, reproductively isolated due to strong ecological

prezygotic reproductive isolating barriers quantified in the field [37–

39]. An adaptive flowering time shift underlies a large portion of the

local adaptation and reproductive isolation in this system through

both temporal isolation and selection against immigrants between

habitats [38]. Selection against immigrants is particularly strong in

inland annual habitat where transplanted late-flowering coastal

perennial plants fail to flower before the onset of the hot seasonal

summer drought (Figure S1) [37,38,40]. In contrast, early-flowering

inland annual plants are at a disadvantage in coastal habitat as they

invest more resources in reproduction instead of growth and thus

fail to take advantage of year-round soil moisture and cool foggy

conditions [41] responsible for the native coastal perennial life-

history [37]. This life-history shift involving growth and reproduc-

tion is controlled by a complex genetic architecture including a few

large-effect quantitative trait loci (QTL) (20%–30% of ecotypic trait

divergence) [42]. More recent mapping using greater numbers of

co-dominant markers has revealed that one of those large-effect loci

appears to be located in a region of linkage group eight with

unusually large numbers of completely linked markers, indicating

the potential involvement of a chromosomal rearrangement

[39,40].

Here, we evaluate the relative contribution of the chromosomal

inversion on linkage group eight to habitat adaptation and

consequent ecological reproductive isolation between geographi-

cally widespread perennial and annual ecotypes of M. guttatus.

First, we establish that the suppressed recombination on linkage

group eight in our mapping population is caused by an inversion

polymorphism, with reversed orders of genetic markers in the

annual and perennial parents. Furthermore, we show that this

inversion polymorphism is geographically widespread and appears

to be perfectly associated with the divergent life-histories,

suggesting the involvement of a chromosomal inversion in

differentiation of the ecotypes. Next, we confirm that the inversion

has consistent effects on flowering time divergences in multiple

independent population crosses through replicated QTL analysis.

Finally, we quantify the effects of the inversion on phenotypes and

local fitness under natural field conditions through the incorpo-

ration of outbred introgression lines into a reciprocal transplant

experiment. This design allowed us to demonstrate that the effects

of the inversion polymorphism are robust to genetic background

and contribute both to adaptation and to ecological reproductive

isolation across habitats.

Results

Inversion Polymorphism Associated with Inland Annual
and Coastal Perennial Habitat
Previously, we observed substantially suppressed recombination

among markers tightly linked to a large-effect, pleiotropic QTL on

Author Summary

Genome rearrangements that change the order of genes
along a chromosome are known as inversions and have
long been hypothesized to be involved in the origin of
species. Yet the way inversions contribute to adaptation
and speciation remains mysterious. In this study, we
identified a geographically widespread adaptive inversion
polymorphism in the yellow monkeyflower, Mimulus
guttatus. One arrangement of the inverted region is found
in an annual ecotype of this species that lives in
Mediterranean habitats characterized by reduced soil
water availability in the summer. The other arrangement
appears in a perennial ecotype that lives in habitats with
high year-round soil moisture. The inversion was observed
to influence morphological and flowering time differences
between these ecotypes across most of western North
America. To test whether the inversion polymorphism
contributes to adaptation and reproductive isolation, we
conducted a field experiment by breeding plants to
reciprocally swap the alternative chromosomal arrange-
ments between the annual and perennial genetic
backgrounds. We demonstrated that this inversion
polymorphism contributes to local adaptation, the annu-
al/perennial life-history transition, and three reproductive
isolating barriers. These results are consistent with the
theory that adaptation to local environments can drive
the spread of chromosomal inversions and promote
speciation.

Adaptive Inversion Contributes to Isolation
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linkage group eight [42] in a recombinant inbred line (RIL)

mapping population derived from the IM (inland annual) and

DUN (coastal perennial) populations of central Oregon [39,40].

This suppression of recombination has not been observed in

crosses between annual parents [42]. To determine if the

suppression of recombination found in the IM6DUN cross is

due to an inversion, we constructed multiple F2 mapping

populations by crossing within and among populations of the

annual and perennial ecotypes (Figure 1; Tables S1, S2). If

alternative chromosomal arrangements are fixed within the inland

annual and coastal perennial ecotypes, then there should be

suppressed recombination in all inter-ecotype crosses, whereas

there should be much larger map distances in crosses within each

ecotype. Critically, marker order should be reversed in crosses

among perennial populations as compared to crosses among

annual populations. We did not observe any recombinants

between the consistently polymorphic markers e299 and e278

(Figure 1B) in the 429 inland annual6coastal perennial F2s

screened (48–96 per population pair; Table S2). Ongoing mapping

experiments involving crosses within the annual IM population

Figure 1. Geographic distribution of the chromosomal inversion. (A) Map of western North America with the locations of populations of
coastal perennials (blue), inland annuals (orange), and inland perennials (purple), as well as obligate self-fertilizing species M. nasutus (yellow). (B)
Marker order of the AN and PE inversion arrangements along linkage group eight. Inland annuals and M. nasutus had the AN arrangement while
coastal and inland perennials all had the PE arrangement.
doi:10.1371/journal.pbio.1000500.g001

Adaptive Inversion Contributes to Isolation
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consistently exhibit map distances between those markers ranging

from 23.3 to 32.0 cM (linkage maps available at mimulusevolu-

tion.org). Genotyping of additional markers in the annual6

perennial crosses (e173, e178, and/or e675 depending on which

were polymorphic) in the region confirmed the lack of crossing

over observed in the presumed inverted region. Since no cross

over products were observed in more than 2,270 effective meioses

of our study (801 F2s and 334 RILs; Table S2), the 95%

confidence interval for the recombination frequency of the

inversion includes a maximum 0.15%.

In contrast, substantial recombination was observed among

these markers in four crosses (Table S2) among six coastal

perennial populations from California (SWB), Oregon (HEC and

DUN), Vancouver Island, BC (BOB), the Queen Charlotte

Islands, BC (TSG), and southeastern Alaska (ALA). The resulting

genetic maps also confirmed that marker order is reversed in that

region of linkage group eight in the inland annual populations

relative to coastal perennial populations. For purposes of clarity,

we denote the inland annual arrangement as AN and the coastal

perennial arrangement as PE (Figure 1).

We observed recombination in the inverted region in the cross

between the annual IM population and two other inland annual

populations, LMC and MED (Table S2). The marker order for

these crosses was the same as that previously observed in crosses

within the IM population. An annual obligate self-fertilizing

species M. nasutus (SF population), thought to be derived from M.

guttatus [43], was also found to have the AN arrangement

(Figure 1B, Table S2).

Markers in the inverted region, which are completely linked in

crosses between ecotypes, span a genetic map region between the

most distant markers e178 and e299 of at least 33 cM in previous

[39] and ongoing mapping studies within the annual ecotype.

This is about 2% of the estimated total genetic map length of

1,500–2,000 cM (markers and linkage maps are available at

www.mimulusevolution.org). Markers from within the inversion

are located on two genome sequence scaffolds (11 and 233) of the

recently released draft M. guttatus genome assembly v1.0

(sequence data available at www.phytozome.net). While the

inversion breakpoints are as yet unknown, the inversion

encompasses at least 2.22 Mbp, including at 68.6% of scaffold

11 (2.98 Mbp) and 48.8% of scaffold 233 (0.37 Mbp), or less than

1% of the 450 Mbp estimated genome size of Mimulus. This

region appears to contain 362 genes identified by the current v1.0

genome annotation.

Inland and Coastal Perennials Share the Same Inversion
Arrangement
Perennial life-history is not limited to coastal perennial

populations of M. guttatus. While many inland populations of M.

guttatus are annual, numerous inland perennial populations are

found in areas of year-round soil moisture, such as on the edge of

lakes or in rivers, hot springs, and alpine habitats [44,45]. Coastal

and inland perennial M. guttatus populations have many traits in

common [44,45], but the relationship of these ecotypes is yet to be

evaluated.

To determine if inland perennial populations have the same

chromosomal inversion arrangement (PE) as coastal perennial

populations, we conducted independent crosses between the DUN

coastal perennial populations and four inland perennial popula-

tions, from as far as 1,000 km from the Pacific Ocean (Figure 1A).

Patterns of recombination suppression and marker order indicate

that all four of these inland perennial populations have the PE

arrangement (Figure 1B, Table S2).

Phenotypic Effects of the Inversion Polymorphism Are
Replicable Over a Wide Geographic Range
To determine if the inversion contributes to the divergence of

morphology and flowering time over the range of the annual and

perennial ecotypes, we conducted replicated QTL mapping

experiments using an outbred breeding design. Progeny resem-

bling annual and perennial parental types were observed in all four

inland annual6coastal perennial mapping populations in the F2

generation (Figure 2A). However, the degree to which parental

phenotypes were recovered varied among traits and crosses

(Figures S2, S3; Table S3).

The inversion consistently affected the composite of morpho-

logical traits (MANOVA) in the CAN6BCB (Wilks’ l=0.701,

F8,322=7.808, p,0.0001), LMC6SWB (Wilks’ l=0.811,

F8,292=4.01, p=0.0002), RGR6OPB (Wilks’ l=0.770,

F8,234=4.074, p=0.0001), and SAM6OSW (Wilks’ l=0.804,

F8,288=4.153, p=0.0001) mapping populations. The inversion

also explained a large percentage of the parental divergence (21%–

45%) and F2 variance (R2=0.06–0.15) in flowering time in all four

of these mapping populations (Figure 2, Table 1).

Given that both the AN and PE arrangements of the inversion

are found in inland regions, we hypothesized that the inversion

would also have an effect on flowering time divergence between

inland annual and inland perennial populations. To test this, we

scored flowering time in a F2 population created through a cross

between lines from the inland annual LMC and inland perennial

BOG populations. The inversion significantly explained 43% of

the parental divergence and nearly a quarter (R2=0.24) of the F2

variance in flowering time in this inland annual6perennial cross

(Figure 2F; F2,266=42.02; p,0.0001).

Inversion Polymorphism Contributes to Trait Divergence,
Life-History Divergence, and Fitness in the Field
To determine the relative contribution of the inversion

polymorphism to local adaptation and ecological reproductive

isolation in the field, we conducted a reciprocal transplant

experiment that included an outbred set of backcross and parental

lines (Figure 3). This experiment was designed to allow us to

compare, in the field, the performance of alternative inversion

homozygotes in each of the two ecotypes’ genetic backgrounds to

each other and to the original parental ecotypes. In order to ensure

realistic fitness comparisons without the potentially confounding

effects of inbreeding depression, we used a novel crossing design

that ensured that all experimental plants were outbred despite

having particular combinations of genetic background and

inversion genotype.

To construct the outbred set of backcross lines, the AN and PE

arrangements of the inversion were introgressed, by repeated

backcrossing, into the genetic and cytoplasmic backgrounds of the

alternative ecotype. Importantly, we initiated breeding with three

independent pairs of coastal perennial and inland annual inbred

lines derived from the SWB and LMC populations of northern

California. F1 progeny of these three interpopulational crosses

were backcrossed to each of their respective LMC and SWB

parental inbred lines, for a total of six backcross populations (two

reciprocal backcrosses for each of the three original interpopula-

tional crosses). In each backcross population, markers in the

inverted region were genotyped to identify a single inversion

heterozygote to be used in an additional generation of backcross-

ing to the recurrent parental inbred line. This procedure was

continued for a total of four backcross generations.

After the fourth backcross generation, a single inversion

heterozygote in each of the six backcross populations was self-

Adaptive Inversion Contributes to Isolation
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fertilized and the resulting progeny were genotyped to identify a

single homozygote of each arrangement. For each of the two

genetic backgrounds, we then intercrossed the three AN

homozygotes to each other, and the three PE homozygotes to

each other, to generate plants that had one of the four

combinations of genetic background and homozygosity for a

particular chromosomal arrangement but were outbred

throughout the genome. To generate outbred parental lines,

the three annual inbred parental lines were intercrossed to each

other, as were the three perennial inbred parental inbred lines

(Figure 3). Finally, both outbred parental lines and the four

outbred backcross lines were planted at two field sites located

in inland annual (Figure S4) and coastal perennial habitat

(Figure S5).

As in previous studies [37,38], there was a highly significant

genotype6environment interaction (p,0.0001; Tables 2, S4)

Figure 2. Replicated effect of the inversion locus. (A) F2 progeny with parental ecotypic phenotypes, from a cross between the SWB (coastal
perennial) and LMC (inland annual) populations. (B–E) Effect of the inversion on flowering time in four independently derived F2 mapping
populations created through crosses between independent inland annual and coastal perennial populations. (F) Effects of the inversion on flowering
time in cross between inland annual and inland perennial populations. The mean flowering times (61 SE) of F2s that were homozygous for the AN
arrangement (AA), heterozygous (AB), and homozygous for the PE arrangement (BB) at Micro6046 are indicated. The percentage of F2 variance/
parental divergence explained by the inversion is presented above each bar graph. Note: y-axes do not originate at zero.
doi:10.1371/journal.pbio.1000500.g002

Adaptive Inversion Contributes to Isolation
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across habitats for inland annual and coastal perennial parents

based on the composite of two fitness traits: survival to flowering

and number of flowers produced per plant. Local adaptation was

very strong, with native parental types producing 60 times more

flowers in inland annual habitat and 13 times more flowers in

coastal perennial habitat (Table 2). Analysis of the introgression

lines also revealed a highly significant effect of genetic background

and genetic background6site interaction (both p,0.0001;

Tables 3, S4). In terms of the inversion, there were significant

arrangement6site and arrangement6genetic background interac-

tion effects on fitness (both p,0.0001; Table 3). However, the

three-way interaction of arrangement6site6genetic background

was not significant (p.0.05).

At the inland field site, the inversion explained similar

amounts of the divergence in parental flower production in the

inland (21.99%) and coastal (19.39%) genetic backgrounds

(Figure 4B). The effects of the inversion on flower production at

the inland field site can be attributed largely to its effect on

flowering time. Across the backcross lines, plants with the PE

arrangement initiated flowering 6.54 d later than plants with

the AN arrangement (F1,445= 23.10; p,0.0001). Later flower-

ing plants produced fewer flowers before the summer drought

made further survival impossible (Figure 4). This effect of

flowering time and fitness was most dramatic in the coastal

genetic background where survival to flowering was eight times

greater for plants with the AN versus PE arrangement (Figure 4;

Table 2).

At the coastal field site, the inversion had a significant 12.77 d

effect on flowering time among the backcross lines (F1,192=8.34;

p= 0.0043), where plants with the AN arrangement flowered

earlier (Figure 4, Table 2). However, in contrast to the inland site,

earlier flowering only translated into slightly greater expected

fitness for the AN arrangement versus the PE arrangement in the

coastal perennial genetic background (Figure 4, Table 2).

Individuals with the PE arrangement produced 2.13 times as

many flowers as those with the AN arrangement in the foreign

inland annual genetic background (Table 2).

The inversion had significant effects on patterns of survival over

the course of the season at both the coastal (p=0.0044) and inland

(p=0.0124) field sites (Table 4; Figure 4). At the coastal site, plants

with the PE arrangement had a 3.5 times greater survivorship

(69% of the parental divergence) to the end of the first season (e.g.

first rain of the 2009/2010 wet season) than plants with the AN

arrangement (Figure 4F). Nearly half of the plants that survived to

the end of the first season, and were homozygous for the PE

arrangement, did not flower during the 2009 field season (coastal

perennial parent = 45% and PE arrangement in perennial genetic

background=44% versus AN arrangement in perennial genetic

background=5%). Thus, plants with the PE arrangement

allocated all of their resources to growth instead of reproduction

in the first season at nearly 10 times the rate of those with the AN

arrangement.

Contribution of Inversion Polymorphism to Reproductive
Isolating Barriers
To quantify the contribution of the inversions to ecological

reproductive isolation, we modified methods that we developed

previously [38,46]. Here, reproductive isolation ranges from one

(complete isolation) to zero or even negative (no reproductive

isolation).

As in a previous study [38], reproductive isolation due to

differences in flowering time (temporal isolation) between habitats

(RITBH) was near complete, with very little overlap in flowering

time between the ecotypes across habitats (Table 5). The

inversion polymorphism’s effect on flowering time was not great

enough to overcome the large differences in flowering between

the coastal perennial and inland annual genetic backgrounds

across habitats. Thus, the inversion did not contribute much to

between habitat isolation caused by flowering time differences

(Table 5).

Ecological reproductive isolation due to selection against

immigrants (RII) was very strong in both inland and coastal

habitats (Table 5). Comparisons of the fitness of the AN and PE

arrangements in the foreign coastal genetic background, in inland

habitat, revealed that the inversion had a moderate individual

locus effect on selection against immigrants (RII,Inversion=0.150).

The inversion had less effect on the difference in fitness between

inversion arrangements for migrants of the inland annual genetic

background to coastal habitat, for an individual locus contribution

of RII,Inversion=0.079.

Differences in flowering time can also prevent gene flow into

native populations from foreign pollen donors that successfully

survive to flower in their non-native habitat. Such temporal

flowering isolation in sympatry (RITS) was high in coastal perennial

habitat but low in inland annual habitat (Table 5), where the

summer drought severely truncated the flowering distribution of

Table 1. The effects of the inversion locus on flowering time and morphological traits in the greenhouse.

Flowering Time Stem Thickness Internode Length Corolla Length Corrola Width Aboveground Roots

Cross 2a d

2a/

diff 2a d

2a/

diff 2a d

2a/

diff 2a d

2a/

diff 2a d

2a/

diff 2a d

2a/

diff

CAN6BCB
(N= 167)

3.93** 21.16 0.40 0.70* 0.04 0.13 25.60 6.22 20.23 5.61**** 0.36 0.32 2.74**** 0.16 0.26 0.73**** 20.14 0.32

LMC6SWB
(N= 153)

3.29**** 21.20 0.45 0.55* 20.09 0.18 219.39*** 5.98 20.33 2.04*** 20.47 0.20 0.81* 20.49 0.10 N/A N/A N/A

RGR6OPB
(N= 123)

3.47* 20.28 0.36 0.65** 0.21 0.27 2.76 1.15 0.10 4.31**** 0.59 0.49 2.65**** 0.235 0.30 1.12** 20.26 0.21

SAM6OSW
(N= 151)

3.43**** 20.36 0.21 0.65** 20.07 0.18 2.96 0.49 0.12 2.62** 20.43 0.56 1.43** 20.23 0.23 N/A N/A N/A

For each trait: the additive effect (2a), dominance deviation (d), and the proportion of the parental population divergence explained (2a/diff).
*p,0.05, **p,0.01, ***p,0.001, ****p,0.0001.
doi:10.1371/journal.pbio.1000500.t001
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the foreign coastal plants. The inversion’s effect on a shift in the

flowering time distribution between arrangements in the inland

annual genetic background resulted in a considerable contribution

(RITS,Inversion=0.213) to temporal reproductive isolation in coastal

perennial habitat. The inversion had little effect (RITS,Inver-

sion=0.026) on sympatric temporal isolating barrier in inland

annual habitat (Table 5).

Finally, we quantified the effect of the inversion on extrinsic

postzygotic isolation (RIEP) through the comparisons of flower

production between arrangements of the genetic background

native to that habitat. Previously [38], we found F1 generation

extrinsic postzygotic isolation based on first season flower

production to be weak in inland annual habitat but ranged widely

in coastal perennial habitat, depending on the component of

fitness measured (Table 5). After the F1 generation, extrinsic

postzygotic isolation is an individual locus phenomenon because of

recombination. Thus, extrinsic postzygotic isolation of advance

generation hybrids is defined here as the tendency of inversion

polymorphism to remain restricted between two ecotypes after

hybridization, as a consequence of external selection. Extrinsic

postzygotic isolation of the inversion locus, based on first season

flower production, was moderate in inland annual habitat

(RIEP,Inversion=0.216) but negative in coastal habitat

(RI =20.241). However, extrinsic postzygotic isolation of the

inversion based on multiseason survival in coastal perennial

habitat was strong (RIEP,Inversion=0.690).

Figure 3. Breeding design for creation of backcross introgression lines. Crossing design for production of backcross lines with the LMC
(shades of yellow/orange) genetic background. Breeding of plants with SWB (shades of blue) genetic background not shown. Note that the size of
introgressed region around the inversion should vary among lines due to different recombination locations during breeding. Different shades are
used to indicate that original parental inbred lines have a unique genetic composition. (A) Three pairs of independently derived inbred LMC and SWB
lines were crossed to create F1 progeny. (B) F1s backcrossed to parental inbred lines. (C) Marker-assisted selection used for four generations of
backcrossing to move the inversion into alternate genetic backgrounds. (D) Heterozygous lines were self-fertilized. (E) Backcross lines that are
homozygous with (blue oval) and without (orange oval) the introgressed inversion arrangements were selected for further breeding. (F) Intercrosses
conducted among the three independent groups to create outbred backcross lines with and without the introgressed inverted region. (G)
Backcrossed lines now ready to be planted into field reciprocal transplant experiment.
doi:10.1371/journal.pbio.1000500.g003
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Discussion

Overall, our study found that a chromosomal inversion

polymorphism contributes to adaptive divergence and reproduc-

tive isolation between annual and perennial ecotypes of M. guttatus.

The AN arrangement of the inversion was consistently found in

annual populations and the PE arrangement found in perennial

populations distributed over a wide swath of western North

America. The inversion polymorphism affected traits associated

with this life-history transition across replicated crosses and the

genetic backgrounds of both ecotypes, while contributing to local

adaptation, perenniality, and three ecological reproductive

isolating barriers under natural field conditions.

Inversions and Adaptation

Inversions are frequently distributed geographically along

environmental clines [24,27–30,47,48] or exhibit predictable

seasonal changes in allele frequency [31–33], while putatively

adaptive traits such as phenological shifts, desiccation tolerance,

and thermal tolerance often map to inversions (reviewed in [16]).

For example, inversions are known to contribute to the divergence

in timing of overwintering pupal diapause between host races of

Tephritid fruit flies, Rhagoletis pomonella [34,35]. In M. guttatus, the

geographic distribution of the AN and PE arrangements appears

to be dictated by the availability of soil moisture in summer

months across western North America (Figure S1) [37,38].

Table 2. Effects of the inversion locus on components of fitness in the field reciprocal transplant experiment.

Field Site

Inversion Orientation: Genetic

Background Na
Days to

Flowerb
Survival to

Flowerc
Flowers

Producedd
Expected

Flowerse
End of

Seasonf
Yet to

Flowerg

Boonville (Inland
Annual)

Inland parent 204 52.04 (0.61) 89.71 14.78 (0.88) 13.27 (0.42) 0.00 NA

PE arrangement: Annual Genetic
Background

178 57.60 (0.69) 87.08 9.45 (0.65) 8.24 (0.35) 0.00 NA

AN arrangement: Annual Genetic
Background

191 53.59 (0.61) 94.76 11.70 (0.64) 11.11 (0.28) 0.00 NA

Coastal parent 199 77.57 (1.35) 6.03 3.00 (0.72) 0.22 (0.11) 0.00 NA

AN arrangement: Perennial Genetic
Background

195 73.49 (0.92) 51.28 5.26 (0.48) 2.82 (0.29) 0.00 NA

PE arrangement: Perennial Genetic
Background

201 82.54 (3.00) 6.47 3.77 (0.57) 0.29 (0.08) 0.00 NA

Manchester (Coast
Perennial)

Inland parent 195 80.56 (2.45) 9.23 4.44 (0.85) 0.45 (0.16) 0.00 NA

PE arrangement: Annual Genetic
Background

184 90.22 (2.88) 12.50 6.43 (1.53) 0.85 (0.17) 0.00 NA

AN arrangement: Annual Genetic
Background

190 86.00 (3.19) 8.95 4.53 (1.17) 0.39 (0.10) 0.00 NA

Coastal parent 191 138.08 (2.91) 35.07 16.82 (6.02) 5.80 (0.50) 38.22 43.83

AN arrangement: Perennial Genetic
Background

191 118.14 (2.50) 46.32 12.00 (2.33) 5.46 (0.36) 10.53 5.00

PE arrangement: Perennial Genetic
Background

195 139.46 (3.69) 34.87 12.12 (1.92) 4.06 (0.33) 36.92 45.21

aNumber of individuals planted per genotype.
bMean (6SE) number of days to first flower.
cPercentage of plants surviving to flower.
dMean (6SE) number of flowers produced per plant surviving to flower.
eExpected number of flowers (6SE) per plant at start of experiment calculated with ASTER.
fPercentage of plants still alive at the end of the first field season.
gPercentage of plants surviving to the end of the first season that had not yet flowered.
doi:10.1371/journal.pbio.1000500.t002

Table 3. Analysis of effect of genetic background, field site, and inversion locus by ASTER.

Factor Tested Null df Alternative df Null Deviance

Alternative

Deviance Test df
Test

Deviance

Test p
Value

Genetic background 3 4 213,975.0 214,035.8 1 60.8 ,0.0001

Genetic background6site 4 5 214,035.8 214,658.9 1 623.0 ,0.0001

Inversion arrangement 5 6 214,658.9 214,722.5 1 63.7 ,0.0001

Inversion arrangement6site 6 7 214,722.5 214,755.4 1 32.9 ,0.0001

Inversion arrangement6genetic background 7 8 214,755.4 214,775.0 1 19.6 ,0.0001

Factors tested with ASTER using the composite of two dependent components of fitness, survival to flowering, and number of flowers produced, with the following
directional graph: 1 -. survival to flowering -. number of flowers produced. All factors are tested by likelihood ratio tests using nested null models.
doi:10.1371/journal.pbio.1000500.t003
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Figure 4. Effects of the inversion locus across field sites in different genetic backgrounds. (A) Proportion of plants surviving to flower and
(B) expected fitness produced per plants across field sites. Values plotted are maximum likelihood estimates 61 SE calculated with ASTER. (C)
Cumulative proportion of plants surviving to flower and (D) expected fitness per individual at the inland field site. Survival over time at the (E) coastal
perennial and (F) inland annual field sites. Parental lines: yellow, inland annual parent; blue, coastal perennial parent. Backcross lines: orange, PE
arrangement in annual genetic background; red, AN arrangement in annual genetic background; green, AN arrangement in perennial genetic
background; pink, PE arrangement in perennial genetic background.
doi:10.1371/journal.pbio.1000500.g004
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However, the distribution of inversion polymorphism is not clinal

as in many other organisms. Rather the distribution appears to be

an overlapping mosaic of discrete annual and perennial popula-

tions that contain the AN or PE arrangements depending on local

environmental conditions. Further geographic sampling will be

necessary to establish the full range of the two inversion

arrangements.

The inversion investigated here is involved in a classic life-

history shift in plants that is an adaptive response to differences in

the seasonal availability of water resources [49–53]. The AN

arrangement of the inversion promotes rapid flowering over

sustained vegetative growth, leading to an annual life-history

strategy that allows for avoidance of summer drought. In contrast,

the PE arrangement of the inversion promotes greater vegetative

growth early in the season, followed by summer flowering and

survival into subsequent years, and therefore a perennial life-

history.

Selective Mechanisms Underlying the Geographic
Distribution of the Inversion
Alternative inversion arrangements are expected to invade

ecologically divergent habitats if they capture two or more loci

with locally adapted alleles that are already near fixation, despite

gene flow, as a result of local selective pressures [12]. Our

geographic data suggest that alternative arrangements of the

inversion are restricted to annual versus perennial habitats. The

finding that inland perennial populations as well as coastal

perennial populations have the PE arrangement of the inversion

and that the early flowering selfing species M. nasutus has the AN

arrangement further suggests that the distribution of the inversion

is a function of the availability of soil moisture during summer

months.

Year-round water availability, typical of the perennial habitats,

allows plants that survive to the second season to become well-

established [37,40]. These established plants may have an

advantage in wetter habitats, such as the northern Pacific coast

of North America, because they are primarily composed of other

perennial plant species that may shade out and compete below

ground except in areas of natural disturbance. Natural landslides

and deer trampling in the coastal perennial habitat continually

creates disturbed habitat for new seedlings recruitment [54]. Our

field study mimicked natural disturbance because we cleared plots

of most of the vegetation before planting. By August of 2009, these

coastal experimental plots were completely covered again by a

dense thicket of perennial competitor species, which could limit

the success of seedling recruitment in subsequent seasons and lead

to an advantage for established plants. Long-term experiments

could quantify any advantage gained by the inversion’s effect on

perenniality.

Contribution of the Inversion Polymorphism to
Reproductive Isolation
While inversions have long been thought to play a role in

adaptation and formation of ecological reproductive isolation

[4,25,55,56], the relative contribution of inversions to these

processes remains largely unknown [16]. Polymorphism for

alternate arrangements of the inversion appears to be maintained

between annual and perennial M. guttatus habitats through habitat-

mediated natural selection. Thus, the inversion should have a

sustained impact on multiple reproductive isolating barriers over

the geographic range of the annual and perennial ecotypes.

Since the inversion only has a moderate effect on any given

reproductive isolating barrier, reproductive isolation is likely to

have a complex genetic architecture in this system. Further, loci

affecting traits other than flowering time are already known to

contribute to immigrant inviability between inland annual and

coastal perennial populations. In a recent study [39], we found

that coastal alleles at three salt tolerance loci are adaptive in the

coastal perennial habitat but are not significantly disadvantageous

in the inland annual habitat. Thus, unlike the inversion, these salt

tolerance loci may only contribute to reproductive isolation in one

habitat and not the other. With only a limited number of field

Table 4. Effects of inversion on survival over the field season at each field site.

Survival by Field Site Null df Alternative df Null Deviance

Alternative

Deviance Test df Test Deviance Test p Value

Inland annual site 16 17 3,270.6 3,264.3 1 6.3 0.0124

Coast perennial site 12 13 3,265.8 3,257.7 1 8.1 0.0044

Tests of the inversion locus effect on survival over the course of the season using ASTER, where survival is modeled with the following directional graph: 1 -. survival at
census one -. survival at census two -. … -. survival at census x, where x = 16 for the inland field site and 11 for the coastal field site.
doi:10.1371/journal.pbio.1000500.t004

Table 5. Overall strength of reproductive isolating barriers and individual contribution by the inversion.

Between Ecological Racesa Inversion Contributionb

Reproductive Isolating Barrier Coast Inland Coast Inland

Temporal flowering isolation between habitats (RITBH) 0.999 0.997 0.001 20.008

Selection against immigrants (RII) 0.922 0.983 0.079 0.150

Temporal flowering isolation in sympatry (RITS) 0.810 0.166 0.213 0.026

Extrinsic postzygotic isolation (RIEP)
c

21.801/0.538 0.233 20.241/0.690 0.216

aOverall reproductive isolation between inland annual and coastal perennial ecological races at coast or inland field sites.
bThe individual locus contribution to reproductive isolation by the inversion at the coast or inland field sites.
cQuantified separately at the coast field site for two fitness components: expected number of flowers/survival to second season.
doi:10.1371/journal.pbio.1000500.t005
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studies conducted so far quantifying the effects of individual loci

across habitats [39,40,57–59], it is unknown how commonly trade-

offs at individual loci are involved in ecological reproductive

isolation. However, inversions are only expected to spread by a

local adaptation mechanism [12] when they capture alleles that

are already near fixation as a result of fitness trade-offs across

habitats. Thus, inversions spread by the local adaptation

mechanism are expected to show fitness trade-offs across habitats,

while genic factors in co-linear regions may not.

Inversions can directly cause postzygotic hybrid sterility as a

result of the production of unbalanced gametes at meiosis in

individuals heterozygous for inversion arrangements [1,10]. No

such underdominant effects on hybrid male fertility have been

detected for the inversion (B. Blackman, personal communication).

Multiyear studies would allow for a more comprehensive

quantification of extrinsic postzygotic isolation in coastal habitat,

where many plants survive beyond the first season. Given the data

from our study, the strength of extrinsic isolation based on

flowering versus multiseason survival should be viewed as the

upper boundaries of the strength of this barrier in coastal habitat.

Even so, significant extrinsic postzygotic isolation is questionable

in this system as there are high levels of heterosis in the F1

generation, especially in coastal habitat [38]. Loci, such as the

inversion, may be restricted in migration between habitats by

extrinsic postzygotic isolation. Alleles at other loci may introgress

much more easily across habitats after hybridization.

Origins and Spread of Inversions
Phylogenetic studies have generally found that annual plant

species are derived from perennial species [51,60,61]. Therefore, it

is tempting to hypothesize that the AN arrangement, found in

inland annuals and the obligate self-fertilizing annual species M.

nasutus, is the derived chromosomal form. However, if the local

adaptation mechanism [12] was responsible for the invasion of the

inversion, then either arrangement would be equally likely to be

derived, since capturing preexisting locally adaptive variation is

the reason inversions are predicted to spread.

The M. guttatus species complex occurs across western North

America as a mosaic of patchily distributed annual and perennial

populations [38,44,45]. Such mosaics of divergently adapted

populations with limited migration represent the ideal conditions

for the invasion of inversions that capture multiple locally adapted

alleles [12]. Inversions harboring multiple adaptive alleles are

predicted to invade because they have a selective advantage over

co-linear haplotypes, which produce descendants with unfavorable

migrant alleles through recombination [12].

An alternative hypothesis is that the adaptive phenotypic effects

of the inversion resulted from the inversion mutation itself causing

a change in gene expression or function. Further, it is possible that

adaptive mutations have accumulated within the inversion over

time. Actual identification of the causative genes underlying the

inversion’s phenotypic effects is necessary to resolve the history of

this chromosomal rearrangement and why it became so wide-

spread. Regardless, if inversions are frequently spread by

adaptations to geographically widespread divergent environmental

conditions, then this could partially explain why closely related

species so often differ in their chromosome structure.

Materials and Methods

Geographic Distribution of the Inversion
Multiple F2 mapping populations were created through crosses

within and among annual and perennial ecotypes (Table S2).

Tissue was collected from all F2 individuals and stored in 96-well

plates at 280uC. Genomic DNA was extracted with a modified

hexadecyl trimethyl-ammonium bromide chloroform extraction

protocol [62].

Markers from within and on both sides of the presumed

inverted region (Figure 2B) were genotyped to determine the

arrangement of markers and whether or not recombination was

suppressed. Primer sequences for all markers used in this study

were designed previously and can be found at www.mimulusevo-

lution.org. All PCR products were subjected to capillary

electrophoresis and fragment analysis on an ABI 37306l DNA

Analyzer. The size of the amplified fragments was scored using the

program GENEMARKER (SoftGenetics, 2005, State College,

PA).

Replicated QTL Analysis
Populations used in crosses for this experiment were collected in

the summer of 2005 [38]. The replicated QTL analysis was

conducted first with plants from the LMC/SWB and SAM/OSW

population pairs in August–October 2006 followed by the CAN/

BCB and RGR/OPB population pairs in March–May 2007.

Finally, tests were performed on the LMC/BOG population pair

in September–November 2009. The plants were grown under 18-

h days at 21uC, 6-h nights at 16uC, and 30% relative humidity in

4-inch square pots at the Duke University greenhouses. Flowering

time, second internode thickness and length, as well as mean

corolla width and length of the first two flowers were recorded for

all coastal perennial6inland annual crosses. The amount of

aboveground nodes that produced roots, a trait associated with

perenniality, was quantified in the 2007 experiment but not in the

2006 experiment. Only flowering time was measured in the

LMC6BOG mapping population.

To be more confident that inversion effects are robust to

differences in genetic background and effects were not due to rare

alleles, a highly outbred breeding design was employed. For the

2006 experiment, each F2 mapping population was derived from

8–10 parental plants and involved eight different crosses to

produce F1s. Due to difficulties with following multiple parental

alleles in crosses in the 2006 experiment, the 2007 F2 mapping

populations were only derived from four parental plants, where F1

progeny were intercrossed. This outbred design, with multiple

parentals from each population, contrasts with many QTL studies

where only two inbred lines are used in the initial cross. However,

only one pair of parental lines was used for the LMC6BOG

mapping population. For each population pair we grew 19–24 of

each parental type, 17–25 F1 progeny, and 126–172 F2s.

Differences in samples sizes were due to a combination of number

of seeds available, germination rate, and space availability.

Multiple markers were screened in the region of the inversion.

Only one marker, Micro6046, was divergent among parentals and

polymorphic in all five F2 mapping populations. Micro6046

primers (F =TGATAATTTGTCCAATTGCGT, R=TCCA-

AATCAATAATCAAATCCC) were designed using Primer3

(rodo.wi.mit.edu/primer3/) targeted to a microsatellite on a

sequenced bacterial artificial chromosome (GenBank accession

number 154350257), which was incorporated as part scaffold 11 of

the M. guttatus genome assembly v1.0, within the known inverted

region (www.phytozome.net).

We tested for an association between Micro6046 and a

composite of five traits (flowering time, internode thickness,

internode length, corolla width, and corolla length) with a

MANOVA for each population pair. To test for an association

between the Micro6046 and individual traits, we conducted

separate one-way ANOVAs. All analyses were carried out in JMP

7.0.1 (SAS, Cary, NC).
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Creation of Backcross Introgression Lines
Crosses between three independent sets of LMC (inland annual)

and SWB (coastal perennial) inbred lines were used to initiate

backcross introgression line breeding (Figure 3). These populations

were selected because they had been successfully used in a

previous reciprocal transplant field experiment [38]. This led to

the production of three independently derived F1 progeny, which

were then reciprocally backcrossed as the pollen donor to the

parental lines from which they were derived. Parental lines were

also self-fertilized each generation. Thus, all lines became

progressively more inbred each generation.

To facilitate the introgression of the inversion into each genetic

background, two flanking makers (e571, e772) were genotyped

outside of the inversion and one marker (e173) was genotyped in

the middle of the inversion. Each generation, 32 backcross

individuals of each type were genotyped for these markers.

Individuals heterozygous for the three markers were then

backcrossed to each inbred parental line. Fourth generation

backcrosses were then self-fertilized and progeny were used for

crosses to create the final generation. In the penultimate

generation, plants homozygous for either the AN or PE

arrangements were selected through genotyping to create the

final generation. To eliminate effects of inbreeding depression, the

final generation of breeding involved intercrosses within indepen-

dently derived lines of the same genetic background and

introgression type (N=3 backcross lines with introgressed region

and 3 backcross lines where introgression was selected against in

last generation per two genetic backgrounds = 12 crosses; see

Figure 3). Intercrosses were also conducted among inbred parental

lines to create outbred lines for the reciprocal transplant

experiment.

Field Quantification of Inversion Polymorphism Effects
Seeds from all outbred lines (Figure 3) were sown in plug trays

filled with Ocean Forest Potting Soil (Fox Farm, Arcata, CA) on

February 8, 2009 in the Bodega Marine Reserve greenhouse.

Germination was achieved on a regime of misting three times daily

for 5 min with no supplemental lighting.

One inland annual (Boonville, CA N 38u59.221, W 123u21.059,

Figure S4) and one coastal perennial (Manchester, CA N

39u00.498, W 123u41.637, Figure S5) field site [38] were selected

for the reciprocal transplant experiment. The experimental design

included 20 blocks per site with 10 replicates of each backcross line

randomized within blocks. Due to low germination success of some

lines, we were not able to achieve 10 replicates in all blocks. To

prevent trampling by livestock and local deer populations,

exclosures were set up around the blocks. Transplantation of

seedlings to the field sites was conducted from March 9–16, 2009.

Field sites were censused over the course of the experiment at

different intervals based on results from a previous field

experiment [38]. Survivorship, flowering time, and number of

flowers produced were recorded during each census. Data were

collected at the inland site until June 23, 2009, when all plants had

died as a result of the summer drought. At the coastal site, data

collection was terminated on October 29, 2009 because flowering

had ceased and plots were overgrown with other plant species. For

the final coastal census, all remaining plants were carefully

removed from the blocks, survivorship was assessed, and the final

number of flowers produced was derived from counts of fruits.

Analysis of Field Data
To determine whether the inversion contributed to fitness

effects across field sites, data were analyzed with ASTER [63,64],

which is a module of the statistical program R (R Core

Development Team 2009). ASTER modeling allows for a single

analysis of multiple components of fitness, while correctly

accounting for their order of occurrence and different probability

distributions. ASTER accounts for dependencies among fitness

components by generating an overall likelihood for each individual

over the course of its life. ASTER was used here to analyze the

composite of two fitness components: Survival to flowering,

modeled as Bernoulli (0 or 1), and the number of flowers per

surviving individual, which was modeled as a zero-truncated

Poisson distribution. Initially, the parents of the backcross lines

were analyzed alone to test effects of site, genotype, and

site6genotype interaction. Nested null models were used for

comparison to test these alternative hypotheses through likelihood

ratio tests.

To determine the effect of the inversion across habitats, a

similar analysis was conducted on the same two components of

fitness as the parents but this time using the data from the

backcross lines. The effects of site, genetic background, inversion

allele, and all the interactions of these three factors were tested by

fitting a series of nested models and comparing them with

likelihood ratio tests. To test the significance of any given factor,

null models were compared to alternative models that only

differed by the addition of the factor of interest. Finally, maximum

likelihood estimates of fitness were calculated with ASTER for all

parental and backcross lines across both field sites.

To test for effects of genetic background and the inversion on

survival over the course of the season, survival analysis was

conducted using ASTER, where survivorship for each field census

was modeled as Bernoulli. The dates of censuses as well as the total

number of censuses differed between the coastal (N=11) and

inland (N=16) field sites. Therefore, separate analyses were

conducted for each field site to test the effects of the inversion on

survival.

To determine if there was an effect of the inversion on flowering

time divergence, two-way ANOVAs in JMP 7.0.1 (SAS, Cary,

NC) were conducted within each field site, with the inversion and

genetic background as factors. The least square means for

inversion alleles were used as a quantification of the magnitude

of its effect on flowering time.

Quantification of Reproductive Isolating Barrier Strengths
The overall strength of ecological reproductive isolating barriers

was quantified using previously developed methods [13,46]. To

calculate the effect of the inversion locus on any given barrier, we

used the general formula RIInversion=RIForeign2RINative, where

RIForeign is reproductive isolation between the native population

and the backcross line with the foreign inversion arrangement and

RINative is reproductive isolation between the native population and

the backcross line with the native inversion arrangement.

Temporal flowering time isolation between habitats was

calculated from the flowering distribution of LMC plants at the

inland field site and SWB plants at the coastal field site, with

calculations made relative to each other. All quantifications of

temporal isolation were calculated for each native population

(LMC or SWB) as the pollen recipient relative to a foreign pollen

donor at the foreign field site. The individual contribution of the

inversion to between habitat temporal isolation was calculated as

RITBH,Inversion=RITBH,f,f,f2RITBH,n,f,f, where RITBH,f,f,f is the tempo-

ral reproductive isolation of the native parent relative to a pollen

donor backcross line with the foreign arrangement in the foreign

genetic background at the foreign field site, and RITBH,n,f,f is the

temporal reproductive isolation of the native parent relative to the

backcross line with the native arrangement in the foreign genetic

background at the foreign field site.
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Reproductive isolation due to selection against immigrants was

quantified as RII~1{�wwi=�wwn, where �wwi is the expected number of

flowers produced (ASTER predicted) by foreign individuals, and

�wwn is the expected number of flowers produced by native

individuals. The contribution of the inversion to reproductive

isolation through selection against immigrants was calculated as:

RII ,Inversion~(1{�wwf ,f ,n

�

�wwn){(1{�wwn,f ,n

�

�wwn):

Here, �wwn,f ,n is the expected number of flowers produced by the

backcross line with the native arrangement in the foreign genetic

background at the native field site and �wwf ,f ,n is the expected number

of flowers produced by the backcross line with the foreign

arrangement in the foreign genetic background at the native field site.

Temporal flowering time reproductive isolation in sympatry was

calculated for the native parental (SWB or LMC) relative to the

foreign parental within each field site. The contribution of the

inversion was calculated as RITS,Inversion=RITS,f,f,n2RITS,n,f,n, where
RITS,f,f,n is the temporal reproductive isolation in sympatry of the

native parent relative to a pollen donor with the foreign

arrangement in the foreign genetic background at the native field

site, and RITBH,n,f,n is the temporal reproductive isolation of the

native parent relative to a pollen donor with the native arrangement

in the foreign genetic background at the native field site.

The strength of extrinsic postzygotic reproductive isolation was

calculated with data from a previous reciprocal transplant

experiment that incorporated F1 progeny [38] as RIEP~

1{�wwh=�wwn. Here, �wwh is the fitness of F1 progeny in the field, and

�wwn is the fitness of native parental plants at each field site. Extrinsic

postzygotic isolation for the inversion locus was calculated at each

site as RIEP,Inversion~(1{�wwf ,n,n

�

�wwn){(1{�wwn,n,n=�wwn) with the data

from this study. Here, �wwn,n,n is the fitness of the backcross line with

the native arrangement in the native genetic background at the

native field site and �wwf ,n,n is the fitness of the backcross lines with the

foreign arrangement in the native genetic background at the native

field site. Because of multi-season survival at the coastal site,

extrinsic postzygotic isolation was calculated for two different

components of fitness: expected number of flowers in the first season

and survival to the second season.

Supporting Information

Figure S1 Annual rainfall and temperatures. Thirty year (1961–

1990) average monthly data from the closest weather stations

(Ukiah: Inland, Point Arena: Coast) to the field sites of the

reciprocal transplant experiments. (A) Rainfall (mm) in coast (blue)

and inland (orange) habitats. (B) Average high (coast: blue, inland:

orange) and low (coast: purple, inland: red) temperatures.

Found at: doi:10.1371/journal.pbio.1000500.s001 (0.70 MB TIF)

Figure S2 Histogram of F2 flowering time. Distribution of days

to first flower under greenhouse conditions for progeny of crosses

between (A) CAN and BCB, (B) LMC and SWB, (C) RGR and

OPB, and (D) SAM and OSW. Orange and blue arrows indicate

the mean flowering time for the inland annual and coastal

perennial parental types, respectively.

Found at: doi:10.1371/journal.pbio.1000500.s002 (0.55 MB TIF)

Figure S3 Histogram of F2 stem thickness. Distribution of

second internode thickness under greenhouse conditions for

progeny of crosses between (A) CAN and BCB, (B) LMC and

SWB, (C) RGR and OPB, and (D) SAM and OSW. Orange and

blue arrows indicate the mean stem thickness for the inland annual

and coastal perennial parental types, respectively.

Found at: doi:10.1371/journal.pbio.1000500.s003 (0.39 MB TIF)

Figure S4 Photos documenting onset of drought at inland field

site. View of the inland annual field site (Boonville, CA) from same

perspective over the course of the spring on (A) March 3, (B) May

7, and (C) June 12, 2009.

Found at: doi:10.1371/journal.pbio.1000500.s004 (3.65 MB TIF)

Figure S5 Photo of the coastal perennial field site. Located near

Manchester, CA in a seep on a cliff at the edge of a coastal terrace

formation.

Found at: doi:10.1371/journal.pbio.1000500.s005 (5.73 MB TIF)

Table S1 Geographic locations of populations used in this study.

Found at: doi:10.1371/journal.pbio.1000500.s006 (0.02 MB XLS)

Table S2 Geographic distribution of chromosomal inversion

arrangement as determined by crosses.

Found at: doi:10.1371/journal.pbio.1000500.s007 (0.02 MB XLS)

Table S3 Morphological trait variation in crosses between

ecotypes measured in the greenhouse.

Found at: doi:10.1371/journal.pbio.1000500.s008 (0.02 MB XLS)

Table S4 Fitness analysis of coastal perennial and inland annual

parental ecotypes from the field experiment with ASTER.

Found at: doi:10.1371/journal.pbio.1000500.s009 (0.02 MB XLS)
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