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Abstract. A large class of machine-learning problems in natural language require the characterization of linguis-
tic context. Two characteristic properties of such problems are that their feature space is of very high dimensionality,
and their target concepts depend on only a small subset of the features in the space. Under such conditions, mul-
tiplicative weight-update algorithms such as Winnow have been shown to have exceptionally good theoretical
properties. In the work reported here, we present an algorithm combining variants of Winnow and weighted-
majority voting, and apply it to a problem in the aforementioned class: context-sensitive spelling correction. This
is the task of fixing spelling errors that happen to result in valid words, such as substituforgtoo, casual

for causal and so on. We evaluate our algorithm, WinSpell, by comparing it against BaySpell, a statistics-based
method representing the state of the art for this task. We find: (1) When run with a full (unpruned) set of fea-
tures, WinSpell achieves accuracies significantly higher than BaySpell was able to achieve in either the pruned
or unpruned condition; (2) When compared with other systems in the literature, WinSpell exhibits the highest
performance; (3) While several aspects of WinSpell's architecture contribute to its superiority over BaySpell, the
primary factor is that it is able to learn a better linear separator than BaySpell learns; (4) When run on a test set
drawn from a different corpus than the training set was drawn from, WinSpell is better able than BaySpell to adapt,
using a strategy we will present that combines supervised learning on the training set with unsupervised learning
on the (noisy) test set.

Keywords: Winnow, multiplicative weight-update algorithms, context-sensitive spelling correction, Bayesian
classifiers

1. Introduction

A large class of machine-learning problems in natural language require the characterization
of linguistic context. Such problems include lexical disambiguation tasks such as part-of-
speech tagging and word-sense disambiguation; grammatical disambiguation tasks such as
prepositional-phrase attachment; and document-processing tasks such as text classification
(where the context is usually the whole document). Such problems have two distinctive
properties. First, the richness of the linguistic structures that must be represented results
in extremely high-dimensional feature spaces for the problems. Second, any given target

*An earlier version of this work appeared in ICML'96.
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concept depends on only a small subset of the features, leaving a huge balance of features
that are irrelevant to that particular concept. In this paper, we present a learning algorithm
and an architecture with properties suitable for this class of problems.

The algorithm builds on recently introduced theories of multiplicative weight-update
algorithms. It combines variants of Winnow (Littlestone, 1988) and Weighted Majority
(Littlestone & Warmuth, 1994). Extensive analysis of these algorithms in the COLT lit-
erature has shown them to have exceptionally good behavior in the presence of irrelevant
attributes, noise, and even a target function changing in time (Littlestone, 1988; Littlestone
& Warmuth, 1994; Herbster & Warmuth, 1995). These properties make them particularly
well-suited to the class of problems studied here.

While the theoretical properties of the Winnow family of algorithms are well known, it
is only recently that people have started to test the claimed abilities of the algorithms in
applications. We address the claims empirically by applying our Winnow-based algorithm
to a large-scale real-world task in the aforementioned class of problems: context-sensitive
spelling correction.

Context-sensitive spelling correction is the task of fixing spelling errors that result in valid
words, such agd like a peace of cakewherepeacewas typed wheipiecewas intended.
These errors account for anywhere from 25 to over 50% of observed spelling errors (Kukich,
1992); yetthey go undetected by conventional spell checkers, such aspétiixvhich only
flag words that are not found in a word list. Context-sensitive spelling correction involves
learning to characterize the linguistic contexts in which different words, supleasand
peacetend to occur. The problem is that there is a multitude of features one might use to
characterize these contexts: features that test for the presence of a particular word nearby
the target word; features that test the pattern of parts of speech around the target word; and
so on. For the tasks we will consider, the number of features ranges from a few hundred to
over 10,000 While the feature space is large, however, target concepts, such as “a context
in which piececan occur”, depend on only a small subset of the features, the vast majority
being irrelevant to the concept at hand. Context-sensitive spelling correction therefore fits
the characterization presented above, and provides an excellent testbed for studying the
performance of multiplicative weight-update algorithms on a real-world task.

To evaluate the proposed Winnow-based algorithm, WinSpell, we compare it against
BaySpell (Golding, 1995), a statistics-based method that is among the most successful
tried for the problem. We first compare WinSpell and BaySpell using the heavily-pruned
feature set that BaySpell normally uses (typically 10-1000 features). WinSpell is found
to perform comparably to BaySpell under this condition. When the full, unpruned feature
setis used, however, WinSpell comes into its own, achieving substantially higher accuracy
than it achieved in the pruned condition, and better accuracy than BaySpell achieved in
either condition.

To calibrate the observed performance of BaySpell and WinSpell, we compare them to
other methods reported in the literature. WinSpell is found to significantly outperform all
the other methods tried when using a comparable feature set.

At their core, WinSpell and BaySpell are both linear separators. Given this funda-
mental similarity between the algorithms, we ran a series of experiments to understand
why WinSpell was nonetheless able to outperform BaySpell. While several aspects of the
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WinSpell architecture were found to contribute to its superiority, the principal factor was
that WinSpell simply learned a better linear separator than BaySpell did. We attribute this
to the fact that the Bayesian linear separator was based on idealized assumptions about the
domain, while Winnow was able to adapt, via its mistake-driven update rule, to whatever
conditions held in practice.

We then address the issue of dealing with a test set that is dissimilar to the training set.
This arises in context-sensitive spelling correction, as well as related disambiguation tasks,
because patterns of word usage can vary widely across documents; thus the training and test
documents may be quite different. After first confirming experimentally that performance
does indeed degrade for unfamiliar test sets, we present a strategy for dealing with this
situation. The strategy, calledip/unsupcombines supervised learning on the training set
with unsupervised learning on the (noisy) test set. We find that, using this strategy, both
BaySpell and WinSpell are able to improve their performance on an unfamiliar test set.
WinSpell, however, is found to do particularly well, achieving comparable performance
when using the strategy on an unfamiliar test set as it had achieved on a familiar test set.

The rest of the paper is organized as follows: the next section describes the task of
context-sensitive spelling correction. We then present the Bayesian method that has been
used for it. The Winnow-based approach to the problem is introduced. The experiments on
WinSpell and BaySpell are presented. The final section concludes.

2. Context-sensitive spelling correction

With the widespread availability of spell checkers to fix errors that result in non-words,
such ageh the predominant type of spelling error has become the kind that results in a
real, but unintended word; for example, typitiggrewhentheir was intended. Fixing this

kind of error requires a completely different technology from that used in conventional spell
checkers: it requires analyzing the context to infer when some other word was more likely
to have been intended. We call this the taskafitext-sensitive spelling correctioihe

task includes fixing not only “classic” types of spelling mistakes, such as homophone errors
(e.g.,peaceandpiece and typographic errors (e.darm andfrom), but also mistakes that

are more commonly regarded as grammatical errors @mpngandbetweel, and errors

that cross word boundaries (e.guaybeandmay be¢.

The problem has started receiving attention in the literature only within about the last
half-dozen years. A number of methods have been proposed, either for context-sensitive
spelling correction directly, or for related lexical disambiguation tasks. The methodsinclude
word trigrams (Mays, Damerau, & Mercer, 1991), Bayesian classifiers (Gale, Church, &
Yarowsky, 1993), decision lists (Yarowsky, 1994), Bayesian hybrids (Golding, 1995), a
combination of part-of-speech trigrams and Bayesian hybrids (Golding & Schabes, 1996),
and, more recently, transformation-based learning (Mangu & Brill, 1997), latent semantic
analysis (Jones & Martin, 1997), and differential grammars (Powers, 1997). While these
research systems have gradually been achieving higher levels of accuracy, we believe that
a Winnow-based approach is particularly promising for this problem, due to the problem’s
need for a very large number of features to characterize the context in which a word occurs,
and Winnow’s theoretically-demonstrated ability to handle such large numbers of features.
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2.1. Problem formulation

We will cast context-sensitive spelling correction as a word disambiguation task. The ambi-
guity among words is modelled lmpnfusion setsA confusion se€ = (W, ..., W} means

that each word\; in the set is ambiguous with each other word. Thu3 i {hear, herg,

then when we see an occurrence of eitiegiror herein the target document, we take it to

be ambiguous betwedrearandhere the task is to decide from the context which one was
actually intended. Acquiring confusion sets is an interesting problem in its own right; in
the work reported here, however, we take our confusion sets largely from the list of “Words
Commonly Confused” in the back of the Random House dictionary (Flexner, 1983), which
includes mainly homophone errors. A few confusion sets notin Random House were added,
representing grammatical and typographic errors.

The Bayesian and Winnow-based methods for context-sensitive spelling correction will
be described below in terms of their operation on a single confusion set; that is, we will say
how they disambiguate occurrences of wordghroughW,,. The methods handle multiple
confusion sets by applying the same technique to each confusion set independently.

2.2. Representation

A target problem in context-sensitive spelling correction consists of (i) a sentence, and (ii)

a target word in that sentence to correct. Both the Bayesian and Winnow-based algorithms
studied here represent the problem as a list of active features; each active feature indicates
the presence of a particular linguistic pattern in the context of the target word. We use
two types of featurescontext wordsandcollocations Context-word features test for the
presence of a particular word withihk words of the target word; collocations test for a
pattern of up t& contiguous words and/or part-of-speech tag®und the target word. In

the experiments reported hekewas set to 10 andto 2. Examples of useful features for

the confusion sefweather whethef include:

(1) cloudywithin 410 words
(2) _toVERB

Feature (1) is a context-word feature that tends to imy#ather Feature 2 is a collocation
that checks for the patternd'vERB” immediately after the target word, and tends to imply
whether(as inl don't know whether to laugh or cjy

The intuition for using these two types of features is that they capture two important, but
complementary aspects of context. Context words tell us what kind of words tend to appear
in the vicinity of the target word—the “lexical atmosphere”. They therefore capture aspects
of the context with a wide-scope, semantic flavor, such as discourse topic and tense. Collo-
cations, in contrast, capture the local syntax around the target word. Similar combinations
of features have been used in related tasks, such as accent restoration (Yarowsky, 1994) and
word sense disambiguation (Ng & Lee, 1996).

We use deature extractoto convert from the initial text representation of a sentence to
a list of active features. The feature extractor has a preprocessing phase in which it learns a
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set of features for the task. Thereafter, it can convert a sentence into a list of active features
simply by matching its set of learned features against the sentence.

In the preprocessing phase, the feature extractor learns a set of features that characterize
the contexts in which each wolll; in the confusion set tends to occur. This involves going
through the training corpus, and, each time a word in the confusion set occurs, generating
all possible features for the context—namely, one context-word feature for every distinct
word within £k words, and one collocation for every way of expressing a pattern of tip to
contiguous elements. This gives an exhaustive list of all features found in the training set.
Statistics of occurrence of the features are collected in the process as well.

Atthis point, pruning criteria may be applied to eliminate unreliable or uninformative fea-
tures. We use two criteria (which make use of the aforementioned statistics of occurrence):
(1) the feature occurred in practically none or all of the training instances (specifically, it
had fewer than 10 occurrences or fewer than 10 non-occurrences); or (2) the presence of
the feature is not significantly correlated with the identity of the target word (determined
by a chi-square test at the 0.05 significance level).

3. Bayesian approach

Of the various approaches that have been tried for context-sensitive spelling correction, the
Bayesian hybrid method, which we call BaySpell, has been among the most successful, and
is thus the method we adopt here as the benchmark for comparison with WinSpell. BaySpell
has been described elsewhere (Golding, 1995), and so will only be briefly reviewed here;
however, the version here uses an improved smoothing technique, which is described below.
Given a sentence with a target word to correct, BaySpell starts by invoking the feature
extractor (Section 2.2) to convert the sentence into afsef active features. BaySpell
normally runs the feature extractor with pruning enabled. To afirst approximation, BaySpell
then acts as a naive Bayesian classifier. Suppose for a moment that we really were applying
Naive Bayes. We would then calculate the probability that each Wérith the confusion
set is the correct identity of the target word, given that featfémve been observed, by
using Bayes' rule with the conditional independence assumption:

P(W)
POW | F) =[] P(fIW) ) 5=
(Lromo) 555
where each probability on the right-hand side is calculated by a maximume-likelihood
estimaté (MLE) over the training set. We would then pick as our answer\hewith
the highestP (W | F).

BaySpell differs from the naive approach in two respects: first, it does not assume con-
ditional independence among features, but rather has heuristics for detecting strong depen-
dencies, and resolving them by deleting features until it is left with a reduced’ saft
(relatively) independent features, which are then used in plageinfthe equation above.

This procedure is calledependency resolution

Second, to estimate the(f | W) terms, BaySpell does not use the simple MLE, as

this tends to give likelihoods of 0.0 for rare features (which are abundant in the task at
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hand), thus yielding a useless answer of 0.0 for the posterior probability. Instead, BaySpell
performs smoothing by interpolating between the MLERgff | Wi) and the MLE of the
unigram probabilityP( f). Some means of incorporating a lower-order model in this way

is generally regarded as essential for good performance (Chen & Goodman, 1996). We
use:

Pinterp(f |VV|) = (1_)\)PML(f |VV|) +)\PML(f)

We seth to the probability that the presence of featudrés independent of the presence of
word W; to the extent that this independence holsf ) is an accurate (but more robust)
estimate ofP(f |W;). We calculater as the chi-square probability that the observed
association betweefi andW, is due to chance.

The enhancement of smoothing, and to a minor extent, dependency resolution, greatly
improve the performance of BaySpell over the naive Bayesian approach. (The effect of
these enhancements can be seen empirically in Section 5.4.)

4. Winnow-based approach

There are various ways to use a learning algorithm, such as Winnow (Littlestone, 1988),
to do the task of context-sensitive spelling correction. A straightforward approach would
be to learn, for each confusion set, a discriminator that distinguishes specifically among
the words in that set. The drawback of this approach, however, is that the learning is then
applicable only to one particular discrimination task. We pursue an alternative approach:
that of learning the contextual characteristics of each Waréhdividually. This learning

can then be used to distinguish wak{l from any other word, as well as to perform a broad
spectrum of other natural language tasks (Roth, 1998). In the following, we briefly present
the general approach, and then concentrate on the task at hand, context-sensitive spelling
correction.

The approach developed is influenced by the Neuroidal system suggested by Valiant
(1994). The system consists of a very large number of items, in the rangé&.oTth8se
correspond to high-level concepts, for which humans have words, as well as lower-level
predicates from which the high-level ones are composed. The lower-level predicates encode
aspects of the current state of the world, and are input to the architecture from the outside.
The high-level concepts are learned as functions of the lower-level predicates; in particular,
each high-level conceptis learned bylaudor ensemble of classifiers. All classifiers within
the cloud learn the cloud’s high-level concept autonomously, as a function of the same lower-
level predicates, but with different values of the learning parameters. The outputs of the
classifiers are combined into an output for the cloud using a variant of the Weighted Majority
algorithm (Littlestone & Warmuth, 1994). Within each classifier, a variant of the Winnow
algorithm (Littlestone, 1988) is used. Training occurs whenever the architecture interacts
with the world, for example, by reading a sentence of text; the architecture thereby receives
new values for its lower-level predicates, which in turn serve as an example for training the
high-level ensembles of classifiers. Learning is thus an on-line process that is done on a
continuous basfg(Valiant, 1995).
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Figure L Example of WinSpell network fofdesert dessert. The five nodes in the bottom tier of the network
correspond to features. The two higher-lesleLidsof nodes (each shown as overlapping bubbles suspended from

a box) correspond to the words in the confusion set. The nodes within a cloud each run the Winnow algorithm
in parallel with a different setting of the demotion parameggrand with their own copy of the input arcs and

the weights on those arcs. The overall activation level for each word in the confusion set is obtained by applying
a weighted majority algorithm to the nodes in the word’s cloud. The word with the highest activation level is
selected.

Figure 1 shows the instantiation of the architecture for context-sensitive spelling correc-
tion, and in particular for correcting the worgildeserf dessert. The bottom tier of the
network consists of nodes for lower-level predicates, which in this application correspond
to features of the domain. For clarity, only five nodes are shown; thousands typically occur
in practice. High-level concepts in this application correspond to words in the confusion
set, heralesertanddessert Each high-level concept appears asaudof nodes, shown as
a set of overlapping bubbles suspended from a box. The output of the clouds is an activation
level for each word in the confusion setcamparatorselects the word with the highest
activation as the final result for context-sensitive spelling correction.

The sections below elaborate on the use of Winnow and Weighted Majority in WinSpell,
followed by a discussion of the properties of the architecture.

4.1. Winnow

The job of each classifier within a cloud of WinSpell is to decide whether a particular word
W in the confusion set belongs in the target sentence. Each classifier runs the Winnow
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algorithm. Ittakes as input a representation of the target sentence as a set of active features,
and returns a binary decision as to whether its wakdbelongs in the sentence. L&t

be the set of active features; and for each feafuee?, let w; be the weight on the arc
connectingf to the classifier at hand. The Winnow algorithm then returns a classification

of 1 (positive) iff:

wa >0,

feF

wheref is a threshold parameter. In the experiments reported havas set to 1.

Initially, the classifier has no connection to any feature in the network. Through training,
however, it establishes appropriate connections, and learns weights for these connections.
A training example consists of a sentence, represented as a set of active features, together
with the wordW, in the confusion set that is correct for that sentence. The example is treated
as a positive example for the classifiersWdy, and as a negative example for the classifiers
for the other words in the confusion set.

Training proceeds in an on-line fashion: an example is presented to the system, the
representation of the classifiers is updated, and the example is then discarded. The first step
of training a classifier on an example is to establish appropriate connections between the
classifier and the active featur&sf the example. If an active featufee F is not already
connected to the classifier, and the sentencepissitiveexample for the classifier (that is,
the classifier corresponds to the target wédthat occurs in the sentence), then we add a
connection between the feature and the classifier, with a default weight of 0.1. This policy
of building connections on an as-needed basis resultspasenetwork with only those
connections that have been demonstrated to occur in real examples. Note that we do not
build any new connections if the sentence isegativeexample for the classifieP, one
consequence is that different words in a confusion set may have links to different subsets
of the possible features, as seen in Figure 1.

The second step of training is to update the weights on the connections. This is done
using the Winnow update rule, which updates the weights only when a mistake is made. If
the classifier predicts 0 for a positive example (i.e., where 1 is the correct classification),
then the weights are promoted:

VfeF, wi<«~a-ws,

wherex > 1 is a promotion parameter. If the classifier predicts 1 for a negative example
(i.e., where 0 is the correct classification), then the weights are demoted:

VieF, wi < B-ws,

where O< B < 1is ademotion parameter. Inthe experiments reporteddevas setto 1.5,

andp was varied from 0.5 to 0.9 (see also Section 4.2.). In this way, weights on non-active
features remain unchanged, and the update time of the algorithm depends on the number of
activefeatures in the current example, and not the total number of features in the domain.
The use of a sparse architecture, as described above, coupled with the representation of



A WINNOW-BASED APPROACH 115

each example as a list aftivefeatures is reminiscent of the infinite attribute models of
Winnow (Blum, 1992).

4.2. Weighted Majority

Rather than evaluating the evidence for a given wydising a single classifier, WinSpell
combines evidence from multiple classifiers; the motivation for doing so is discussed below.
Weighted Majority (Littlestone & Warmuth, 1994) is used to do the combination. The basic
approach is to run several classifiers in parallel within each cloud to try to predict whether
W belongs in the sentence. Each classifier uses different values of the learning parameters,
and therefore makes slightly different predictions. The performance of each classifier is
monitored, and a weight is derived reflecting its observed prediction accuracy. The final
activation level output by the cloud is a sum of the predictions of its member classifiers,
weighted by the abovementioned weights.

More specifically, we used clouds composed of five classifiers, differing only in their
values for the Winnow demotion paramefgrvalues of 0.5, 0.6, 0.7, 0.8, and 0.9 were
used. The weighting scheme assigns tojtheclassifier aweight™ , where0< y < lisa
constant, andn; is the total number of mistakes made by the classifier so far. The essential
property is that the weight of a classifier that makes many mistakes rapidly disappears.
We start withy = 1.0 and decrease its value with the number of examples seen, to avoid
weighing mistakes of the initial hypotheses too hea¥iljhe total activation returned by
the cloud is then:

2. v™C;
Zj y™

whereC; is the classification, either 1 or O, returned by fltle classifier in the cloud, and
the denominator is a normalization term.

The rationale for combining evidence from multiple classifiers is twofold. First, when
running a mistake-driven algorithm, even when it is known to have good behavior asymp-
totically, there is no guarantee that the current hypothesis, at any point in time, is any
better than the previous one. It is common practice, therefore, to predict using an average
of the last several hypotheses, weighting each hypothesis by, for example, the length of
its mistake-free stretch (Littlestone, 1995; Cesa-Bianchi et al., 1994). The second layer of
WinSpell, i.e., the weighted-majority layer, partly serves this function, though it does so in
an on-line fashion.

A second motivation for the weighted-majority layer comes from the desire to have an al-
gorithm that tunes its own parameters. For the task of context-sensitive spelling correction,
self-tuning is used to automatically accommodate differences among confusion sets—in
particular, differences in the degree to which the words in the confusion set have overlap-
ping usages. Fodweather whethet, for example, the words occur in essentially disjoint
contexts; thus, if a training example gives one word, but the classifier predicts the other,
it is almost surely wrong. On the other hand, famong betweel, there are numerous
contexts in which both words are acceptable; thus disagreement with the training example
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does not necessarily mean the classifier is wrong. Following a mistake, therefore, we want
to demote the weights by more in the former case than in the latter. Updating weights with

various demotion parameters in parallel allows the algorithm to select by itself the best

setting of parameters for each confusion set. In addition, using a weighted-majority layer

strictly increases the expressivity of the architecture. It is plausible that in some cases, a lin-
ear separator would be unable to achieve good prediction, while the two-layer architecture
would be able to do so.

4.3. Discussion

Multiplicative learning algorithms have been studied extensively in the learning theory
community in recent years (Littlestone, 1988; Kivinen & Warmuth, 1995). Winnow has
been shown to learn efficiently any linear threshold function (Littlestone, 1988), with a
mistake bound that depends on the margin between positive and negative examples. These
are functionsf : {0, 1}" — {0, 1} for which there exist real weights,, ..., w, and a real
threshold® such thatf (xq, ..., Xn) = 1iff Zi”:l wiX > 6. In particular, these functions
include Boolean disjunctions and conjunctionskor: n variables and -of-k threshold
functions (1<r <k <n).

The key feature of Winnow is that its mistake bound grows linearly with the number of
relevantattributes and only logarithmically with the total number of attributeb/sing the
sparse architecture, in which we do not keep all the variables from the beginning, but rather
add variables as necessary, the number of mistakes made on disjunctions and conjunctions
is logarithmic in the size of the largest example seen and linear in the number of relevant
attributes; it is independent of the total number of attributes in the domain (Blum, 1992).

Winnow was analyzed in the presence of various kinds of noise, and in cases where no
linear threshold function can make perfect classifications (Littlestone, 1991). It was proved,
under some assumptions on the type of noise, that Winnow still learns correctly, while
retaining its abovementioned dependence on the number of total and relevant attributes. (See
Kivinen and Warmuth (1995) for a thorough analysis of multiplicative update algorithms
versus additive update algorithms, and exact bounds that depend on the sparsity of the target
function and the number of active features in the examples.)

The algorithm makes no independence or other assumptions about the attributes, in
contrast to Bayesian predictors which are commonly used in statistical NLP. This condition
was recently investigated experimentally (on simulated data) (Littlestone, 1995). It was
shown that redundant attributes dramatically affect a Bayesian predictor, while superfluous
independent attributes have a less dramatic effect, and only when the number of attributes
is very large (on the order of 10,000). Winnow is a mistake-driven algorithm; that is, it
updates its hypothesis only when a mistake is made. Intuitively, this makes the algorithm
more sensitive to the relationships among attributes—relationships that may go unnoticed
by an algorithm that is based on counts accumulated separately for each attribute. This is
crucial in the analysis of the algorithm and has been shown to be crucial empirically as well
(Littlestone, 1995).

One of the advantages of the multiplicative update algorithms is their logarithmic depen-
dence on the number of domain features. This property allows one to learn higher-than-linear
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discrimination functions by increasing the dimensionality of the feature space. Instead of
learning a discriminator in the original feature space, one can generate new features, as
conjunctions of original features, and learn a linear separator in the new space, where it
is more likely to exist. Given the modest dependency of Winnow on the dimensionality,

it can be worthwhile to increase the dimensionality so as to simplify the functional form
of the resulting discriminator. The work reported here can be regarded as following this
path, in that we define collocations patternsof words and part-of-speech tags, rather
than restricting them to tests of singleton elements. This increases the dimensionality and
adds redundancy among features, but at the same time simplifies the functional form of the
discriminator, to the point that the classes are almost linearly separable in the new space.
A similar philosophy, albeit very different technically, is followed by the work on Support
Vector Machines (Cortes & Vapnik, 1995).

Theoretical analysis has shown Winnow to be able to adapt quickly to a changing
target concept (Herbster & Warmuth, 1995). We investigate this issue experimentally in
Section 5.5. A further feature of WinSpell is that it can prune poorly-performing attributes,
whose weight falls too low relative to the highest weight of an attribute used by the classi-
fier. By pruning in this way, we can greatly reduce the number of features that need to be
retained in the representation. It is important to observe, though, that there is a tension be-
tween compacting the representation by aggressively discarding features, and maintaining
the ability to adapt to a new test environment. In this paper we focus on adaptation, and do
not study discarding techniques. This tradeoff is currently under investigation.

5. Experimental results

To understand the performance of WinSpell on the task of context-sensitive spelling cor-
rection, we start by comparing it with BaySpell using the pruned set of features from the
feature extractor, which is what BaySpell normally uses. This evaluates WinSpell purely as
a method of combining evidence from multiple features. An important claimed strength of
the Winnow-based approach, however, is the ability to handle large numbers of features. We
tested this by (essentially) disabling pruning, resulting in tasks with over 10,000 features,
and seeing how WinSpell and BaySpell scale up.

The first experiment showed how WinSpell and BaySpell perform relative to each other,
but not to an outside reference. To calibrate their performance, we compared the two
algorithms with other methods reported in the literature, as well as a baseline method.

The success of WinSpell in the previous experiments brought up the questidmy f
was able to outperform BaySpell and the other methods. We investigated this in an ablation
study, in which we stripped WinSpell down to a simple, non-learning algorithm, and gave
it an initial set of weights that allowed it to emulate BaySpell's behavior exactly. From
there, we restored the missing aspects of WinSpell one at a time, observing how much each
contributed to improving its performance above the Bayesian level.

The preceding experiments drew the training and test sets from the same population,
following the traditional PAC-learning assumption. This assumption may be unrealistic for
the task at hand, however, where a system may encounter a target document quite unlike
those seen during training. To check whether this was in fact a problem, we tested the
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across-corpus performance of the methods. We found it was indeed significantly worse
than within-corpus performance. To address this problem, we tried a strategy of combining
learning on the training set with unsupervised learning on the (noisy) test set. We tested
how well WinSpell and BaySpell were able to perform on an unfamiliar test set using this
strategy.

The sections below describe the experimental methodology, and present the experiments,
interleaved with discussion.

5.1. Methodology

In the experiments that follow, the training and test sets were drawn from two corpora: the
one-million-word Brown corpus (Ktera & Francis, 1967) and a 3/4-million-word corpus of
articles from The Wall Street Journal (WSJ) (Marcus, Santorini, & Marcinkiewicz, 1993).
Note that no particular annotations are needed on these corpora for the task of context-
sensitive spelling correction; we simply assume that the texts contain no context-sensitive
spelling errors, and thus the observed spellings may be taken as a gold standard.

The algorithms were run on 21 confusion sets, which were taken largely from the list of
“Words Commonly Confused” in the back of the Random House dictionary (Flexner, 1983).
The confusion sets were selected on the basis of being frequently-occurring in Brown and
WSJ, and include mainly homophone confusions (¢ppace piecg). Several confusion
sets not in Random House were added, representing grammatical errorgai@egng
betweel) and typographic errors (e.gmaybe may be).

Results are reported as a percentage of correct classifications on each confusion set, as well
as an overall score, which gives the percentage correct for all confusion sets pooled together.
When comparing scores, we tested for significance using a McNemar test (Dietterich, 1998)
when possible; when data on individual trials was not available (the system comparison),
or the comparison was across different test sets (the within/across study), we instead used
a test for the difference of two proportions (Fleiss, 1981). All tests are reported for the 0.05
significance level.

5.2. Pruned versus unpruned

The first step of the evaluation was to test WinSpell under the same conditions that BaySpell
normally runs under—i.e., using the pruned set of features from the feature extractor. We
used a random 80-20 split (by sentence) of Brown for the training and test sets. The results
of running each algorithm on the 21 confusion sets appear in the ‘Pruned’ columns of
Table 1. Although for a few confusion sets, one algorithm or the other does better, overall
WinSpell performs comparably to BaySpell.

The preceding comparison shows that WinSpell is a credible method for this task, but it
does not test the claimed strength of Winnow—the ability to deal with large numbers of fea-
tures. To test this, we modified the feature extractor to do only minimal pruning of features:
features were pruned only if they occurred exactly once in the training set (such features are
both extremely unlikely to afford good generalizations, and extremely numerous). The hope
is that by considering the full set of features, we will pick up many “minor cases”—what
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Tablel Pruned versusunpruned performance of BaySpell and WinSpell. Inthe pruned condition, the algorithms

use the pruned set of features from the feature extractor; in the unpruned condition, they use the full set (excluding
features occurring just once in the training set). The algorithms were trained on 80% of Brown and tested on

the other 20%. The first two columns give the number of features in the two conditions. Bar graphs show the

differences between adjacent columns, with shading indicating significant differences (using a McNemar test at
the 0.05 level).

Prsisdl  Unpuiisd Pruned Unpruned
Confusion set features features BaySpell WinSpell BaySpell WinSpell
accept, except 78 849 88.0 87.8 92.0 [ 96.0
affect, effect 36 842 98.0 1 100.0 98.0 [1 100.0
among, between 145 2706 5.3 1 75.8 78.0 |1 &6.0
amount, number 68 1618 74.8 0 732 80.5 [1 86.2
begin, being 84 2219 95.2 ] 89.7 95.2 [1 97.9
cite, sight, site 24 585 76.5 ] 64.7 73.5 ] 85.3
country, county 40 1213 88.7 0 90.0 91.9 [ 95.2
fewer, less 6 1613 96.0 0 94.4 92.0 |[] 93.3
I, me 1161 11625 97.8 ] 98.2 98.3 | 98.5
its, it’s 180 4679 94.5 0 96.4 959 [ 97.3
lead, led 33 833 89.8 0 875 85.7 [ 91.8
maybe, may be 86 1639 90.6 [ 84.4 95.8 [J 97.9
passed, past 141 1279 90.5 90.5 90.5 [ 959
peace, piece 67 992 74.0 0 720 92.0 ] 88.0
principal, principle 38 669 85.3 | 84.8 85.3 [ 91.2
quiet, quite 41 1200 95.5 95.4 89.4 [ 93.9
raise, rise 24 621 79.5 ] 743 87.2 [ 89.7
than, then 857 6813 93.6 1 96.9 93.4 [ 95.7
their, there, they’re 946 9449 94.8 0 96.6 94.5 [0 98.5
weather, whether 61 1226 93.4 [198.4 98.4 [l 100.0
your, you're 103 2738 90.4 [1 93.6 90.9 [ 973
Overall 93.0 I 93.7 93.8 [ 96.4

Holte, Acker, and Porter (1989) have called “small disjuncts”—that are normally filtered

out by the pruning process. The results are shown in the ‘Unpruned’ columns of Table 1.
While both algorithms do better in the unpruned condition, WinSpell improves for almost

every confusion set, sometimes markedly, with the result that it outperforms BaySpell in
the unpruned condition for every confusion set except one. The results below will all focus
on the behavior of the algorithms in the unpruned case.

5.3. System comparison

The previous section shows how WinSpell and BaySpell perform relative to each other; to
evaluate them with respect to an external standard, we compared them to other methods
reported in the literature. Two recent methods use some of the same test sets as we do,
and thus can readily be compared: RuleS, a transformation-based learner (Mangu & Brill,
1997); and a method based on latent semantic analysis (LSA) (Jones & Martin, 1997). We
also compare to Baseline, the canonical straw man for this task, which simply identifies
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Table 2 System comparison. All algorithms were trained on 80% of Brown and tested on the other 20%; all
except LSA used the same 80-20 breakdown. The version of RuleS is the one that uses the same feature set as we
do. BaySpell and WinSpell were run in the unpruned condition. The first column gives the number of test cases.
Bar graphs show the differences between adjacent columns, with shading indicating significant differences (using

a test for the difference of two proportions at the 0.05 level). Ragged-ended bars indicate a difference of more
than 15 percentage points. The three ‘overall’ lines pool the results over different sets of confusion sets.

Test
Confusion set cases Baseline LSA RuleS BaySpell WinSpell
accept, except 50  70.0 1 823 [ 8.0 [] 920 [J 960
affect, effect 49 91.8 0 94.3 ] 97.9 98.0 [1 100.0
among, between 186 71.5 1 80.8 ] 73.1 [ 78.0 [] 86.0
amount, number 123 71.5 ] 56.6 §780 [0 805 [1 86.2
begin, being 146 93.2 93.2 0 95.3 95.2 [ 97.9
cite, sight, site 34 647 1 78.1 735 [1853
country, county 62 91.9 [ 81.3 [ 952 [ 91.9 [ 95.2
fewer, less 75 90.7 92.0 [ 93.3
1, me 1225 83.0 98.3 | 98.5
its, it’s 366 91.3 [ 92.8 95.9 [] 97.3
lead, led 49 46.9 3 73.0 3 89.8 [ 85.7 [1 918
maybe, may be 96 87.5 95.8 [ 97.9
passed, past 74 689 1 803 [ 83.7 [1905 [ 959
peace, piece 50 44.0 [% 83.9 [ 90.0 [0 92.0 88.0
principal, principle 34 58.8 3912 [ 8.2 [0 853 [ 912
quiet, quite 66 83.3 1 9038 [ 924 O 894 [J 939
raise, rise 39 64.1 [ % 80.6 [ 846 [0 872 [] 89.7
than, then 514 63.4 3% 90.5 [ 926 | 934 [] 95.7
their, there, they’re 850 56.8 [ 3% 73.9 94.5 [ 98.5
weather, whether 61 86.9 1 85.1 1 934 [ 984 [ 100.0
your, you're 187 89.3 [ 91.4 90.9 [ 973
Overall (14 sets) 1503 711 1 845 ] 885 [I 899 [O 93.5
Overall (18 sets) 2940 70.6 1 828 91.8 [ 95.6
Overall 4336 74.8 93.8 [0 96.4

the most common member of the confusion set during training, and guesses it every time
during testing.

The results appear in Table 2. The scores for LSA, taken from Jones and Martin (1997),
are based on a different 80-20 breakdown of Brown than that used by the other systems.
The scores for RuleS are for the version of that system that uses the same feature set as
we do. The comparison shows WinSpell to have significantly higher performance than
the other systems. Interestingly, however, Mangu and Brill were able to improve RuleS’s
overall score from 88.5 to 93.3 (almost up to the level of WinSpell) by making various clever
enhancements to the feature set, including using a tagger to assign a word its possible tags in
context, rather than merely using the word’s complete tag set. This suggests that WinSpell
might get a similar boost by adopting this enhanced set of features.

A note on the LSA system: LSA has been reported to do its best for confusion sets in
which the words all have the same part of speech. Since this does not hold for all of our
confusion sets, LSA's overall score was adversely affected.
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5.4. Ablation study

The previous sections demonstrate the superiority of WinSpell over BaySpell for the task
at hand, but they do not explaivhythe Winnow-based algorithm does better. At their core,
WinSpell and BaySpell are both linear separators (Roth, 1998); is it that Winnow, with
its multiplicative update rule, is able to learn a better linear separator than the one given
by Bayesian probability theory? Or is it that the non-Winnow enhancements of WinSpell,
particularly weighted-majority voting, provide most of the leverage? To address these ques-
tions, we ran an ablation study to isolate the contributions of different aspects of WinSpell.

The study was based on the observation that the core computations of Winnow and
Bayesian classifiers are essentially isomorphic: Winnow makes its decisions based on a
weighted sum of the observed features. Bayesian classifiers make their decisions based not
on asum, buton a product of likelihoods (and a prior probability)—but taking the logarithm
of this functional form yields a linear function. With this understanding, we can start with
the full BaySpell system; strip it down to its Bayesian essence; map this (by taking the log)
to a simplified, non-learning version of WinSpell that performs the identical computation;
and then add back the removed aspects of WinSpell, one at a time, to understand how much
each contributes to eliminating the performance difference between (the equivalent of) the
Bayesian essence and the full WinSpell system.

The experiment proceeds in a series of steps that morph BaySpell into WinSpell:

BaySpell: The full BaySpell method, which includes dependency resolution and interpola-
tive smoothing.

Simplified BaySpell: Like BaySpell, but without dependency resolution. This means that
all matching features, even highly interdependent ones, are used in the Bayesian calcula-
tion. We do not strip BaySpell all the way down to Naive Bayes, which would use MLE
likelihoods, because the performance would then be so poor as to be unrepresentative
of BaySpell—and this would undermine the experiment, which seeks to investigate how
WinSpell improves on BaySpell (not on a pale imitation thereof).

Simplified WinSpell: This is a minimalist WinSpell, set up to emulate the computation of
Simplified BaySpell. It has a 1-layer architecture (i.e., no Weighted Majority layer); it
uses a full network (not sparse); it is initialized with Bayesian weights (to be explained
momentarily); and it does no learning (i.e., it does not update the Bayesian weights). The
Bayesian weights are simply the log of Simplified BaySpell's likelihoods, plus a constant,
to make them all non-negative (as required by Winnow). Occasionally, a likelihood will
be 0.0, in which case we smooth the log(likelihood) frerso to a large negative constant
(we used-500). In addition, we add a pseudo-feature to Winnow’s representation, which
is active for every example, and corresponds to the prior. The weight for this feature is
the log of the prior.

1-layer WinSpell: Like Simplified WinSpell, but adds learning. This lets us see whether
Winnow's multiplicative update rule is able to improve on the Bayesian feature weights.
We ran learning for 5 cycles of the training set.

2-layer WinSpell: Like 1-layer WinSpell, but adds the weighted-majority voting layer to
the architecture.
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Table 3 Ablation study. Training was on 80% of Brown and testing on the other 20%. The algorithms were run
in the unpruned condition. Bar graphs show the differences between adjacent columns, with shading indicating
significant differences (using a McNemar test at the 0.05 level).

Simplified 1-layer 2-layer (Bayesian)
Confusion set BaySpell BaySpell WinSpell WinSpell WinSpell
accept, except 92.0 92.0 0 94.0 [ 90.0 ] 96.0
affect, effect 98.0 { 95.9 0 98.0 98.0 0 100.0
among, between 78.0 0 79.6 [ 77.4 1 909 [ 89.2
amount, number 80.5 O 78.0 ] 84.6 B 88.6 [ 85.4
begin, being 95.2 ] 88.4 1 96.6 N 98.6 [ 99.3
cite, sight, site 73.5 73.5 ] 79.4 [ 76.5 [ ] 882
country, county 91.9 [ 80.6 [ 1 91.9 I 93.5 ] 96.8
fewer, less 92.0 ] 94.7 i 93.3 | 96.0 I} 97.3
I, me 98.3 97.9 ] 98.6 99.1 I 99.5
its, it’s 95.9 { 94.5 N 95.9 O 98.4 I 97.8
lead, led 85.7 1 91.8 [ 87.8 87.8 ] 93.9
maybe, may be 95.8 ] 96.9 I 95.8 O 99.0 99.0
passed, past 90.5 [ 93.2 91.9 [ 87.8 ] 93.2
peace, piece 92.0 [ 84.0 H 88.0 [ 84.0 | 88.0
principal, principle 85.3 85.3 [ 82.4 [J 85.3 1] 91.2
quiet, quite 89.4 1 97.0 [ 924 ] 90.9 O 93.9
raise, rise 87.2 [ 79.5 J 82.1 82.1 | 89.7
than, then 93.4 0 95.7 95.3 i 97.1 96.7
their, there, they’re 94.5 [ 92.7 ] 97.3 ] 98.1 | 98.2
weather, whether 98.4 i 96.7 1] 98.4 0 100.0 100.0
your, you're 90.9 il 89.3 1 96.8 I 97.9 [ 98.9
Overall 93.8 [ 93.1 0 95.1 ] 96.6 I 97.2

(Bayesian) WinSpell: Replaces the full network of 2-layer WinSpell with a sparse network.
This yields the complete WinSpell algorithm, although its performance is affected by the
fact that it started with Bayesian, not uniform weights.

The ablation study used the same 80-20 breakdown of Brown as in the previous section,
and the unpruned feature set. The results appear in Table 3. Simplified WinSpell has been
omitted from the table, as its results are identical to those of Simplified BaySpell.

The primary finding is that all three measured aspects of WinSpell contribute positively
to its improvement over BaySpell; the ranking, from strongest to weakest benefit, is (1)
the update rule, (2) the weighted-majority layer, and (3) sparse networks. The large benefit
afforded by the update rule indicates that Winnow is able to improve considerably on the
Bayesian weights. The likely reason that the Bayesian weights are not already optimal
is that the Bayesian assumptions—conditional feature independence and adequate data
for estimating likelihoods—do not hold fully in practice. The Winnow update rule can
surmount these difficulties by tuning the likelihoods via feedback to fit whatever situation
holds in the (imperfect) world. The feedback is obtained from the same training set that is
used to set the Bayesian likelihoods. Incidentally, it is interesting to note that the use of a
sparse network improves accuracy fairly consistently across confusion sets. The reason it
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improves accuracy is that, by omitting links for features that never co-occurred with a given
target word during training, it effectively sets the weight of such features to 0.0, which is
apparently better for accuracy than setting the weight to the log of the Bayesian likelihood
(which, in this case, is sonsmmoothedrersion of the 0.0 MLE probability).

A second observation concerns the performance of WinSpell when starting with the
Bayesian weights: its overall score was 97.2%, as compared with 96.4% for WinSpell
when starting with uniform weights (see Table 2). This suggests that the performance of
Winnow can be improved by moving to a hybrid approach in which Bayes is used to
initialize the network weights. This hybrid approach is also an improvement over Bayes: in
the present experiment, the pure Bayesian approach scored 93.1%, whereas when updates
were performed on the Bayesian weights, the score increased to 95.1%.

A final observation from this experiment is that, while it was intended primarily as an
ablation study of WinSpell, it also serves as a mini-ablation study of BaySpell. The differ-
ence between the BaySpell and Simplified BaySpell columns measures the contribution of
dependency resolution. It turns out to be almost negligible, which, at first glance, seems sur-
prising, considering the level of redundancy in the (unpruned) set of features being used. For
instance, if the features include the collocatian  treaty’, they will also include colloca-
tions such asET __treaty’, “ a _ NOUNsing’, and so on. Nevertheless, there are two reasons
that dependency resolution is of little benefit. First, the features are gengyatethatically
by the feature extractor, and thus tend to overcount evidence equally for all words. Second,
Naive Bayes is known to be less sensitive to the conditional independence assumption when
we only ask it to predict the most probable class (as we do here), as opposed to asking it
to predict the exact probabilities for all classes (Duda & Hart, 1973; Domingos & Pazzani,
1997). The contribution of interpolative smoothing—the other enhancement of BaySpell
over Naive Bayes—was not addressed in Table 3. However, we investigated this briefly by
comparing the performance of BaySpell with interpolative smoothing to its performance
with MLE likelihoods (the naive method), as well as a number of alternative smooth-
ing methods. Table 4 gives the overall scores. While the overall score for BaySpell with

Table 4 Overall score for BaySpell using different smoothing methods. The last method, interpolative smooth-
ing, is the one presented here. Training was on 80% of Brown and testing on the other 20%. When using MLE
likelihoods, we broke ties by choosing the word with the largest prior (ties arose when all words had proba-
bility 0.0). For Katz smoothing, we used absolute discounting (Ney, Essen, & Kneser, 1994), as Good-Turing
discounting resulted in invalid discounts for our task. For Kneser-Ney smoothing, we used absolute discount-
ing and the backoff distribution based on the “marginal constraint”. For interpolation with a)fj{€dtz, and
Kneser-Ney, we set the necessary parameters separately for eacWwasthg deleted estimation.

Smoothing method Reference Overall
MLE likelihoods 85.8
Interpolation with a fixed. Ney, Essen, & Kneser (1994) 89.8
Laplacem Kohavi, Becker, & Sommerfield (1997) 90.9
No-matches-0.01 Kohavi, Becker, & Sommerfield (1997) 91.0
Katz smoothing Katz (1987) 91.6
Kneser-Ney smoothing Kneser & Ney (1995) 93.4

Interpolative smoothing Section 3 93.8
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interpolative smoothing was 93.8%, it dropped to 85.8% with MLE likelihoods, and was also
lower when alternative smoothing methods were tried. This shows that while dependency
resolution does not improve BaySpell much over Naive Bayes, interpolative smoothing
does have a sizable benefit.

5.5. Across-corpus performance

The preceding experiments assumed that the training set will be representative of the test set.
For context-sensitive spelling correction, however, this assumption may be overly strong;
this is because word usage patterns vary widely from one author to another, or even one
document to another. For instance, an algorithm may have been trained on one corpus to
discriminate betweedesertanddessert but when tested on an article about the Persian
Gulf War, will be unable to detect the misspellingadsertin Operation Dessert Storm

To check whether this is in fact a problem, we tested the across-corpus performance of the
algorithms: we again trained on 80% of Brown, but tested on a randomly-chosen 40% of
the sentences of WSJ. The results appear in Table 5. Both algorithms were found to degrade
significantly. At first glance, the magnitude of the degradation seems small—from 93.8 to

Table 5 Within- versus across-corpus performance of BaySpell and WinSpell. Training was on 80% of Brown

in both cases. Testing for the within-corpus case was on 20% of Brown; for the across-corpus case, it was on 40%
of WSJ. The algorithms were run in the unpruned condition. Bar graphs show the differences between adjacent
columns, with shading indicating significant differences (using a test for the difference of two proportions at the
0.05 level). Ragged-ended bars indicate a difference of more than 15 percentage points.

Test cases Test cases Bayipell Winspel
Confusion set Within Across Within Across Within Across
accept, except 50 30 92.0 [ 80.0 96.0 0 93.3
affect, effect 49 66 98.0 [| 87.9 100.0 ] 95.5
among, between 186 256 78.0 0 79.3 86.0 0 87.1
amount, number 123 167 80.5 [ 69.5 86.2 [ 73.7
begin, being 146 174 95.2 ] 89.1 97.9 I 98.9
cite, sight, site 34 18 73.5 31 50.0 853 I 55.6
country, county 62 71 91.9 0 94.4 95.2 I 95.8
fewer, less 75 148 92.0 [] 94.6 97.3 97.3
I, me 1225 328 98.3 97.9 97.9 ] 925
its, it’s 366 1277 95.9 95.5 93.3 ] 95.9
lead, led 49 69 85.7 ] 79.7 98.5 98.5
maybe, may be 96 67 95.8 0 925 91.8 0 89.9
passed, past 74 148 90.5 [195.9 95.9 0 98.0
peace, piece 50 19 92.0 [ 1789 88.0 1 737
principal, principle 34 30 8.3 3 1 70.0 91.2 ] 86.7
quiet, quite 66 20 89.4 I 650 939 I ] 75.0
raise, rise 39 118 87.2 3 72.0 89.7 1] 822
than, then 514 637 93.4 0 96.5 95.7 ] 98.4
their, there, they’re 850 748 94.5 0 917 98.5 98.1
weather, whether 61 95 98.4 O 947 100.0 O 96.8
your, you’re 187 74 90.9 1 851 97.3 0 95.9
Overall 4336 4560 93.8 O 91.2 96.4 [ 952
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91.2% for the overall score of BaySpell, and 96.4 to 95.2% for WinSpell. However, when
viewed as an increase in the error rate, it is actually fairly serious: for BaySpell, the error
rate goes from 6.2 to 8.8% (a 42% increase), and for WinSpell, from 3.6 to 4.8% (a 33%
increase). In this section, we present a strategy for dealing with the problem of unfamiliar
test sets, and we evaluate its effectiveness when used by WinSpell and BaySpell.

The strategy is based on the observation that the test document, though imperfect, still
provides a valuable source of information about its own word usages. Returning to the
Desert Storm example, suppose the system is asked to correct an article containing 17
instances of the phras@peration Desert Storprand 1 instance of the (erroneous) phrase
Operation Dessert Stormif we treat thetestcorpus as a training document, we will then
start by running the feature extractor, which will generate (among others) the collocation:

(3) Operation__ Storm

The algorithm, whether BaySpell or WinSpell, should then be able to learn, during its
training on the test (qua training) corpus, that feature (3) typically co-occursdegart

and is thus evidence in favor of that word. The algorithm can then use this feature to fix the
one erroneous spelling of the phrase in the test set.

It is important to recognize that the system is not “cheating” by looking at the test set; it
would be cheating if it were given an answer key along with the test set. What the systemis
really doing is enforcing consistency across the test set. It can detect sporadic errors, but not
systematic ones (such as writi@gperation Dessert Storevery time). However, it should
be possible to pick up at least some systematic errors by also doing regular supervised
learning on a training set.

This leads to a strategy, which we callip/unsupof combining supervised learning on the
training set with unsupervised learning on the (noisy) test set. The learning on the training
set issupervisedecause a benevolent teacher ensures that all spellings are correct (we
establish this simply by assumption). The learning on the test sesispervisedecause
no teacher tells the system whether the spellings it observes are right or wrong.

We ran both WinSpell and BaySpell with sup/unsup to see the effect on their across-
corpus performance. We first needed a test corpus containing errors; we generated one
by corrupting a correct corpus. We varied the amount of corruption from 0 to 20%, where
p% corruption means we altered a randomly-chgs#rof the occurrences of the confusion
set to be a different word in the confusion set.

The sup/unsup strategy calls for training on both a training corpus and a corrupted test
corpus, andtesting on the uncorrupted test corpus. For purposes of this experiment, however,
we split the test corpus into two parts to avoid any confusion about training and testing on
the same data. We trained on 80% of Brown plus a corrupted version of 60% of WSJ; and
we tested on the uncorrupted version of the other 40% of WSJ.

The results for the 5% level of corruption are shown in Table 6; this level of corruption
corresponds to typical typing error rate$he table compares across-corpus performance of
each algorithm with and without the additional boost of unsupervised learning on part of the
test corpus. Both BaySpell and WinSpell benefit from the unsupervised learning by about
the same amount; the difference is that WinSpell suffered considerably less than BaySpell
when moving from the within- to the across-corpus condition. As a result, WinSpell, unlike



126 A.R. GOLDING AND D. ROTH

Table 6 Across-corpus performance of BaySpell and WinSpell using the sup/unsup strategy. Performance is
compared with doing supervised learning only. Training in the sup/unsup case is on 80% of Brown plus 60%
of WSJ (5% corrupted); in the supervised case, it is on 80% of Brown only. Testing in all cases is on 40% of
WSJ. The algorithms were run in the unpruned condition. Bar graphs show the differences between adjacent
columns, with shading indicating significant differences (using a McNemar test at the 0.05 level). Ragged-ended
bars indicate a difference of more than 15 percentage points.

BaySpell WinSpell
Confusion set Test cases Sup only Sup/unsup Sup only Sup/unsup
accept, except 30 80.0 [ 86.7 93.3 [] 86.7
affect, effect 66 879 [ 90.9 95.5 ] 93.9
among, between 256 79.3 [ 81.2 87.1 [ 90.6
amount, number 167 69.5 [ 784 73.7 [ 874
begin, being 174 89.1 [ 943 98.9 | 99.4
cite, sight, site 18 500 [—3 66.7 55.6 [ 3 72.2
country, county Tl 944 |l 95.8 95.8 1] 97.2
fewer, less 148 94.6 ] 93.2 95.9 [ 98.0
I, me 328 97.9 | 98.5 98.5 0 99.1
its, it’s 1277 95.5 95.6 97.3 0 97.8
lead, led 69 79.7 75.4 89.9 ] 88.4
maybe, may be 67 92.5 ] 91.0 92.5 ] 97.0
passed, past 148 95.9 | 96.6 98.0 98.0
peace, piece 19 78.9 [ 84.2 73.7 [_3 895
principal, principle 30 70.0 [ 76.7 86.7 ] 90.0
quiet, quite 20 65.0 [1 75.0 75.0 [790.0
raise, rise 118 72.0 |3 87.3 82.2 ] 89.8
than, then 637 96.5 96.2 98.4 98.3
their, there, they’re 748 91.7 90.8 98.1 I 98.5
weather, whether 95 94.7 [l 95.8 96.8 96.8
your, you’re 74 85.1 [ 87.8 95.9 N 97.3
Overall 4560 91.2 @1 92.4 95.2 ] 96.6

BaySpell, is actually able to recover to its within-corpus performance level, when using the
sup/unsup strategy in the across-corpus condition.

It should be borne in mind that the results in Table 6 depend on two factors. The first
is the size of the test set: the larger the test set, the more information it can provide dur-
ing unsupervised learning. The second factor is the percentage corruption of the test set.
Figure 2 shows performance as a function of percentage corruption for a representative
confusion set{amount numbet. As one would expect, the improvement from unsuper-
vised learning tends to decrease as the percentage corruption increases. For BaySpell's
performance oflamounf numbet, 20% corruption is almost enough to negate the benefit
of unsupervised learning.

6. Conclusion

While theoretical analyses of the Winnow family of algorithms have predicted an excellent
ability to deal with large numbers of features and to adapt to new trends not seen during
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Figure 2 Across-corpus performance of BaySpell (dotted lines) and WinSpell (solid lines) with the sup/unsup
strategy and with supervised learning only. The curves show performance as a function of the percentage corruption
ofthe test set. Training in the sup/unsup case is on 80% of Brown, plus 60% of WSJ (corrupted); for the supervised-
only case, it is on 80% of Brown only. Testing in both cases is on 40% of WSJ. The algorithms were run for the
confusion sefamount numbet in the unpruned condition.

training, these properties have remained largely undemonstrated. In the work reported
here, we have presented an architecture based on Winnow and Weighted Majority, and
applied it to a real-world task, context sensitive spelling correction, that has a potentially

huge number of features (over 10,000 in some of our experiments). We showed that our
algorithm, WinSpell, performs significantly better than other methods tested on this task

with acomparable feature set. When comparing WinSpell to BaySpell, a Bayesian statistics-
based algorithm representing the state of the art for this task, we found that WinSpell's

mistake-driven update rule, its use of weighted-majority voting, and its sparse architecture
all contributed significantly to its superior performance.

WinSpell was found to exhibit two striking advantages over the Bayesian approach. First,
WinSpell was substantially more accurate than BaySpell when running with full (unpruned)
feature sets, outscoring BaySpell on 20 out of 21 confusion sets, and achieving an overall
score of over 96%. Second, WinSpell was better than BaySpell at adapting to an unfamiliar
test corpus, when using a strategy we presented that combines supervised learning on the
training set with unsupervised learning on the test set.

This work represents an application of techniques developed within the theoretical learn-
ing community in recent years, and touches upon some of the important issues still under
active research. First, it demonstrates the ability of a Winnow-based algorithm to suc-
cessfully utilize the strategy of expanding the space of features in order to simplify the
functional form of the discriminator; this was done in generating collocatiopa#isrns
of words and part-of-speech tags. The use of this strategy in Winnow shares much the
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same philosophy—if none of the technical underpinnings—as Support Vector Machines
(Cortes & Vapnik, 1995). Second, the two-layer architecture used here is related to various
voting and boosting techniques studied in recent years in the learning community (Freund
& Schapire, 1995; Breiman, 1994; Littlestone & Warmuth, 1994). The goal is to learn to
combine simple learners in a way that improves the overall performance of the system. The
focus in the work reported here is on doing this learning in an on-line fashion.

There are many issues still to investigate in order to develop a complete under-standing of
the use of multiplicative update algorithms in real-world tasks. One of the important issues
this work raises is the need to understand and improve the ability of algorithms to adapt to
unfamiliar test sets. This is clearly a crucial issue for algorithms to be used in real systems.
Arelated issue is that of the size and comprehensibility of the output representation. Mangu
and Brill (1997), using a similar set of features to the one used here, demonstrate that
massive feature pruning can lead to highly compact classifiers, with surprisingly little loss
of accuracy. There is a clear tension, however, between achieving a compact representation
and retaining the ability to adapt to unfamiliar test sets. Further analysis of this tradeoff is
under investigation.

The Winnow-based approach presented in this paper is being developed as part of a
research program in which we are trying to understand how networks of simple and slow
neuron-like elements can encode a large body of knowledge and perform a wide range of
interesting inferences almost instantaneously. We investigate this question in the context
of learning knowledge representations that support language understanding tasks. In light
of the encouraging results presented here for context-sensitive spelling correction, as well
as other recent results (Dagan, Karov, & Roth, 1997; Reddy & Tadepalli, 1997; Roth &
Zelenko, 1998), we are now extending the approach to other tasks.
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Notes

1. We have tested successfully with up to 40,000 features, but the results reported here use up to 11,000.

2. Eachword in the sentence is tagged withsétof possible part-of-speech tags, obtained from a dictionary. For
a tag to match a word, the tag must be a member of the word’s tag set.

3. The maximum-likelihood estimate Bf( f | W) is the number of occurrences bin the presence & divided
by the number of occurrences b .

4. For the purpose of the experimental studies presented here, we do not update the knowledge representation
while testing. This is done to provide a fair comparison with the Bayesian method which is a batch approach.

5. This does notinterfere with the subsequent updating of the weights—conceptually, we treat a “non-connection”
as a link with weight 0.0, which will remain 0.0 after a multiplicative update.
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6. The exact form of the decreasing function is unimportant; we interpolate quadratically bet@eem D67
as a decreasing function of the number of examples.
7. Mays, Damerau, and Mercer (1991), for example, consider error rates from 0.01 to 10% for the same task.
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