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Abstract

In this work we investigate Wigner localization at very low densities by means of the

exact diagonalization of the Hamiltonian. This yields numerically exact results. In par-

ticular, we study a quasi-one-dimensional system of two electrons that are confined to

a ring by three-dimensional gaussians placed along the ring perimeter. To characterize

the Wigner localization we study several appropriate observables, namely the two-body

reduced density matrix, the localization tensor and the particle-hole entropy. We show

that the localization tensor is the most promising quantity to study Wigner localization

since it accurately captures the transition from the delocalized to the localized state and

it can be applied to systems of all sizes.
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1 Introduction

When studying a system constituted of only electrons, one can consider two limiting regimes,
that of high and low density. Since the kinetic energy is proportional to r−2

s while the elec-
tronic repulsion is proportional to r−1

s , with rs the Wigner-Seitz radius (i.e., half the average
distance between two electrons) at high electron density (small rs), the kinetic energy dom-
inates the electronic repulsion, and we have a Fermi gas. Instead, at low electron density
(large rs) the electronic repulsion dominates the kinetic energy and the electrons localize. It
was predicted by Wigner [1] that, at very low density, the electrons crystallize on lattice sites.
This is what is called a Wigner crystal. Experimental evidence has been reported for a liquid-
to-crystal electron phase transition in a two-dimensional sheet of electrons on the surface of
liquid helium. [2] In general, whenever, at low density, localization is due to the electronic
repulsion we speak of Wigner localization. When only few electrons are involved, systems ex-
hibiting Wigner localization are often referred to as Wigner molecules. [3–7] Recently, Wigner
localization was observed experimentally in a 2-electron Wigner molecule. [8]

It is important to be able to describe Wigner localization within ab initio theory in order
to analyze and perhaps even predict their properties. However, in these low-density regions
the electron correlation is strong which is a problem for many condensed-matter theories.
For example, Kohn-Sham density functional theory (KS-DFT) [9,10] using currently available
functionals fails to describe strong correlation satisfactorily. As an alternative to KS-DFT, the
strictly correlated electrons (SCE) DFT has been proposed to deal with the strongly correlated
limit. [11, 12] The SCE-DFT can be combined with KS-DFT and Wigner localization has been
observed with this approach. [13–15] Instead, in this work we use the exact diagonalization
of the many-body Hamiltonian to obtain numerically exact results. This allows us to explore
the regime of extremely low densities, down to densities of the order of 1 electron per 10 µm.

In a recent work, we studied Wigner localization in a quasi-one-dimensional system in
which the electrons were confined to a line segment with a positive background by plac-
ing three-dimensional gaussians along the line. [7, 16] We observed Wigner localization at
low densities. Although the localization we observed was clearly due to the electronic re-
pulsion, quantitatively the results were influenced by border effects. Moreover, we used a
multi-purpose software for the numerical calculations due to which we were limited to system
sizes smaller than 100 Bohr. Due to these restrictions we were not able to fully appreciate the
delta-peak nature of the Wigner localization in the many-body wave function.

The goal of this work is therefore two-fold: i) We remove any border effects by confining
the electrons to a ring [17–20] by placing the three-dimensional gaussians along the ring
perimeter, and ii) We wrote a computer code that is specifically dedicated to treat low densities
which allows us to reach ring perimeters as large as 106 Bohr (≈ 0.05 mm). We note that by
confining the electrons to a ring also removes the need to add a positive background. [18] As
described in the following, with this approach we are able to see the delta-peak nature of the
localization in the many-body wave function.

Here we will limit our study to two electrons, since it is sufficient to observe the Wigner
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localization while at the same time it allows us to obtain numerically exact results by exact
diagonalization of the Hamiltonian. We will analyze several possible indicators of localization.
In particular, we will study the 2-body reduced density matrix, the localization tensor and the
particle-hole entropy. We use Hartree atomic units (ħh= e = me = 4πε0 = 1) througout.

2 Theory

2.1 The Hamiltonian

As mentioned in the Introduction we will study two electrons that are confined to a ring.
The two electrons are confined by a potential that is implicitly defined by the basis set which
consists of M identical 3D s-type gaussians that are evenly distributed along the ring. These
normalized gaussian functions are given by

g(r−A) = (2α/π)3/2 exp
�

−α |r−A|2
�

, (1)

in which A denotes the center of the gaussian and α its exponent which is directly linked to the
width of the gaussian function (∼ 1/

p
α). Since the gaussians are 3D also the ring is 3D, or

rather, quasi-1D, since the width of the ring is much smaller than its perimeter. We, therefore,
have the following Hamiltonian,

Ĥ = −1
2
∇2

1 −
1
2
∇2

2 +
1

r12
, (2)

in which the first two terms on the right-hand side are the 3D kinetic energy operators for
electron 1 and 2, respectively. The last term is the repulsive 3D Coulomb potential in which
r12 = |r1 − r2| is the distance between the two electrons, i.e., the electrons interact through
the ring.

We note the system with electrons confined to a ring with a perimeter of length L might
also be represented by electrons confined to a line of length L and applying periodic boundary
conditions. In that case the position operators in r12 should be replaced by a complex position
operator qL(x) that we have recently proposed. In 1D it is given by [21]

qL(x) =
L

2πi

�

exp
�

2πi

L
x

�

− 1
�

. (3)

We represent the Hamiltonian in Eq. (2) in the basis of the evenly distributed gaussians
which we then diagonalize to find the exact wave functions and eigenenergies. From the exact
wave functions we can then obtain several exact observables of interest. We will mainly focus
on the ground state of two electrons on the ring which is a spin singlet.

We have verified our approach and its implementation by comparing to analytical results
which are available for one electron confined to a strictly 1D ring. They are given by

Eexact
n (R) =

n2

2R2
, (4)

where n is an integer and R is the radius of the ring. When the width of the gaussians (∼ 1/
p
α)

is much smaller than R, the energy spectrum of the system tends to the energies in Eq. (4).
We note, however, that some caution must be used when evaluating distances in the system,
even in the limit 1/

p
α→ 0. In particular, when computing overlaps and kinetic energies, it is

only when each distance is measured along an arc of the ring that in the limit 1/
p
α→ 0 the

energies tend to those given in Eq. (4).

3

https://scipost.org
https://scipost.org/SciPostPhysCore.1.1.001


SciPost Phys. Core 1, 001 (2019)

Since the density, by definition, has the same symmetry as the Hamiltonian it will have
rotational symmetry. Therefore, the one-body density will be a constant as a function of the
position on the ring, and unable to characterize the Wigner localization. However, for 2 elec-
trons, the Wigner localization can be studied using the two-body density matrix, which shows
the correlation between the positions of two electrons.

We note that the present scenario defines a floating Wigner crystal. Another scenario cor-
responds to a pinned Wigner crystal where the spatial symmetry of the wave function is broken
by a small external perturbation or impurity. [22] In this case, the Wigner crystallization can be
observed via the 1-body density. We will not consider such situations in the present manuscript.

2.2 The 2-body reduced density matrix

The N -body reduced density matrix (N -RDM) gives the conditional probability of the presence
of N electrons in space. The 2-body reduced density matrix Γ (2) is defined in 1D as

Γ
(2)(x1, x2; y1, y2) =

(N − 1)N
2

∫

d x3 · · · d xNΨ
∗(y1, y2, x3, · · · , xN )Ψ(x1, · · · , xN ), (5)

in which Ψ is an N -body wave function. In particular, its diagonal elements
Γ (x1, x2) = Γ

(2)(x1, x2; x1, x2) give the probability of having an electron at x1 if a second
electron is located at x2. For two electrons it is given by

Γ (x1, x2) = |Ψ(x1, x2)|2. (6)

In the present quasi-1D context, the 2-RDM plays a crucial role in measuring the locality
of the electrons. Indeed, because of the rotational invariance of the wave function the 1-
RDM is a constant, regardless of the nature of the wave function, since all points in space are
equivalent. It is the 2-RDM, on the other hand, that is able to indicate if the electrons are
strongly correlated (Wigner localization), or weakly correlated (Fermi gas).

The situation is rather different, on the other hand, for 2D and 3D generalizations of elec-
trons on a ring (1-torus), i.e., electrons on a 2-torus and a 3-torus. 1 Just as the diagonal of the
1-RDM is a constant for a ring due to symmetry, the diagonal of the 2-RDM is a constant for the
2-torus. This implies that the 2-RDM is unable to give a complete characterization of a regular
crystalline structure on the 2-torus. Similarly, the 3-RDM is a constant for the 3-torus, and is
unable to characterize the crystallisation of the electrons. Higher-order density matrices would
be in principle needed for this purpose, e.g. the 3-RDM for 2-tori, and the 4-RDM for 3-tori,
etc. However, the evaluation of higher-order density matrices are computationally extremely
demanding, and their calculation would become unfeasible even for very small systems. In
such a situation, other indicators, like the electron entropy, and in particular the localization
tensor, would be much more practical.

2.3 The localization tensor

The localization tensor distinguishes between metallic and insulating behavior. It was devel-
oped by Resta and co-workers [23–26] (see also Ref. [27]) and is based on an idea of Kohn [28]
to describe the insulating state from the knowledge of the ground-state wave function (see also
Ref. [29]). The localization tensor has been applied to study the metallic behavior of clusters
[30–38], chemical bonding [39] and electron transport. [40] It has recently also been used to
investigate Wigner localization. [7]

1A D-torus, the D-dimensional version of the torus, is the product of D circles.
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The localization tensor λ is defined as the total position spread tensor Λ normalized with
respect to the number of electrons N , i.e.,

λ=
Λ

N
. (7)

The total position spread tensor is defined as the second moment cumulant of the total position
operator,

Λ = 〈Ψ|R̂2|Ψ〉 − 〈Ψ|R̂|Ψ〉2, (8)

in which the total position operator R̂ is defined by

R̂=

N∑

i=1

r̂i , (9)

where r̂i = ri the standard position operator for electron i.
The three diagonal elements of Λ are the variances of the wave function in the x , y , and z

directions. Therefore, these elements are large when the electrons are delocalized and small
when they are localized. This shows that the localization tensor is able to distinguish between a
conducting and an insulating behavior. Moreover, in the thermodynamic limit the localization
tensor diverges for conductors while it remains finite in the case of insulators. We note that
the second term on the right-hand side of Eq. (8) ensures gauge invariance with respect to the
choice of the origin of the coordinate system.

Due to the symmetry of the ring we have λx x = λy y and λzz ≪ λx x . In the following we
will focus on the trace of λ, i.e.,

λ = Tr{λ}. (10)

2.4 The particle-hole entropy

The fractionality of the natural occupation numbers, i.e., the eigenvalues associated with the
1-RDM, can be related to the amount of electron correlation in a system. [41, 42] Therefore,
the particle-hole entropy has been proposed as a measure of the presence of correlation in a
system. [43, 44] In the case of a pure state described by a wavefunction Ψ, the particle-hole
entropy is defined as:

S =

M∑

j=1

�

−n j ln n j
︸ ︷︷ ︸

Spart

−(1− n j) ln(1− n j)
︸ ︷︷ ︸

Shole

�

, (11)

where the sum runs over the M natural spinorbitals of Ψ, and n j is the occupation number of
spinorbital φ j . The natural spinorbitals are the eigenfunctions of the one-body reduced spin-
density matrix and the occupations numbers are its eigenvalues. The first and second terms in
the summation are the particle and hole contributions, Spart and Shole, respectively, to the total
entropy. While the entropy of a single determinant is zero, since all the occupation numbers
are either 0 or 1, the entropy has its maximum value when all the spinorbitals have equal
occupation numbers. Therefore, the particle-hole entropy of a Fermi gas will be small while
it will be large in the regime of Wigner localization. In particular, this will be the case for an
Sz = 0 wave function because of the large number of Slater determinants that contribute to
the wave function with similar weight. Indeed, we have an Sz = 0 ground-state wave function.

The dependence of the particle-hole entropy on the natural spinorbitals implies a depen-
dence on the basis set. For large densities this dependence is negligible but in the limit of
Wigner localization there is a strong dependence on the basis set. This dependence can be
made explicit as we will now show. All the occupation numbers become identical when the
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length of the perimeter of the ring tends to infinity and the electrons localize. This leads to
an upper bound for the entropy in the limit L→∞. Let us consider N electrons in M spinor-
bitals. In the limit L→∞ each spinorbital φ j has occupation number n j = N/M . Therefore,
we obtain the following upper bounds for the particle and hole entropies in the limit L→∞,

lim
L→∞

Spart = −N ln(N/M), (12)

lim
L→∞

Shole = −(M − N) ln(1− N/M). (13)

If we subsequently let the number of gaussians, and thereby the number of spinorbitals M ,
tend to infinity, we see that particle entropy diverges logarithmically as

lim
L→∞

Spart ∼ −N ln(N/M). (14)

Instead, in this limit, the hole entropy tends to a constant, namely the number of electrons,

lim
M→∞

lim
L→∞

Shole = N . (15)

The total entropy therefore behaves as

S = −N ln(N/M) + N +O(M−1) (16)

for large L and M .

3 Computational details

As mentioned before, we study a quasi-1D periodic system of electrons by placing a series of
identical 3D gaussian functions [see. Eq. (1)] to form a ring. The centers of the gaussians
are equally spaced. It can be shown that the overlap between two neighboring gaussians is
proportional to the parameter ξ = αδ2, where α is the exponent of the gaussian and δ is
the distance along the arc between two neighboring gaussians. [16] The overlap should be
sufficiently large to be able to accurately describe the electronic wave function but not too
large to avoid numerical problems due to a quasi-linearly dependent basis functions. We have
demonstrated that a value of ξ ≈ 1 is optimal for quasi-1D systems. [16] In this work we
used ξ= 1. We have used 128 equidistant gaussians which was sufficient to obtain converged
results for rings with lengths up to 106 Bohr.

For two electrons the spin wave function can correspond either to a single or a triplet.
Therefore, it is convenient to generate spin-adapted wave functions. This is particularly im-
portant at low density, where the singlet and triplet wave functions tend to become degenerate.
In absence of spin adaptation, due to numerical errors, the diagonalization procedure could
mix the two quasi-degenerate states, and therefore the computed properties would correspond
to wave functions that are not eigenfunctions of Ŝ2. The details of the diagonalization of the
Hamiltonian can be found in the appendix. There we also discuss how one can take advantage
of the rotational symmetry of the problem to reduce the numerical cost of the calculation.

4 Results

We now report the results for 2 electrons confined to a quasi-1D-ring.
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4.1 The 2-body reduced density matrix

As mentioned earlier, for a system without translational and/or rotational symmetry, such as
a linear system within open-boundary conditions, a symmetry-broken system or a system with
an impurity (i.e. pinned electrons), the electron density is sufficient to characterize the Wigner
localization. [7] However, as explained in the previous section, in the case of a ring, due to the
rotational symmetry of the Hamiltonian, the density is no longer a good observable to identify
the Wigner localization. Instead, we can use the 2-body reduced density matrix to characterize
this localization since it describes the correlation between the positions of two electrons.

In Fig. 1, we report the two-body reduced density matrix Γ (0, x) as a function of x for
different values of the length of the perimeter L of the ring. It gives the probability amplitude
of finding an electron at x while another electron is present at x = 0. 2

At large electron density (small L), Γ (0, x) is almost constant, since the kinetic energy
dominates the electronic repulsion. This is the Fermi-gas regime. Instead, at low electron
density (large L), the second electron has the largest amplitude at x = L/2, i.e., exactly at
the position that is opposite to the position of the first electron. The electronic repulsion
is dominant and pushes the two electrons to opposite positions on the ring. By increasing
L the two-body reduced density matrix becomes ever more localized. For very large values
of L the density matrix becomes close to a delta function. There is the formation of a 1D
electron “lattice”, we observe the Wigner localization. It is difficult to pinpoint exactly for
which length the transition from the Fermi to the Wigner regime occurs. Nevertheless, the
Wigner localization becomes apparent for lengths of the order of L = 10 Bohr.

0 L/4 L/2 3L/4 L

x (Bohr)

0

0.0005

0.001

0.0015

0.002

Γ
(0

,x
)

L = 0.1 Bohr
L = 1 Bohr
L = 10 Bohr

L = 10
2
 Bohr

L = 10
4
 Bohr

L = 10
6
 Bohr

10
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10
0

10
2

10
4

10
6

L (Bohr)

0

0.2

0.4

0.6

0.8

1

F
W

H
M

/L

Figure 1: The two-body reduced density matrix Γ (0, x) for two electrons on a ring
for various values of the length L of the perimeter. The position of the first electron
is fixed at x = 0 (indicated by the blue dot). Inset: Full-width at half maximum
(FWHM) of Γ (0, x) normalized with respect to L as a function of L. For small L the
FWHM is not well-defined and the normalized FWHM is set to 1.

However, as mentioned before, the two-body reduced density is not sufficient to character-
ize Wigner localization for systems of higher dimensions. Therefore, we will study two other

2To be precise, the results in Fig. 1 are the 2-RDM expressed in the basis of the orthonormal gaussians, i.e.,
Γiα jβ iα jβ = 〈Ψ|a†

iαa
†
jβ

aiαa jβ |Ψ〉 in which the first electron is fixed at i = 1.
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Figure 2: The trace of the localization tensor λ/L2 as a function of the length L of
the perimeter of the ring.

indicators of the Wigner localization, namely the localization tensor and the electron-hole en-
tropy. The advantage of these quantities is that they can also be easily calculated for systems
of higher dimensions and with many electrons.

4.2 The localization tensor

In order to compare localization tensors for systems of different sizes, we report in Fig. 2 the
dimensionless quantity λ/L2 as a function of the length L of the perimeter of the ring.

We see that for large density (L < 0.1) λ/L2 is almost constant while its value starts
to decrease for L > 1 Bohr. This marks the beginning of the transition to a localized state.
For very low density, L ≫ 1, the localization tensor almost vanishes, clearly indicating the
Wigner localization. The behavior of the localization tensor is in agreement with the 2-body
reduced density matrices reported in Fig. 1, i.e, the transition from the Fermi-gas regime to the
Wigner regime occurs in the region around L = 10 Bohr. Finally, we note that the qualitative
behavior of the localization tensor we observe here for the ring is very similar to the behavior
we observed for a linear system within open boundary conditions. [7] Hence, the localization
tensor seems to be a robust indicator of the transition to the Wigner regime.

4.3 The particle-hole entropy

In Fig. 3, we report the particle-hole entropy as a function of the length L of the perimeter
of the ring. For large average densities (L ≪ 1) the entropy S is very small since the Fermi
gas can be accurately described by a single Slater determinant. The entropy starts to rapidly
increase for L > 1 Bohr, indicating the transition towards the Wigner regime.

Up to about L = 10 Bohr the entropy is qualitatively similar to the behavior of the entropy
for a linear system. [7] However, while for the linear system the entropy stabilizes for L > 10
Bohr, for the ring it continues to increase logarithmically. This is due to the particle part of the
entropy which grows logarithmically in the region 102 < L < 106 while the hole part saturates
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Figure 3: The entropy S as a function of the length L of the perimeter of the ring.
The dashed lines indicate the asymptotic limits of the entropies for 128 gaussians
when L→∞ [see Eqs. (12) and (13)].

in this region.
Although it might appear that the entropy diverges logarithmically with L, this is not the

case. Using Eqs. (12) and (13) we can determine the asymptotic limits of the entropy and its
two contributions (for a given M). They are finite and we reported them in Fig. 3. In order to
reach the asymptotic limit of the total entropy we have to go beyond L = 106 Bohr which would
require a larger number of gaussians to guarantee stable results. However, a larger number of
gaussians yields a larger number of spinorbitals which will raise the asymptotic limit, requiring
an even larger number of gaussians to reach it, etc. Due to this vicious circle, the particle-hole
entropy is not capable of capturing the localized state. Therefore, the particle-hole entropy
seems less convenient than the localization tensor as an indicator of Wigner localization.

5 Conclusion

We have investigated Wigner localization at extremely low densities using an exact diagonal-
ization of the many-body Hamiltonian for a system of two electrons confined to a ring. Due
to the rotational symmetry of the system, Wigner localization cannot be observed in the lo-
cal density. Therefore, we have studied alternative quantities, namely, the two-body reduced
density matrix, the localization tensor and the particle-hole entropy. We have clearly observed
the Wigner localization both in the two-body reduced density matrix and in the localization
tensor. Instead, in the particle-hole entropy the Wigner localization cannot easily be detected.
With respect to the two-body reduced density matrix, the advantage of the localization tensor
is that it can also be applied without increased difficulty to systems with more dimensions and
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more electrons.
This work paves the way for further investigations of Wigner localization. In particular,

it would be interesting to study two-dimensional electron systems with more than two elec-
trons, going towards a true many-electron Wigner crystal that can be experimentally observed.
However, to make these calculations numerically feasible, we have to make use of the transla-
tional symmetry, the sparsity of the two-electron integrals, etc. Work along this direction is in
progress. We note that in order to exploit the translational symmetry one can impose periodic
boundary conditions (PBC). Unfortunately, the standard position operator, which appears in
the localization tensor, is not compatible with PBC. However, we have recently proposed an
alternative position operator that is compatible with PBC. [21] This would allow us to pinpoint
the phase transition which is well-defined only in the thermodynamic limit. Finally, it could be
of interest to combine our approach with the density-matrix renormalization group (DMRG)
algorithm to treat 1D systems with many electrons [45, 46] and to generalise our method to
finite temperature [47–49]
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A Diagonalization of the Hamiltonian

We describe here the details of the diagonalization procedure that yields the eigenvalue and
eigenvectors of the Hamiltonian matrix. We wrote two versions of the program: i) a version
based on the local gaussian functions and ii) a version that takes advantage of the rotational
symmetry of the system. Both versions yield identical results.

A.1 Local gaussian functions

When using the local gaussian functions, the number of determinants having the spin projec-
tion Sz = 0 is given by n2, where n= M/2 is the number of gaussian functions. The orbitals are
orthogonalized with a S−1/2 symmetrical procedure and then the Hamiltonian matrix is built
by using the Slater-Condon rules. [50] As mentioned in the main text, for two electrons the
spin wave function can correspond either to a single or a triplet. Therefore, it is convenient to
generate spin-adapted wave functions. This is particularly important at low density, where the
singlet and triplet wave functions tend to become degenerate. In absence of spin adaptation,
due to numerical errors, the diagonalization procedure could mix the two quasi-degenerate
states, and therefore the computed properties would correspond to symmetry-broken states.
The spin-adaptation procedure is straightforward, since it corresponds to taking the symmet-
ric (singlets) and anti-symmetric (triplets) combinations of the Slater determinants |gi,αg j,β 〉
built with the gaussians gi:

|Φ[S]
i j
〉= |gi,αg j,β 〉+ |gi,αg j,β 〉, (17)

|Φ[T]
i j
〉= |gi,αg j,β 〉 − |gi,αg j,β 〉, (18)

for singlets and triplets, respectively. We note that for triplets we must have i 6= j. The
Hamiltonian matrix reduces therefore to two spin adapted diagonal blocks, of dimensions
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n(n+ 1)/2 and n(n− 1)/2, respectively (note that n(n+ 1)/2+ n(n− 1)/2= n2).

A.2 Rotational symmetry

When exploiting the rotational symmetry Cn of the problem the wave function has a particu-
larly simple structure. Symmetry-adapted orbitals φk are built as linear combinations of the
gaussians. Since all the (orthogonalized) gaussians are equivalent under a rotational sym-
metry operation, each symmetry-adapted orbital is associated to a different quasi-momentum
k = 2πκ/L, with κ an integer going from 0 to n− 1, where n is the number of unit cells. The
quasi-momenta being additive, we have that the combination of an α-electron in spinorbital
|φk,α〉 with a β -electron in spinorbital |φk′,β 〉 gives rise to a Slater determinant having total
quasi-momentum K = k + k′. Since the Hamiltonian is totally symmetric, only determinants
having the same total quasi-momentum K yield nonzero expectation values of the Hamilto-
nian. Therefore, for a ground state with total rotational symmetry K , the wave function will
be a linear combination of determinants, |φk+K ,αφ−k,β 〉, i.e.,

|ΨK〉=
∑

k

Ck+K ,−k|φk+K ,αφ−k,β 〉. (19)

The important point here is that the number of coefficients Ck+K ,−k is identical to the number
of orbitals, and not to its square. Therefore, the coefficients can be obtained by diagonalizing
matrices (one matrix for each K) of order n, with a huge computational gain. Because of the
symmetry properties of the singlet and triplet wave functions, we have

Ck+K ,−k = C−k+K ,k, (20)

Ck+K ,−k = −C−k+K ,k, (21)

for singlets and triplets, respectively.
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