A winding problem for a resonator driven by a white noise

By

H. P. McKean, Jr.1

(Communicated by Professor K. Ito) (Received March 14, 1963)

1. Introduction.

Given a standard 1-dimensional Brownian motion with sample paths $t \to e(t)$ ($e(0) \equiv 0$), let $P_{ab}(B)$ be the chance that the solution $g: t \to (u, v) \in \mathbb{R}^2$ of

1a.
$$\mathbf{D}[\mathbf{u}] \equiv \ddot{\mathbf{u}} + c_1(\mathbf{u})\dot{\mathbf{u}} + c_2(\mathbf{u}) = \dot{\mathbf{e}}$$

1b. $v = \dot{u}$

2a. u(0) = a

2b. v(0) = b

experiences the event B, interpreting la as $v + \int_0^t [c_1(u)v + c_2(u)]ds = b + e$. [x, P.] is a (singular) diffusion in the plane winding clockwise about the origin, governed by

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial b^2} + b \frac{\partial p}{\partial a} - [c_1(a)b + c_2(a)] \frac{\partial p}{\partial b};$$

it should be viewed as the response of the resonator D to the white noise &.

J. Potter [5] found that for a spring $(uc_2 \ge 0)$ with no damping $(c_1 = 0)$, the energy $e = (1/2)v^2 + \int_0^u c_2$ is a martingale and used this fact to obtain the bounds

 $^{^{1}\,}$ The partial support of the National Science Foundation (NSF-G-19684) is gratefully acknowledged,

$$c_1 t / l g_2 t < \max_{s \le t} e(s) < c_2 t l g_2 t \qquad (t \uparrow \infty)$$

$$c_1 > 0, c_2 > 1, l g_2 t \equiv l g(l g t).$$

Potter also proved that the sample path hits each disc i.o. $(t \uparrow \infty)$ if $\int_0^\infty \left(1 + \int_0^u c_2\right)^{-1/2} du < \infty$.

M. Kac [4] studied the damped spring $D[u] = \ddot{u} + c_1\dot{u} + c_2u$ (0< c_1 , c_2 = constant): in that case [\mathbf{r} , P.] is Gaussian having a stable distribution $p(da \times db)$ of total mass + 1, and letting E denote the integral (expectation) based on $P = \int p(da \times db)P_{ab}$ and \mathbf{t}_1 the time between roots of u = 0, the total angle $\theta = \theta(t)$ swept out between times 1 and t > 1 is found to be about $2\pi t/E(\mathbf{t}_1)$ ($t \uparrow \infty$). S. O. Rice [6] had evaluated $E(\mathbf{t}_1)$ and now Kac finds a minimum principle for $E(\mathbf{t}_1^2)$ similar to Thompson's principle for Newtonian electrostatic capacities; the actual distribution of \mathbf{t}_1 is still unknown.

The purpose of the present note is to give a complete description of the winding of the phase path about the origin in the simplest case $(c_1=c_2\equiv 0)$; the joint distribution of the 1/2 winding time $t_1=\min(t:t>0, u(t)=0)$ and the hitting place $\mathfrak{h}_1=|v(t_1)|$ is evaluated for paths starting on the line a=0, and the following strong laws for the speed of winding are established:

$$P_{ab}[\lim_{t \to \infty} (\lg t)^{-1}\theta(t) = -\sqrt{3}/8] = 1$$

 $P_{00}[\lim_{t \to 0} (\lg 1/t)^{-1}\theta(t) = +\sqrt{3}/8] = 1.$

2. Winding times and hitting places $(c_1 = c_2 \equiv 0)$.

Before it is possible to talk about winding about x=0, it must be proved that the sample path does not hit x=0 at positive times.

D[u] = u implies $v = b + \int_0^t e ds$, so x is Gaussian and it is a simple matter to evaluate the probabilities

1.
$$P_{ab}[u(t) \in d\xi, v(t) \in d\eta] \equiv p(t, a, b, \xi, \eta) d\xi d\eta$$

= $(\sqrt{3}/\pi t^2) \exp \left[-\frac{(\xi - a - bt)^2}{t^3/6} + \frac{(\xi - a - bt)(\eta - b)}{t^2/6} - \frac{(\eta - b)^2}{t/2} \right] d\xi d\eta$

of coming from x(0) = (a, b) into $d\xi \times d\eta$ in time t and to check the that the Green function

2.
$$G(a, b) \equiv \int_{0}^{\infty} p(t, a, b, 0, 0) dt$$

= $\int_{0}^{\infty} \frac{\sqrt{3}}{\pi t^{2}} \exp\left(-\frac{(a+bt)^{2}}{t^{3}/6} + \frac{(a+bt)b}{t^{2}/6} - \frac{b^{2}}{t/2}\right) dt$

has the following properties:

3a.
$$G < \infty$$
 $a^2 + b^2 > 0$
3b. $\lim_{a^2 + b^2 \downarrow 0} G = \infty$.

3b.
$$\lim_{a^2+b^2\downarrow 0} G = \infty$$

G(u, v, 0, 0) is now a continuous supermartingale, its sample paths are bounded on bounded time intervals if $x(0) \neq 0$, and the result follows from the fact that $P_{ab}(\mathbf{x}(t)=0)=0$ at each positive time.

Given a sample path x starting at x(0) = (a, b) + 0, the 1/2winding time $t_1 \equiv (t:t>0, u(t)=0)$ statisfies $P_{ab}(0 < t_1 < \infty) = 1$.

$$P_{ab}(0 < t_1) = 1$$
 is immediate.

 $t_1 = \infty$ implies that g moves in a 1/2 plane for all positive times, or, what is the same, that $\int_{-\infty}^{\infty} e ds$ is bounded above or below for all positive times. But such Brownian (tail) events have probabilities 0 or 1 and so the obvious bound

$$P_{ab}(\mathsf{t}_1 = \infty) \leq \lim_{d \to \infty} \lim_{t \to \infty} P\left(\int_0^t e ds < d\right) = 1/2$$

implies the desired $P_{ab}(t_1 < \infty) = 1$.

Consider now the 1/2 winding time t_1 and the corresponding hitting place $\mathfrak{h}_1 = |v(\mathfrak{t}_1)| > 0$ for sample paths x starting on the line a=0 $(v(0)=b \neq 0)$. Because the Brownian scaling $e \rightarrow ce(t/c^2)$ (c>0)takes e into a new standard Brownian motion, the 1/2 winding time $t_1 = \min(t: (t>0, bt + (t=0)))$ is identical in law to

$$\min \left((t:t > 0, bt + \int_{0}^{t} ce(s/c^{2})ds = 0 \right)$$

$$= \min \left((t:t > 0, c^{2}bt/c^{2} + c^{3} \int_{0}^{t/c^{2}} e(s)ds = 0 \right)$$

$$= c^{2} \min \left((t:t > 0, c^{2}b + c^{3} \int_{0}^{t} eds = 0 \right)$$

$$= b^{2} \min \left((t:t > 0, \pm 1 + \int_{0}^{t} eds = 0 \right) \quad c \equiv |b|,$$

i.e., t_1 is identical in law to $b^2 \times the \ 1/2$ winding time for paths starting at (0, 1), and the same trick applied to v=b+e verifies that the hitting place \mathfrak{h}_1 for paths starting at (0, b) is identical in law to $b \times the$ hitting place for paths starting at (0, 1), indeed, since the motion starts afresh at its passage time to the line a=0, it follows that the series of 1/2 winding times and hitting places

4a.
$$t_n = \min(t: t > t_{n-1}, u(t) = 0) - t_0$$
 $n \ge 1$,
 $t_0 \equiv \min(t: t \ge 0, u(t) = 0)$
4b. $\mathfrak{h}_n = |v(t_n)|$ $n \ge 1$

for paths starting at $x(0) = (a, b) \neq 0$ is identical in law to the series

5a.
$$c^2t_1$$
, $c^2(t_1+h_1^2t_2)$, $c^2(t_1+h_1^2t_2+(h_1h_2)^2t_3)$, etc.

5b.
$$ch_1$$
, ch_1h_2 , $ch_1h_2h_3$, $etc.$,

in which $c \equiv |v(t_0)|$ and the pairs (t_1, h_1) , (t_2, h_2) , etc. are independent with common distribution $P_{01}(t_1 < t, \mathfrak{h}_1 < h)$.

3. Computing the joint distribution $P_{01}(t_1 < t, b_1 < h)$.

Because x winds clockwise about the origin and begins afresh at the 1/2 winding time t_1 , the Gauss function p of 2.1^2 satisfies

1.
$$p(t, 0, 1, 0, b)$$

$$= \int_{0}^{t} \int_{0}^{\infty} P_{01}(t_{1} \in ds, h_{1} \in da) p(t-s, 0, -a, 0, b)$$

$$t > 0, b > 0,$$

and, using the Laplace transform

2.
$$\int_{0}^{\infty} e^{-\alpha t} p(t, 0, a, 0, b) dt$$

$$= a \text{ constant depending on } \alpha \text{ alone}$$

$$\times \frac{K_{-1}(\sqrt{8\alpha(a^{2} + ab + b^{2})})}{\sqrt{a^{2} + ab + b^{2}}}$$

$$\alpha, a, b > 0,^{3}$$

1 becomes

² $n \cdot m$ means formula m of section n.

 $^{^{3}}$ [1(2):146(29)]. K_{-1} is the usual modified Bessel function.

A winding problem for a resonator driven by a white noise

3a.
$$\frac{K_{-1}(\sqrt{8\alpha(1+b+b^2)})}{\sqrt{1+b+b^2}}$$

$$= \int_0^\infty E_{01}(e^{-\alpha t_1}, \mathfrak{h}_1 \in da) \frac{K_{-1}(\sqrt{8\alpha(a^2-ab+b^2)})}{\sqrt{a^2-ab+b^2}}$$

$$\alpha > 0, b > 0.$$

3a is now multiplied by $K_{\gamma}(\sqrt{8\alpha} \ b)$ ($|\gamma| < 1$) and integrated (db) over $[0, +\infty)$: the result is

3b.
$$\frac{K_{\gamma}(\sqrt{8\alpha})}{2\cos{(\pi\gamma/3)}} = \int_0^\infty E_{01}(e^{-at_1}, \mathfrak{h}_1 \in da)K_{\gamma}(\sqrt{8\alpha} - a)/a \qquad |\gamma| > 1$$
,

and now using the Lebedev transform pair 6

4a.
$$\hat{f}(\gamma) = \int_0^\infty f(a) K_{i\gamma}(a) \frac{da}{a}$$

4b. $f(a) = \int_0^\infty \hat{f}(\gamma) K_{i\gamma}(a) do$ $do \equiv 2\pi^{-2} \gamma \sinh \pi \gamma d\gamma$

3b is solved to obtain

5.
$$E_{01}(e^{-at_1}, \mathfrak{h}_1 \in da)$$

$$= \int_0^\infty \frac{K_{i\gamma}(\sqrt{8\alpha})K_{i\gamma}(\sqrt{8\alpha} - a)}{2\cosh(\pi\gamma/3)} do da,$$

which in turn can be inverted as a Laplace transform to obtain the joint distribution of t_1 and h_1 :

6.
$$P_{01}(t_{1} \in dt, \mathfrak{h}_{1} \in da)$$

$$= \frac{1}{2t} e^{-2(1+a^{2})/t} \int_{0}^{\infty} \frac{K_{i\gamma}(4a/t)}{2 \cosh(\pi\gamma/3)} do dt da$$

$$= \frac{3a}{\pi\sqrt{2} t^{2}} e^{-2/t(1-a+a^{2})} \int_{0}^{4a/t} \frac{e^{-3\theta/2}}{\sqrt{\pi\theta}} d\theta.$$

6 can be integrated to obtain

7.
$$P_{01}(\mathfrak{h}_1 \in dh) = \frac{3}{2\pi} \frac{h^{3/2}}{1 + h^3} dh$$

 $^{^4}$ E_{01} is the integral (expectation) based on $P_{01}.$ 5 [1(2):377(34)].

<sup>6 [1(2):173].
7 [1(1):285(64)]</sup> justifies line 2, while line 3 follows from the classical formula $K_{i\gamma}(a) = \int_0^\infty \exp(-a\cosh t)\cos \gamma t \,dt.$

and

8a.
$$E_{01}(lg \mathfrak{h}_1) = \frac{3}{2\pi} \int_0^\infty lg h \frac{h^{3/2}}{1+h^3} dh = \frac{4\pi}{\sqrt{3}}$$

8b.
$$E_{01}[(lg t_1)^2] < \infty$$
.

8 is needed below. I could not perform the integrals needed to find $P_{01}(t_1 \in dt)$.

4. Speed of winding.

Given $a^2+b^2>0$ and using 2.5b, 3.8a, the strong law of large numbers, and the fact that x starts afresh each time it hits the line a=0, one finds

1.
$$P_{ab}[\lim_{n \to \infty} n^{-1} lg \, \mathfrak{h}_n = 4\pi/\sqrt{3}] = 1$$
.

Recall the series 2.5a and the bound 3.8b. Because t_1 , t_2 , etc. are independent with common distribution $P_{01}(t_1 < t)$, it follows from the Borel-Cantelli lemma that $|\lg t_n| < n\delta$ as $n \uparrow \infty$ ($\delta > 0$), and this bound applied to 2.5a implies that as $n \uparrow \infty$, $n^{-1} \lg t_n$ behaves like $n^{-1} \lg h_1^2 h_2^2 \cdots h_{n-1}^2$, whence

2.
$$P_{ab}[\lim_{n \to \infty} n^{-1} \lg t_n = 8\pi/\sqrt{3}] = 1$$
.

2 in turn implies that if $\theta = \theta(t)$ is the total algebraic angle swept out up to time t, then

3.
$$P_{ab}[\lim_{t \to \infty} (lg t)^{-1} \theta(t) = -\sqrt{3}/8] = 1$$

since $t_{n-1} \le t < t_n$ is the same as $-(n-1)\pi \ge \theta - \theta(t_0) > -n\pi$ and $\lg t_n \sim 8\pi n / \sqrt{3}$ as $n \uparrow \infty$.

5. Winding for paths beginning at x=0.

Given a sample path beginning at g(0) = 0, it follows from 3.6, the scaling established in 2, and the starting afresh of g at passage times that the *forward chain*:

1.
$$t_1^+ = \min(t: t > 1, u(t) = 0),$$
 $\mathfrak{h}_1^+ = |v(t_1^+)|$ $t_2^+ = \min(t: t > t_1^+, u(t) = 0),$ $\mathfrak{h}_2^+ = |v(t_2^+)|$ etc.

of 1/2 winding times and hitting places is Markovian with transition probabilities

2.
$$P_{00}(\mathbf{t}_{n}^{+} \in dt, \ \mathfrak{h}_{n}^{+} \in dh \mid \mathbf{B}_{n-1}^{+})$$

$$\equiv p^{+}(\mathbf{t}_{n-1}^{+}, \ \mathfrak{h}_{n-1}^{+}, \ dt \times dh)$$

$$= \frac{3h}{\pi \sqrt{2} (t - t_{n-1}^{+})^{2}} \exp(-2(h^{2} - h\mathfrak{h}_{n-1}^{+} + \mathfrak{h}_{n-1}^{+2})/(t - t_{n-1}^{+}))$$

$$\times \int_{0}^{4h\mathfrak{h}_{n-1}^{+}/(t - t_{n-1}^{+})} \frac{e^{-3\theta/2}}{\sqrt{\pi \theta}} d\theta dt dh \qquad (t \ge t_{n-1}^{+})$$

$$= 0 \qquad (t < t_{n-1}^{+}),$$

where $\mathbf{B}_{n-1}^+ = the \ field \ of \ t_1^+, \ \mathfrak{h}_1^+, \ \cdots, \ t_{n-1}^+, \ \mathfrak{h}_{n-1}^+$. Consider now the *backward chain*:

3.
$$\mathbf{t}_{1}^{-} = \max(t: t < 1, u(t) = 0),$$
 $\mathfrak{h}_{1}^{-} = |v(\mathbf{t}_{-}^{1})|$ $\mathbf{t}_{2}^{-} = \max((t: t < \mathbf{t}_{1}^{-}, u(t) = 0),$ $\mathfrak{h}_{2}^{-} = |v(\mathbf{t}_{2}^{-})|$ etc.

of 1/2 winding times and hitting places as the path spirals back toward the origin as $t \downarrow 0$. Both t_n^- and \mathfrak{h}_n^- are positive and $\downarrow 0$ as $n \uparrow \infty$ as is evident from the fact that $\int_0^t e ds$ experiences an infinite number of changes of sign as $t \downarrow 0$, and taking advantage of the scaling properties of winding times and hitting places, a little computation reveals that the backward chain is Markovian with transition probabilities:

4.
$$P_{00}(\mathbf{t}_{n}^{-} \in dt, \ \mathfrak{h}_{n}^{-} \in dh | \mathbf{B}_{n-1}^{-})$$

$$\equiv p^{-}(\mathbf{t}_{n-1}^{-}, \ \mathfrak{h}_{n-1}^{-}, \ dt \times dh)$$

$$= \frac{p(dt \times dh)p^{+}(t, \ h, \ d\mathbf{t}_{n-1}^{-} \times d\mathfrak{h}_{n-1}^{-})}{p(d\mathbf{t}_{n-1}^{-} \times d\mathfrak{h}_{n-1}^{-})},$$

where $\mathbf{B}_{n-1}^- = the$ field of $\mathbf{t}_1^-, \mathfrak{h}_1^-, \dots, \mathfrak{t}_{n-1}^-, \mathfrak{h}_{n-1}^-$, and $p(dt \times dh)$ stands for the (infinite) stable mass distribution

5.
$$p(dt \times dh) = \exp(-2h^2/t)t^{-2}dt h dh$$

for the forward chain. 4 states that the backward chain has the same transition probabilities as the dual $[t_{-n}, \mathfrak{h}_{-n}: n = \cdots, -1, 0,$ etc.] of the two-sided forward chain $[t_{+n}, \mathfrak{h}_{+n}: n = \cdots, -1, 0,$ etc.] with stable distribution $p(dt \times dh)$, i.e., with (infinite) shift-invariant distribution

6.
$$Q[t_m \in dt_m, b_m \in dh_m, \dots, t_n \in dt_n, b_n \in dh_n]$$

= $p(dt_m \times dh_m)p^+(t_m, h_m, dt_{m+1} \times dh_{m+1})$
 $\dots p^+(t_{n-1}, h_{n-1}, dt_n \times dh_n)$
 $n, m = \dots, -1, 0, etc., n < m$

(see G. Hunt [2] or [3] for such dual chains). But now

7a.
$$Q \llbracket \mathfrak{h}_m \in dh_m, \dots, \mathfrak{h}_n \in dh_n \rrbracket$$

= $\int_0^\infty (1/2h_m)dh_m P_{0h_m}(\mathfrak{h}_1 \in dh_{m+1}) \dots P_{0h_{m-1}}(\mathfrak{h}_1 \in dh_n)$

and

7b.
$$P_{0a}(\mathfrak{h}_1 \in db) \Longrightarrow p^+(a, db) = \frac{3}{2\pi} \frac{(ab)^{3/2}}{a^3 + b^3} \frac{db}{a}$$
,

so that the (Markovian) dual chain of hitting places $[\mathfrak{h}_{-n}: n = \cdots, -1, 0, etc., Q]$ has as its transition probabilities

8.
$$p^{-}(b, da) = \frac{a^{-1}da \ p^{+}(a, db)}{b^{-1}db}$$
$$= \frac{3}{2\pi} \frac{(ba)^{3/2}}{a^3 + b^3} \frac{b \, da}{a^2}$$
$$= \frac{3}{2\pi} \frac{(ab)^{-3/2}}{a^{-3} + b^{-3}} \frac{da^{-1}}{b^{-1}}$$
$$= p^{+}(b^{-1}, da^{-1}),$$

i.e., the dual hitting chain has the same transition probabilities as the reciprocal $[\mathfrak{h}_n^{-1}: n=\cdots, -1, 0, etc., Q]$ of the original (Markovian) forward chain of hits, and it follows that

9.
$$P_{00}[\min_{n + \infty} n^{-1} lg \, \mathfrak{h}_n^- = -4\pi/\sqrt{3}] = 1$$
.

As to the 1/2 winding times $[t_n: n=\cdots, -1, 0, etc., Q]$, it is immediate that the pairs $t_n \equiv (t_n - t_{n-1})/\mathfrak{h}_{n-1}^2$ and $h_n \equiv \mathfrak{h}_n/\mathfrak{h}_{n-1}$ $(n=\cdots, -1, 0, etc.)$ are independent with common distribution 3.6, so with the aid of the expression $t_n = \sum_{m \leq n} \mathfrak{h}_{m-1}^2 t_m$ $(n \leq 0)$, the bound $|\lg t_n| < n\delta$ $(n \uparrow \infty)$ leads at once to the strong law

10.
$$P_{00}[\lim_{n \to \infty} n^{-1} \lg t_n^- = -8\pi/\sqrt{3}] = 1$$

for the backward chain of 1/2 winding times and to the strong law

11.
$$P_{00}[\lim_{t \downarrow 0} (lg 1/t)^{-1}\theta(t) = +\sqrt{3}/8] = 1$$

for the total angle θ swept out between times 1 and t < 1.

Massachusetts Institute of Technology August, 1962

REFERENCES

- [1] Erdélyi, A. (Bateman manuscript project): Tables of integral transforms, (1) and (2). New York, 1954.
- [2] Hunt, G.: Markoff processes and potentials. Ill. J. Math. 2, 151-213 (1958).
- [3]: Markoff chains and Martin boundaries. Ill. J. Math. 4, 313-340 (1960).
- [4] Kaç, M.: Probability theory: its role and its impact. SIAM Rev. 4, 1-11 (1962).
- [5] Potter, J.: Some statistical properties of the motion of an oscillator driven by a white noise. M.I.T. doctoral dissertation (to appear).
- [6] Rice, S. O.: Mathematical analysis of random noise. Bell System Tech. J 23, 282-332 (1944); 24, 46-156 (1945).

Note added in proof: K. Itô (private communication) showed me the following rapid proof of the strong laws 4.3 and 5.11. Because $c^{-1/2}e(ct)$ $(t\geq0)$ is a standard Brownian motion if c>0, the law of the pair

$$\mathfrak{x}^* = [u^*, v^*] : u^*(t) = t^{-3/2} \int_0^t e(s) ds, \ v^*(t) = t^{-1/2} e(t)$$

is unchanged by the substitution $t \to ct$, so the angle $\theta^* = \theta^*(t)$ swept out by \mathfrak{x}^* between times 1 and t is identical in law to $\theta^*(ct) - \theta^*(c)$. But this means that the law of the functional $d\theta^*(ct)/dt(\varphi) = -\int \theta^*(ct)d\varphi$ is unchanged by an additive shift of the time scale, and it follows by the strong law of large numbers that

$$\lim_{t \uparrow \infty} t^{-1} \theta^*(e^t) = \lim_{t \uparrow \infty} (lgt)^{-1} \theta^*(t) = constant,$$

using the fact that Brownian tail events are trivial. Also, $|\theta^* - \theta| \le \pi/2$ so that $(\lg t)^- \theta(t)$ tends to the same constant as $t \uparrow \infty$. A similar proof leads to 5.11.