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A Wigner Function-Based Quantum Ensemble Monte
Carlo Study of a Resonant Tunneling Diode

L. Shifren, C. Ringhofer, and D. K. Ferry

Abstract—We present results of resonant tunneling diode op-
eration achieved from a particle-based quantum ensemble Monte
Carlo (EMC) simulation that is based on the Wigner distribution
function (WDF). Methods of including the Wigner potential into
the EMC, to incorporate natural quantum phenomena, via a par-
ticle property we call the affinity are discussed. Dissipation is in-
cluded via normal Monte Carlo procedures and the solution is cou-
pled to a Poisson solver to achieve fully selfconsistent results.

I. INTRODUCTION

A S CURRENT device technologies quickly approach the
scales whereby quantum effects due to the strong confine-

ment of carriers and direct source-drain tunneling will begin
to dominate [1], [2], new simulation techniques are required
in order to fully understand the physics behind the technology
operation. Of all the simulation methods currently employed,
ensemble Monte Carlo (EMC) has always been the most vig-
orous and trusted method for device simulation, as it is proven
to be reliable and predictive [3]. However, as EMC relies on
the particle nature of the electron, quantum effects associated
with the wave-like nature of the electron cannot be fully incor-
porated into the simulation. In order to resolve quantum me-
chanical effects, the wave-like nature of the electron needs to
be incorporated into the EMC. To accomplish this effect, atten-
tion is turned to the quantum mechanical Wigner distribution
function (WDF), which has found success in modeling resonant
tunneling diodes (RTD) [4]–[7].

The EMC is a stochastic method used to solve the Boltzmann
transport equation (BTE). The similarities between the BTE and
the Wigner transport equation (WTE) [8], [9], along with the
fact that both utilize localized distributions, naturally leads to
the conclusion that EMC should be a valid method for solving
the WTE. The main difference between the BTE and the WTE
is the nonlocal potential term of the WTE. The BTE, being clas-
sical in nature, treats the potential as a localized force term. This
localized force term is purely classical. The WTE treats the po-
tential term nonlocally and fully incorporates quantum effects
such as tunneling and correlation, and causes the WDF to have

Manuscript received July 8, 2002; revised October 31, 2002. This work was
supported by the Office of Naval Research. The review of this paper was ar-
ranged by Editor S. Datta.

L. Shifren and D. K. Ferry are with the Center for Solid State Electronics Re-
search, Department of Electrical Engineering, Arizona State University, Tempe,
AZ 85287 USA (e-mail: ferry@asu.edu).

C. Ringhofer is with the Department of Mathematics, Arizona State Univer-
sity, Tempe, AZ 85287 USA.

Digital Object Identifier 10.1109/TED.2003.809434

negative parts. Therefore, unlike the distribution in the BTE, the
WDF is not a normal probability function in that it can have
negative values (negative probabilities have been discussed by
Feynman [10]).

In order to account for the negative parts of the WDF, which
cannot be accommodated in a normal EMC, we assign the parti-
cles in the EMC a new property that we term the particle affinity
[11]. The affinity is a weighting given to the particle that rep-
resents its contribution to the total charge distribution of the
system. The magnitude of the particle affinity is limited to be
less then 1, but it can take on negative values accounting for neg-
ative probabilities. That is, the particle in the simulation may not
have a value greater then a single electron, but this value may
be less then 0. We return to this point later.

An additional difference between direct solutions of the WTE
and EMC solutions of the BTE is that, although the physics
that govern scattering in both transport equations is identical,
incorporating scattering into the WTE is not an easy process
and has not yet been fully achieved [12]. In contrast to this,
Monte Carlo methods have been very successful in incorpo-
rating scattering into BTE simulation for years, and the physics
and numerical methods behind these dissipative Monte Carlo
techniques is well understood and tested. Therefore, by using
Monte Carlo techniques to solve the WTE, augmented with
the particle affinity, it is possible to incorporate quantum ef-
fects, such as tunneling, into a method previously unable to
demonstrate such physical processes and at the same time in-
clude the scattering term of the WTE fully into the Wigner
problem. Our method depends on calculating the Wigner po-
tential exactly, and updating the electron distribution within the
standard EMC to account for the nonlocal correction to the den-
sity in the system. This is achieved by directly updating the
particle affinity. A simplified version of this method has al-
ready been used by us to study Gaussian tunneling through a
single barrier nonself-consistently [11]–[14]. Other non-WDF
methods to include quantum effects have been developed, such
as the effective potential [15], [16], which account for some phe-
nomena associated with the wave-like nature of the electron but
cannot account for tunneling, correlation or interference effects
[17].

The WTE is given by

(1)

0018-9383/03$17.00 © 2003 IEEE



770 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 3, MARCH 2003

where the second term accounts for scattering, the third term is
the “diffusive” term and the fourth term incorporates the poten-
tial in the system, and is given by

(2a)
where the kernel is

(2b)

As in (2b) is the total potential, which includes both the bar-
rier and the selfconsistent applied potentials, calculating such
a kernel is excessively difficult. Moreover, it has to be contin-
uously updated since the selfconsistent potential is dynamic. It
can be shown that, if the potential profile is of second-order or
lower, (2) reduces to [12]

(3)

which should be recognized as the classical force term of the
BTE. As the selfconsistent potential is slowly varying, it is pos-
sible to decouple the latter from the barrier potential, in the case
of the RTD structure. In our approach, barrier potentials, which
are static, are treated using (2) while the selfconsistent poten-
tial is included classically using (3). We have checked this in
the numerical results, and find that the selfconsistent potential
is quadratic or less to better than 99% in this problem. The final
equation that we, therefore, solve is given as

(4)

On close examination, it becomes evident that the first four
terms of (4) are the BTE, whereby the last term is the quantum
Wigner potential. This is the basis of the method we use to solve
this equation.

The Monte Carlo technique is set up such that two systems are
solved simultaneously. The first system is the particle system,
which resembles a standard classical EMC. The second system
is the wave properties of the particles—the affinity. That is, all
particles in the system are treated classically as whole particles.
They are scattered using normal EMC scattering techniques, and
are drifted and accelerated using the standard field term caused
by the Hartree potential (solution of the Poisson equation). Once
the above operations have completed, the Wigner distribution
function is calculated from the particle’s position and affinity
according to

(5)

where , and are the momentum, position and affinity,
respectively, of theth particle. There are two points here. By
using this in the first term of (4), we see that one needs to tempo-
rally update both the classical properties (position, momentum,
etc.) and the quantum properties (affinity). The first of these

updates, discussed above, is done by the normal Monte Carlo
technique. The second is the affinity update. By constructing
the distribution function, we are then able to utilize (2) to cal-
culate the nonlocal Wigner potential term (NLP),which deter-
mines the change of affinity that each particle experiences due
to the quantum structure in the system. That is, it is the last term
of eqn. (4) that updates the wave-like properties of the particles
through the update of their affinity. This can be summarized as
follows. All particles in the system are drifted, accelerated and
scattered, regardless of their affinities. The particle affinities are
changed by the NLP. It is clear that all the quantum mechanics
is incorporated into the method via the NLP and the variation of
the particle affinity. An alternate realization of the method is to
recognize that the particles themselves do not see the quantum
barriers, only their affinities “see” the barrier.

As eluded to previously, this is a quantum ensemble Monte
Carlo, that is, we retain the full particle nature of the EMC tech-
nique. We are able to utilize full ensemble statistics by noting
that any ensemble average takes the form

(6)

where is the quantity of interest, such as the velocity or the
energy. It should be noted then if we set the particle affinity to
1 (i.e., a classical EMC), we regain the well known definition
of the ensemble. The total number of electrons in the system is,
therefore, given as

(7)

Because some , we require , the number of simulated
particles, to be much larger then . To achieve this, we
define a maximal envelope (ME) which is a larger particle distri-
bution that defines . Here, the ME at any phase point is larger
then the magnitude of , as if all . For example, the
ME is any distribution such that . The
particle density initially is then spread physically over the ME,
according to its variation in positon and momentum. The initial
affinity is assigned by the following procedure: if a particle has
position and momentum , then its affinity is given value 0
if that position and momentum is not occupied under .
That is, the number of particles in a small region are as-
signed affinity 1 according to the number . If
more particles are within this region, the excess particles are
given affinity 0. In the equilibrium situation, the Wigner func-
tion is positive definite, so we do not have negative affinities
initially. The affinities are then updated by the procedure de-
scribed above. A further importance of using the ME is to en-
sure that enough particles are present to not only gain and lose
affinity due to the NLP, but also to sample the entire phase-space
domain of the WDF. As the NLP term acts nonlocally, correla-
tion, reflection and transmission of density can occur where the
WDF is zero or negative. Since the particles act as charge car-
riers, particles need to correctly sample the phase-space domain
to correctly incorporate the nonlocal updates. In Fig. 1, we illus-
trate the effectiveness of this approach by plotting the tunneling
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of the Gaussian wave packet through a single barrier of width 3
nm and height 0.3 eV. Clearly observable are the reflected and
transmitted parts, as well as the correlation that remains in the
barrier region. The total wave function, as shown in the figure,
is termed a macroscopic quantum superposition [18].

One last critical aspect is the phase-space discretization. In
standard EMC, discretization occurs only for the Poisson solver
in real space. However, we are required to calculate the WDF,
which is discretized in both position and momentum. Because
of the periodicity associated with discretizing (2b), the spacing
in position and momentum are related by

(8)

where is the device length and is the number of grid points
in space. This periodicity also leads to a maximum momentum
the system should sample, which is given as

(9)

The choice of therefore determines the largest momentum in
the simulation. is chosen so that it is small enough to sense
quantum effects (in our case, we utilize 1 nm). Although a stan-
dard EMC sets no limits on momentum, with a choice of 1 nm
for , we find that the energy associated with the maximum
momentum is on the order of 1.4 eV, which is sufficiently larger
than any energy of interest in our system.

Boundary conditions are required such that the EMC, ME,
and WDF boundary conditions are all satisfied. This is achieved
by randomly distributing particles in the contact region during
injection (EMC condition), then randomly distributing these
particles in momentum according to the ME and finally,
assigning the particle affinities based on a thermal distribution
function in the contact such that charge neutrality at the contacts
is met. This last step incorporates not only the WDF boundary
condition, but also the need for charge neutrality. Although
previous work has suggested the need for a drifted Maxwellian
boundary conditions [19], we find satisfactory results using
thermal distributions at the contacts. Also, absorbing boundary
conditions are required when solving the WDF [20] to prevent
spurious reflections. However, the EMC and ME condition
on the boundary naturally includes this. Due to the absorbing
nature of the boundary conditions and the need to update the
ME to assure proper sampling of the entire phase-space, current
is calculated from the probability current, which is known to be

(10)

By using our definition, and properties of the WDF [8], it is
easily shown that the current in the device becomes

(11)

The device simulated here is a 1-D (in space) RTD which
consists of 3 nm, 0.3 eV barriers surrounding a 5-nm quantum
well. The barrier structure is centered in a 30-nm lightly doped
(10 cm spacer region that is connected to 60-nm highly
doped (10 cm drift regions on either side. The device

Fig. 1. The Wigner distribution function for the correlation (C), transmitted
(T), and reflected (R) wave packets.

is considered to be entirely GaAs , which is
degenerate at these doping levels. Full Fermi-Dirac statistics
(incorporated via the projection onto the spatial grid, with some
coarse-graining) in the scattering are used in the calculation,
which is performed at 300 K. Polar optical scattering, with
both absorption and emission terms, is included using standard
EMC techniques [21]. Boundary conditions are critical, as
in any device simulation. Here, we ensure that current and
electron number is conserved in the simulation. That is, current
continuity across both contacts, and net space-charge neutrality
are enforced. Selfconsistency is included by solving the Poisson
equation, by a direct matrix inversion. The device is run from
0–0.5 V, in 0.025 V increments, and each bias point is found
to selfconsistently evolve to steady state within 2 ps. The bias
is then reduced stepwise back to 0 V to check for hysteresis.
The resulting – characteristics are shown in Fig. 2. What is
evident from this – characteristic is that the method correctly
predicts the negative differential resistance (NDR) expected
in this device. Furthermore, the peak and valley locations
are approximately where expected. It is of interest that our
simulations do not show any hysteresis [22]. The reason for
the NDR is that as the device is biased, the conduction band
(CB) in the contacts begins to sweep past the resonant level
inside the well. As the CB is lined up with the resonant level
in the well, tunneling is maximized as is evident from the
large density inside the well as seen in Fig. 3(a). As more bias
is applied, the CB rises above the resonant level inside the
well and tunneling into the well is reduced as is evident from
the decrease in density in the well as seen in Fig. 3(b). This
cutoff in tunneling results in a large accumulation of carriers
before the barrier, which is also evident in the latter figure. As
more bias is applied, the barrier on the drain side of the device
begins to fall below the CB of the contact in the source region
and single barrier tunneling begins to dominate the device
operation, which results in the increasing current in Fig. 2
above 0.3 V. Furthermore, more interesting quantum effects are
seen in the device operation. In Fig. 4, we see large negative
correlation due to an increase in tunneling though the quantum
structure [11], [14] and also clearly see the electrons that tunnel
through the barriers.
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Fig. 2. Current voltage characteristics achieved by initially increases the bias
from 0–0.5 V and then reducing the bias stepwise back to 0 V. An additional
forward bias run is also included to demonstrate that small differences in the
currents are due to EMC noise. Notice, there is no hysteresis.

Fig. 3. (a) (Dashed) Selfconsistent potential and barrier potential at a bias of
0.225 V, which corresponds to the peak of theI–V curve in Fig. 1. (Solid) The
associated density profile showing the a large increase of density in the well due
to resonant tunneling. (b) (Dashed) Selfconsistent potential and barrier potential
at a bias of 0.325 V, which corresponds to the valley of theI–V curve in Fig. 1.
(Solid) The associated density profile showing the a large decrease of density in
the well, as well as a large accumulation of carriers before the barrier.

This new QEMC approach clearly shows an ability to cor-
rectly simulate and incorporate quantum effects into EMC sim-
ulations. Furthermore, scattering is easily included via normal

Fig. 4. The Wigner distribution function achieved selfconsistently at a bias of
0.225 (peak ofI–V in Fig. 1) (A) Notice the large negative correlation which
exist before the barrier due to the tunneling. (B) The density tunneling through
the structure.

EMC techniques. These results allow adapting the popular EMC
technique to quantum structures, thus extending the range of this
important method. As simulation demands increase, and device
sizes become smaller, techniques such as this QEMC will be-
come more relevant and important. We should note a similar
approach due to Kuhn and Rossi, in which a Monte Carlo simu-
lation of the density matrix is developed [23]. The Wigner func-
tion is, of course, just a Fourier transform of the difference coor-
dinate of the density matrix, as discussed in a subsequent publi-
cation [24], so the approaches have a common theme. However,
the density matrix is real quantity, and the nonlocal potential is
harder to realize in this latter approach, which was applied to
optical excitations of a homogeneous system. It is not clear how
this approach will work in a device format.
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