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1. Introduction.

Given a standard 1-dimensional Brownian motion with sample
paths ¢ —e(t) (e(0)==0), let P,,(B) be the chance that the solution
r:t—>(u, v)€R® of

la. D[u]=ii+c,(w)u+c,(u) = é

1b. v =14
2a. u(0) =a
2b. v(0) =10

t
experiences the event B, interpreting la as v-kg [c.(w)v+c(u)]ds =
b+e. [x, P.] is a (singular) diffusion in the plane winding clock-
wise about the origin, governed by
p _1&p, ,0p ap
==L p e (a)b+ £
5 " g Vs Lol@bteldly
it should be viewed as the response of the resonator D to the white
noise é.
J. Potter [5] found that for a spring (uc,=>0) with no damping
(c,=0), the energy e=(1/2)z)2+$ ¢, is a martingale and used this
fact to obtain the bounds
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C1t/lg2t<m<ax e(S)<6‘2t lg,t (1 00)
st
¢, >0, ¢,>1, Igt=Iglgt).
Potter also proved that the sample path hits each disc i.0. (£ { o)
oo u —1/2
if | (1+S cz> du< oo |
0 (1]

M. Kac [4] studied the damped spring D{u] =di+c g+ cu
(0<e,, ¢, =constant) : in that case [z, P.] is Gaussian having a
stable distribution p(da x db) of total mass+1, and letting £ denote
the integral (expectation) based on P:S pldaxdb)P,, and t, the

time between roots of #=0, the total angle 6=6(!) swept out
between times 1 and #>>1 is found to be about 27¢/E(t,) (£ 1 o0).
S. O. Rice [6] had evaluated E(t,) and now Kac finds a minimum
principle for E(1}) similar to Thompson’s principle for Newtonian
electrostatic capacities ; the actual distribution of t, is still unknown.

The purpose of the present note is to give a complete descrip-
tion of the winding of the phase path about the origin in the
simplest case (¢,=c¢,=0); the joint distribution of the 1/2 winding
time t,=min (¢: ¢ >0, u(¢)=0) and the hitting place b,=|o(t,)] is
evaluated for paths starting on the line ¢=0, and the following
strong laws for the speed of winding are established :

P,[lim(gt)6¢) = V' 3/8] =1
14

Po[lim (g 1/1)6(6) = +V/3/8] = 1.

2. Winding times and hitting places (¢,=c¢,=0).

Before it is possible to talk about winding about 3 =0, it must
be proved that the sample path does not hit x=0 at positive times.

D[u]=i implies v=5b+ (tea’s, so r is Gaussian and it is a
simple matter to evaluate the probabilities
1. Pa,,[u(t) € dé, v(t) € d’I]] = p(t, a, b, ‘E, 7])d§d7/

(Tt _(E—a-bty (E—a-bt)(n—0b) (n—b) .
=3/ ’)exp[ Fi6 T Pl6 12 ]dfd’
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of coming from r(0)=(q, b) into d&x dn in time { and to check the
that the Green function

2. Gla, b)= g” »(t, a, b, 0, 0)dt

_[*v'3 (a+bty  (a+bt)h ¥
=| X2 e B e e e [ 11
So = TP\ pre /6 t/z)
has the following properties :

3a. G< oo @+ >0
3b. lim G = oo,

a?+ 5240
G(u, v, 0, 0) is now a continuous supermartingale, its sample paths
are bounded on bounded time intervals if (0)==0, and the result
follows from the fact that P,,(x(f)=0)=0 at each positive time.

Given a sample path y starting at 1(0) = (a, b)==0, the 1/2
winding time t,=(: ¢t >0, u(t)=0) statisfies P,,(0< t, < o0)=1.

P, (0<"t)=1 is immediate.

t,=oco implies that r moves in a 1/2 plane for all positive

t
times, or, what is the same, that g eds is bounded above or below

Jo
for all positive times. But such Brownian (tail) events have prob-

abilities 0 or 1 and so the obvious bound

P,,(t,= 00) < lim lim P S'eds< d) _1/2

dte e

implies the desired P,,(t,< o0)=1.

Consider now the 1/2 winding time t, and the corresponding
hitting place h,=|v(t,)| >0 for sample paths ; starting on the line
a=0 (v(0)=b==0). Because the Brownian scaling ¢— ce(t/c*) (¢ >0)
takes ¢ into a new standard Brownian motion, the 1/2 winding

¢
time t,=min(¢ : (t>0, bt+g eds=0> is identical in law to

min ((¢: £ >0, bt+§:ce(s/c2)ds - 0)

min ((t £ £>>0, cht/c2+c3_§':'°ze(s)ds - 0)
= ¢’ min ((t 11 >0, b+ S:eds = O)

—  min ((t:t>0, :1:1+S:eds ~ o) c=|b|,
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ie, t, is identical in law to b* X the 1/2 winding time for paths
starting at (0, 1), and the same trick applied to v=0-+e verifies
that the hitting place B, for paths starting at (0, b) is identical in
law to b X the hitting place for paths starting at (0, 1), indeed, since
the motion starts afresh at its passage time to the line =0, it
follows that the series of 1/2 winding times and hitting places

d4a. t,=min(f: ¢ >1,.,, u(t) = 0)—t, n>1,
t,=min(t:¢ >0, u(t) = 0)
4b. b, = [o(t,)] n>1
for paths starting at r(0)=(a, b)==0 is identical in law to the series
5a. c*,, ¢t + Kty c(t + hit,+(hhy)'ty), ete.
5b. c¢h,, chh,, chhh,, etc.,
in which c=|u(t,)| and the pairs (¢,, k), (,, k), efc. are indepen-
dent with common distribution Py,(t,<¢, §,<h).
3. Computing the joint distribution P,(t,<¢t, §,< h).

Because t winds clockwise about the origin and begins afresh
at the 1/2 winding time f,, the Gauss function p of 2.1° satisfies

1. 50,1, 0,0
- S’ Sum(t, cds, hedapi—s, 0, —a, 0, b)

t>0,6>0,
and, using the Laplace transform
2. Sme‘“"p(t, 0, a, 0, bydt

0

= a constant depending on & alone

xKﬂ(vésa‘(auabJ;bﬁ)
vVa&+ab+ b
a, a,b>0,°

1 becomes

2 y.m means formula m of section 7.
s [1(2) : 146(29)]. K-, is the usual modified Bessel function.
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K_.(V8a(1+b+05%)

3a.
? VI+b+ b
~ K_ (/8@ —ab+ b))
a>0, b>0.*

3a is now multiplied by K,(~/8ax b) (]v|<1) and integrated (db)
over [0, +oc): the result is

K’V(\/@ — - -ty A 5
- 2 cos (7 /3) So En(e™, € da)Ky(V8a a)fa  |v|>1,

and now using the Lebedev transform pair°®
ta. fo) = | r@K.@%
4b. f(a) = Sw F K (a)do do =27 %y sinh 7wydy,

3b is solved to obtain

5. E,(e 4, b, €da)

_ SNKW( V8a)K(\/8a  a) doda
0 2 cosh (7v/3) ’

which in turn can be inverted as a Laplace transform to obtain
the joint distribution of t, and b,:

6. P, €dt Y, € da)
= le—2(1+az>/t Sw K(4a/t) dodtda

2t o 2cosh (7v/3)
= j(l_ e‘2/t<1'a+a2)84a” e—-:f 6.7
7/ 2§ o /7l
6 can be integrated to obtain
/2
7. Pyo,edn) = " g

27 1+ i

+ Ey is the integral (expectation) based on Py,.

5 [1(2) : 377(34)].

& [1(2) : 173].

7 [1(1) : 285(64)] justifies line 2, while line 3 follows from the classical formula
Kiv(a)= So exp (—a cosh t) cos rt dt.
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and
8a. E.(lgh) = - tgh
2w Jo

8b. E,[(/gt)]<oo.

8 is needed below. I could not perform the integrals needed to
find P,(t, €dt).

h3[2 471,
dh = ——
1+4 V'3

4. Speed of winding.

Given &*+b* >0 and using 2.5b, 3. 8a, the strong law of large
numbers, and the fact that y starts afresh each time it hits the
line ¢=0, one finds

1. P, [limn'lgh, =4z//3]=1.
74 00

Recall the series 2.5a and the bound 3.8b. Because {¢,, {,, etc.
are independent with common distribution P,(t,<#), it follows
from the Borel-Cantelli lemma that |/g¢,|]<nd as nt oo (8>0),
and this bound applied to 2.5a implies that as n1 o, n'igt,
behaves like n~'lg h2h: -+ K, _,, whence

2. P,[limn'igt, =8=/\/3]=1.
ﬂfrn

2 in turn implies that if 6=6(¢) is the total algebraic angle swept
out up to time ¢, then

3. PullimUg)oit) = —v3/8] =1

since t,.,<<t<t, is the same as —(n—1)z>0—6(1,) > —n= and
Igt,~8=n/\/3 as nt oo,

5. Winding for paths beginning at r=0.

Given a sample path beginning at g(0)=0, it follows from
3.6, the scaling established in 2, and the starting afresh of x at
passage times that the forward chain:

1. tt =min(t: £ >1, u(t) = 0), b = |o(t})]
t7 = min (¢: ¢t >tF, u(t) =0), b = |o(t3)]
elc.
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of 1/2 winding times and hitting places is Markovian with transi-
tion probabilities
2. P,(ti €dt, b, €dhr|B,_)
= p*(ti,, Ba_., dt xdh)
3h ;
e = A —‘2 hQ—kf}r:— 4 [):—21 t_t!’:—l
?Z'\/Z(t—f,:_l)z p( ( 1 )/( )

Al (E—tp ~30/2
< S Wt €T odtdn @ >t
vl

=0 (e B
where B _,=the field of ti, b7, -, ti ., b ..
Consider now the backward chain :

3. tt=max(f: t<_1, u(t) =0), b = o(t)]
t; = max ((f: t<tr, ult) =0), b5 = |o(t7) |
elc.

of 1/2 winding times and hitting places as the path spirals back
toward the origin as ¢# 0. Both t; and b; are positive and |0
as n 1o as is evident from the fact that Strzds experiences an
infinite number of changes of sign as £ |0, and taking advantage
of the scaling properties of winding times and hitting places, a
little computation reveals that the backward chain is Markovian
with transition probabilities :

4, P,(t;€dt, b; €dh|B;_)
= p~(tmy, Doy dE X dh)
_ pldtxdmp*(t, h, dt;_, x db;_,)

pldt._, xdb;_,)

where B,_,=the field of i1, b1, -+, oy, bn,, and p(dt x dh) stands
for the (infinite) stable mass distribution

5. pldtxdh) = exp (—21°[t)t *dt hdh

for the forward chain. 4 states that the backward chain has the
same transition probabilities as the dual [t ,, b ,:n=--, =10,
etc.] of the two-sided forward chain [t.,, 0.,:n= -, —1,0, etc.]
with stable distribution p(dt = dh), i.e., with (infinite) shift-invariant
distribution
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6. Q[t.€dt,,b,.€dh,, -, t,€dt,, b,€dhn,]
= (@t X AP (Ems Hrns At pia X Al
e p+(tu—1 ] ku—] 3 dt” K dku)

nw,m= -, —1,0, etc., n<_m
(see G. Hunt [2] or [3] for such dual chains).
But now

7a. Q[ﬁmEdkmr e | E]nedhw]
- g“(1 12h,)dh,, Py, (B, € dhyy.) -+ Py, (6, € dhy)

Wi

and

Tb. Py(0,€db)=p*(a, db) = > @07 db,
27 a*+ b a
so that the (Markovian) dual chain of hitting places [0_,: #n =
-, —1, 0, efe., Q] has as its transition probabilities
e “‘da p*(a, db)
8. b, da) =% 24P \% 9Y)
p(b, da) s
_ 3 (ba)"bda
27 a*+ b &
_ 3 (ab)*” da!
a0 b!
=pr(b' da™),
i.e., the dual hitting chain has the same transition probabilities as
the reciprocal [0, :n=--, —1,0, etc., Q] of the original (Markovian)
forward chain of hits, and it follows that

9. P Jminxntigh, = —4=//3] =1.
Hp oo

As to the 1/2 winding times [t,:n=--, —1,0, efc., @], it is
immediate that the pairs {,=(t,—1,.)/b%, and £,=0,/H,., (n=

wo, —1, 0, ete.) are independent with common distribution 3.6, so
with the aid of the expression t,= 3} b2 _t,, (n<_0), the bound

m—1*m

|[lgt,|< nd (ntoo) leads at once to the strong law
10. P, [limn'igt, = —8»/\/3]=1
R-To(.

for the backward chain of 1/2 winding times and to the strong law
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11 P[lim (lg 1/8)70()=+/3 /8] = 1

for the total angle 6 swept out between times 1 and #<1.

Massachusetts Institute of Technology
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Note added in proof: K. Ité (private communication) showed me the following
rapid proof of the strong laws 4.3 and 5.11. Because c¢~'2%(ct) (£>>0) is a standard
Brownian motion if ¢>0, the law of the pair

p*=[u*, o¥1: wr(D) =t e(s)ds, v*(8)=tV2e(2)

is unchanged by the substitution ¢—cf, so the angle 8*=6*(¢) swept out by r* be-
tween times 1 and ¢ is identical in law to 0*(ct) —0*(c). But this means that the law
of the functional d6*(e*)/dt(¢p)= —[0*(e!)dp is unchanged by an additive shift of the
time scale, and it follows by the strong law of large numbers that

lim ¢~ 16*(et) =1im (igt) ~10*(¢) =constant,

rtee 14
using the fact that Brownian tail events are trivial. Also, |8*—6#]<x/2 so that
(Igt)~6(¢) tends to the same constant as ¢ 1 co, A similar proof leads to 5.11.



