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Abstract— Several kinds of brain-computer interface (BCI) 

systems have been proposed to compensate for the lack of medical 

technology for assisting patients who lose the ability to use motor 

functions to communicate with the outside world. However, most 

of the proposed systems are limited by their non-portability, 

impracticality and inconvenience because of the adoption of wired 

or invasive electroencephalography (EEG) acquisition devices. 

Another common limitation is the shortage of functions provided 

because of the difficulty of integrating multiple functions into one 

BCI system. In this study, we propose a wireless, non-invasive and 

multifunctional assistive system which integrates steady state 

visually evoked potential (SSVEP)-based BCI and a robotic arm 

to assist patients to feed themselves. Patients are able to control 

the robotic arm via the BCI to serve themselves food. Three other 

functions: video entertainment, video calling, and active 

interaction are also integrated. This is achieved by designing a 

functional menu and integrating multiple subsystems. A 

refinement decision-making mechanism is incorporated to ensure 

the accuracy and applicability of the system. Fifteen participants 

were recruited to validate the usability and performance of the 

system. The averaged accuracy and information transfer rate 

(ITR) achieved is 90.91% and 24.94 bit per min respectively. The 

feedback from the participants demonstrates that this assistive 

system is able to significantly improve the quality of daily life.  

Keywords—steady state visually evoked potential (SSVEP); 

wireless BCI; multifunctional assistive system 

I. INTRODUCTION  

Brain-computer interfaces (BCIs) have become one of the 

most promising directions for solving the growing healthcare 

demand to deal with motor function deterioration caused by 

ageing, accident or disease [1]. By translating human brain 

activities into command signals, BCIs enable users to control or 

communicate directly with devices such as cursors [2-4], 

wheelchairs [5, 6], spellers [8-10], and cellphones [11] using 

brain waves, regardless of their neuro-muscular disabilities. 

The key elements for BCIs to fulfill their goals are 

determination of target brain patterns [12], signal acquisition, 

signal processing, and applications [13]. Because BCIs can only 

deal with specific kinds of brain activity, users must perform 

specific mental strategies to produce detectable and classifiable 

brain patterns for BCIs [12]. Once the target brain patterns have 

been produced by users, BCIs can acquire the EEG signals and 

process the recorded signal to extract features and make 

judgements about users’ intentions. By combining these brain 

signal translation techniques with controllable devices such as 

robotic arms, cursors, and spellers, BCIs can be used in all kinds 

of applications [2-11].  

The most commonly applied brain patterns include steady 

state visually evoked potential (SSVEP), P300 potentials [14], 

event-related potentials (ERPs) [15] and motor imagery (MI) 

[16]. Of these, SSVEP has the advantages of high information 

transfer rate (ITR), good signal-to-noise ratio (SNR), the need 

for less training, and the ability to allow a large number of 

classes [2]. It is adopted in this study for these reasons. The 

signal acquisition methods can be wired or wireless. While 

wired acquisition devices provide better signal quality, the 

bulky hardware, essential cables and necessary preparation 

procedures for injecting conductive gel dramatically limit the 

applicability of wired BCI systems. It is therefore necessary to 

adopt wireless devices and mitigate the influence of signal 

quality through signal processing methods to construct an 

applicable and convenient BCI system in real life applications 

[1].  

Methods such as power spectral density analysis (PSDA), 

canonical correlation analysis (CCA), and signal-to-noise ratio 

(SNR) are frequently adopted for feature extraction [19] in 

SSVEP signal processing. However, the performance of these 

methods may be affected by signal quality when wireless EEG 

acquisition with a small number of channels is adopted. In this 

study, we therefore include harmonic frequency information 

and develop voting mechanisms to improve the system's 

decision-making performance. Current BCI applications are 

generally limited to low-degree-of-freedom continuous 

movement control and discrete selection [18] due to the 

limitations of known BCI techniques. Combined with the 

difficulty of multiple subsystem integration, which requires 

consideration of compatibility between devices, allocation of 

the computational resources of the system, and placement of 

hardware devices, this means that there are few wireless 

multifunctional BCI systems that integrate both robotic control 

functions and media playback services.  

Taking a further step in the construction of BCI assistive 

systems, we propose and develop a wireless multifunctional 

SSVEP-based BCI assistive system and ensure its applicability 

through the refinement of functional menu design and decision-

making mechanisms. In this study, we will demonstrate the 

material and methods, describe the assistive system, give the 

results and discussion, and lastly present our conclusions. 



II. MATERIAL AND METHODS  

A. Experimental Setup 

A high level stimulating monitor (BenQ XL2430T) with 
refresh rate of 144 Hz was adopted for the visual stimulation 
presentation. The presentation method follows the method 
proposed in [23]. Frequencies of 14.4 Hz, 16 Hz, 18 Hz, 20.6 Hz 
and 24 Hz, respectively corresponding to ten, nine, eight, seven, 
six frames of one flickering period of the monitor, were adopted. 
Considered in this process were the available stable frequencies 
for the adopted monitor, the SSVEP subsystems for amplitude 
response [21] and the possible peak shift [22], as a result of 
which frequencies within the same subsystem, with an interval 
of at least two Hz, and corresponding to integer frame numbers, 
were adopted.  

Fifteen healthy subjects (thirteen males and two females, 

overall mean age 23 ± 2.3 years) with normal or corrected-to-
normal vision were recruited to participate in the SSVEP 
experiments, and three of them were invited again for online 
feasibility test. As we focus more on system integration and 
usability in current stage of this research, we did not control sex 
and age factors as other research did [27] when selection 
participants. None of the subjects had a history of neurological 
or psychological disorders such as migraine or epilepsy. The 
purpose and procedures of the experiment were explained to the 
participants, all of whom completed a consent form before the 
experiment took place. The experiment comprised three 
sessions, each containing five rounds; with each round 
corresponding to one of the five target frequencies. During each 
round, participants stared for ten seconds at a stimulus 
corresponding to the frequency of the round. The resting 
duration was one minute between two sessions and ten seconds 
between two rounds.  

O1 and O2 channels of Mindo 4S with spring-loaded dry 
sensors were adopted for the EEG acquisition in the SSVEP 
experiment and placed according to the international 10-20 
system. The Mindo 4S, sampling at rates of 250 Hz, was 
designed and developed by the Brain Research Center, National 
Chiao Tung University [20]. No conductive gel or skin 
preparation was necessary. All EEG signals were recorded, 
amplified and band-pass filtered between 0.24 and 125 Hz. 

B. Signal Analysis 

This section describes the data analysis methods and 

procedures and details of the following: data segmentation, 

feature extraction, voting mechanisms, and evaluation methods. 

1) Data segmentation 

As demonstrated in our previous work [26], the suitable data 

length for each decision trial is five seconds. Each recorded ten-

second trial can be converted into six five-second trials, as 

shown in Figure 1. Following our previous procedures, the first 

decision is made at the fifth second using the data from the 

zeroth second to the fifth second, and the next decision is made 

in every subsequent second. That is to say, the second decision 

is made at the sixth second using the data from the first second 

to the sixth second. 

2) Feature extraction 

In this study, the power values derived by fast Fourier 

transform (FFT), the signal-to-noise ratio (SNR) of the power 

peaks and the correlation values calculated using canonical-

correlation analysis (CCA) are adopted as the features for the 

SSVEP BCI to use to classify each five-second decision trial. 

To improve performance, the effect of harmonic frequency 

components is also considered. 

For every five-second trial, FFT is applied to two channels 

separately. The derived power spectrum is used as the first 

feature. SNR is then applied to the power spectrum to produce 

the second feature. Taking 𝑃#  as the power value of n Hz, 

formula (1) shows the calculation of the SNR of n Hz for a 

single channel’s data. In each five-second trial, where n=14.4, 

16, 18. 20.6, 24, if 𝑃#  is maximized when n=16, the trial is 

categorized as taking place when the subject is staring at the 

16Hz option in the FFT feature. Following the same rule, if the 

SNR (of n Hz) reaches maximum when n=18, this trial will be 

judged as the signal for the 18Hz option in the SNR feature. 

SNR (of n Hz) = 
$%

($%'()$%'*.,)$%-*.,)$%-()/0
              (1) 

 

 
Figure 1. Data segmentation. Decisions are made from the fifth second and one 

by one in every next second. Data from the zeroth second to the fifth second 
make the first decision. Data from the first second to the sixth second make the 

second decision, and so on. Following the same rule, data from the fifth second 

to the tenth second will make the sixth decision. 

Another widely adopted method for SSVEP BCI is CCA, 

which aims to find a pair of linear transforms for any two given 

datasets such that the two transformed datasets have maximized 

correlation [19]. In this study, we use the correlation between 

the recorded five-second trial and a reference signal with 

frequency F to judge the degree to which this trial correlates 

with a flickering of frequency F, where F=14.4, 16, 18, 20.6, 

24. If the correlation value is maximized when F=14.4, we 

judge that this trial is recorded when the user is staring at 14.4 

Hz. As will be mentioned later, we also adopt the second 

harmonics of the five frequencies as F to produce different CCA 

features, i.e. F=28.8, 32, 36, 41.2, 48. 

It has been reported that the harmonic components also help 

to improve accuracy [24]. Considering that the response 

amplitude of SSVEP drops significantly as the frequency gets 

higher, we only take account of the first three orders of 

harmonics. To reduce the computational cost, we do not use 

complicated formulas to extract the features of the target 

harmonic components but simply apply three methods to sum 

the target power values and compare levels of accuracy to 

determine the best method. In method 1, we adopt the 

summations of power values of the first three orders of 

harmonics as features for five target options, as listed in Table 



1. The summation is noted as 𝑆#, 𝑛 = 14.4, 16, 18, 20.6, 24. If 

the maximum of 𝑆# appears when 𝑛 = 14.4, we judge the trial 

to be recorded when the subject is staring at the 14.4 Hz option. 

Considering the existence of the 60Hz AC noise in our 

environment, the power value 𝑃;<.=  is excluded and the 

summation of 𝑃>?.;	and	𝑃0<.>  increased 1.5 times to 

compensate for the missing item. In method 2, we exclude 𝑃D> 

because 72 Hz is outside the three SSVEP subsystems and the 

response amplitude compared to others [21] is theoretically too 

small. All summations in method 2 are then averaged to 

compensate for the difference in the number of items. In 

method 3, we adopt only the first two orders of harmonics to 

avoid problems of AC noise and amplitude drop of high 

frequency bands, and this method also makes the number of 

items of each  𝑆#  equal.  

TABLE 1. ACCURACY COMPARISON OF THREE HARMONIC ADOPTION 

METHODS. 

 

The last two rows in Table 1 show the classification accuracy 

of the O1 and O2 channels using the three methods. It is clear 

to see that method 2 outperforms the others in both channels, 

thus this method is selected for the adoption of harmonic 

components. Another important result is that accuracy is quite 

poor when the features of only one channel are used. This has 

motivated us to develop voting methods to improve the results. 

C. Integrated Assistive System 

Figure 2A shows the configuration of the system. The 

complete system can be divided into three parts: the SSVEP 

BCI system, an assistive eating system, and a video playback 

system. The SSVEP BCI system is composed of the wireless 

EEG cap, Mindo 4S, a high refresh rate monitor, and a 

computer host. The assistive eating system is composed of a 

meal box as a food container, a robotic arm for food pickup and 

delivery and a web camera for mouth position detection. The 

video playback system, which enables users to watch films or 

news, make video calls, or play a pre-recorded voice message 

to request help from friends nearby, is comprised of the monitor 

and the speakers connected to the computer host.   

The operation flowchart of the system is shown in Figure 2B. 

When subjects mentally select an option and stare continuously 

at a target function on the main menu, the system detects and 

processes the underlying EEG pattern in real time. This 

information is subsequently used to trigger the selected service 

system. Figure 2C shows the block diagram of the integrated 

multifunctional assistive system. As shown, the SSVEP BCI 

system transforms the user’s EEG signal into commands and 

triggers the selected services of the two subsystems, the 

assistive eating system and the video playback system. A 

subjective adjustment option is included in this system which 

contains a series of training procedures for new users to pre-

adjust the parameters of the SSVEP BCI system to improve 

system accuracy and performance. As shown in Figure 2C, 

there are five options in the main menu when a user starts the 

system. Four of the options are services: eating assistance, 

video entertainment, active interaction, and video call. As 

presented in our previous work [26], the eating assistance 

service has five options in the service menu consisting of three 

kinds of food, one option for water, and one exit option. In this 

study, we extend the same five-option SSVEP BCI to include 

video playback functions through the multilayer design of the 

menu. Each of the video playback services also contains five 

options.  

In this study, three subsystems including a wireless SSVEP-

based BCI, a robotic assistive eating system, and a video 

playback system are integrated using C# language. The details 

of each system will be described in the paragraphs below.  

 
Figure 2. Wireless multifunctional SSVEP-based BCI assistive eating system. 
(A) System configuration. The components of this system include a computer 

host, a wireless EEG cap, Mindo 4S, a robotic arm, a set of speakers, a meal 

box, a high refresh rate monitor and a web camera. The SSVEP BCI function 
of this system is executed by Mindo, the monitor, computer host. The robotic 

arm and web camera control the eating assistance service. Video playback 

services are presented by the speakers and the monitor. (B) Operation 
flowchart. The computer host sends the SSVEP stimulation command to the 

monitor and collects the EEG data recorded by Mindo 4S via Bluetooth 

transmission. It then executes SSVEP classification and sends the command to 
the corresponding subsystem to complete the task. (C) Block diagram of the 

integrated assistive eating system. The SSVEP BCI system transforms the 

user’s EEG signal into commands and triggers the selected service of the two 
subsystems, the assistive eating system and the video playback system. A 

subjective training option is also included in this system to optimally adjust the 

model for the current user in a short training period. 

1) Wireless SSVEP-based BCI 
The wireless SSVEP-based BCI is the core of the assistive 

system. It records a user's brain signals, processes and translates 
the signals into commands representing the user's intentions, 
and transmits the commands to the corresponding subsystems. 
To enhance system usability and convenience, a wireless and 



portable EEG Mindo 4S is adopted. This four-channel EEG 
cap, Mindo 4S, was developed by the Brain Research Center of 
National Chiao Tung University in Hsinchu, Taiwan. Equipped 
with spring-loaded sensors which enable electrodes to contact 
the scalp through the hair, Mindo 4S can record usable EEG 
data with good quality after simply putting it on [20]. Table 2 
shows the Mindo 4S specifications.  

TABLE 2. MINDO 4S SPECIFICATIONS. 

 
The visual stimuli are designed in the shape of circles in 

black and white and presented with 100% contrast. The angular 
size of the stimuli is ~7.86°	in average. Figure 3 shows the 
visual stimuli and menu. Small icons indicating functional 
options are embedded in upper left of each stimuli as shown in 
Figure 3B. Flickering frequencies of 14.4Hz, 16Hz, 18Hz, 
20.6Hz, 24Hz are coded at a monitor with a 144Hz refresh rate. 
Details of the experiment procedures and design are given in 
Section II. 

 
Figure 3 (A) Layout of visual stimuli. (B) Menu layouts. 

2) Assistive eating system 

      The robotic assistive eating system is composed of a robotic 

arm, a meal box, and a web camera for mouth detection. The 

Jaco robotic arm (version AM3240 0003) by Kinova Robotics 

is used. All the moving trajectories required for Jaco to execute 

the various tasks are pre-recorded using the Jaco application 

programming interface, with the exception of the position of the 

user's mouth, which is determined by a mouth detection 

program. Once the user starts the assistive eating function, the 

mouth position detection software detects the position of his/her 

mouth and sends the information to the main program. After a 

selection has been made by SSVEP-based BCI, the main 

program adds the position information to the trajectory 

corresponding to the selected service. Jaco then picks up the 

selected food/water option, delivers it to the mouth position, 

and waits for the user to consume it.  

3) Video playback and calling system 

      The services provided by the video playback system have 

three options: video entertainment, video calls, and active 

interaction. Each of the three categories contains four options 

and one exit option. The video entertainment service allows the 

user to watch online news, preselected music videos or movies. 

The video call service is performed by commanding the 

program to call one of the four sets of phone numbers 

predefined by the user. The web camera function enables the 

user to exit a film during play by turning his/her head away for 

five seconds. If the mouth detection system is unable to detect 

the user’s eyes and mouth for five seconds, play will cease. An 

active interaction service is designed for users who have 

difficulty speaking. It allows a user's caregiver to prerecord four 

voice messages to request help; for example, asking to go for a 

walk, expressing discomfort, asking to go to the toilet, or asking 

to take a rest. When a user enters the active interaction service, 

the system plays the voice command corresponding to the 

user’s request to a nearby caregiver. 

D. Performance Evaluation 

1) Voting mechanisms 

    Since there is an exit option on every function page, 

misclassification may lead to unpleasant function page switch 

and cost users much time to switch back. We therefore extend 

the four-vote voting mechanism from our previous work [26] to 

improve classification accuracy and reduce the number of 

misclassification trials. Below, we describe the structure of the 

extended voting methods using six and seven votes.  

    Figure 4 shows the structure of six-vote and seven-vote 

mechanisms. In Figure 4A, we adopt six different features 

calculated from O1 and O2 channels, each of which produces 

one answer/judgement. We then organize the six answers using 

voting methods and test the different threshold settings to find 

the best one. The threshold was adopted as the criterion of 

skipping the trial or not. As mentioned, misclassification in this 

system will significantly reduce usability. At the same time, 

brain activity or patterns may not always clearly indicate an 

option. For reducing the number of misclassified trials, one 

solution is adopting a threshold to handle the trials in which the 

features are not clear. Five kinds of threshold are compared, as 

shown in Figure 4A. First four thresholds requesting the 

number of answers voting for same options to be greater than 

specific values including three, four, five or six, otherwise the 

system would skip the trial without making a final answer. The 

last criterion will produce the final answer based on the 

maximum number of votes. 

 
Figure 4. (A) Structure of six-vote mechanism. (B) Structure of seven-vote 
mechanism. 



Figure 4B shows the structure of the seven-vote mechanism. 

The structure follows the same rules as the six-vote mechanism; 

the major difference is in the adopted features. The reason for 

adopting the six-vote and seven-vote mechanisms with the 

features shown in Figure 4 is that a comparison of all the 

combinations of different numbers of votes with different 

features demonstrates that the best performances are achieved 

by the methods shown in the figure. Figure 4A shows that the 

power values of the harmonics and SNR for each channel are 

calculated using the methods previously described. The 

correlation of both channels’ data is also calculated. Note that 

the calculation of all CCA follows the procedures explained in 

previous sections, while CCA1, CCA2 and CCA3 adopt 

different reference signals. As shown in Table 3, CCA1 adopts 

the signals of five target frequencies as the reference signal, 

while CCA2 adopts only the second order harmonic of the 

target frequencies, and CCA3 is the sum of CCA1 and CCA2. 

Because more channel numbers increase the performance of 

CCA [25], the data of both channels is always combined as one 

input for all CCA methods. The comparison results are shown 

in Section III. 

2) Evaluation methods (ITR, acc, execution rate) 

 To evaluate the performance of each method, information 

transfer rate (ITR), classification accuracy and execution rate 

are applied in this study. ITR (𝐵𝑖𝑡𝑠/𝑚𝑖𝑛) is a commonly used 

index for evaluating the performance of a BCI system. The 

definition of ITR is described in equation (2), where N is the 

number of targets, P is the accuracy of target identification by 

the classification system and T is the stimulation duration 

(seconds) for a selection. 

 

ITR = P Q;?R
S<
× Ulog> 𝑁 + 𝑃 log> 𝑃 + (1 − 𝑃) log>

(<S$)
(\S<)]										(2) 

 

Because there are skipped trials in our system, accuracy is 

redefined as the ratio of number of correct trials and number of 

answered trials as shown in (3). To further investigate the 

performance of our system, the execution rate defined as the 

ratio of number of correct trials and number of total trials is also 

calculated (4). Note that the stimulation duration T is influenced 

by the execution rate as shown in (5). A higher execution rate 

indicates that the system has skipped fewer trials, therefore the 

duration of the stimulation will be shorter. 

 

𝐴𝐶𝐶 = #	ab	caddefg	gdhijk
#	ab	l#kmeden	gdhijk 	(%)                                                    (3) 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 = #	ab	faddefg	gdhijk
#	ab	gagij	gdhijk (%)                                     (4) 

T = 
gagij	kghxyjigha#	ghxe

#	ab	gagij	gdhijk ÷ execution	rate																																						(5) 
 

III. RESULTS AND DISCUSSION 

A. Algorithm performance 

    Table 3 shows the performance of the original features 

without voting. Motivated by the improvement made by 

adopting harmonic components [24], we were interested to 

investigate whether the CCA results for harmonic components 

would also benefit performance. We therefore compare three 

kinds of CCA features in Table 3. The first feature is the 

original method as explained in previous sections. We combine 

the O1 and O2 channel data and applied CCA to derive the 

correlation values of the combined EEG data and reference 

signals of five target frequencies. For the second feature, we 

only calculate the correlation values between the combined 

EEG data and the reference signals of second order harmonic 

frequencies. For the third feature, we sum the first two features 

as the third feature.  

    Note that because no trials are skipped, the execution rate not 

shown here would be same as accuracy. As shown in Table 3, 

the accuracy and ITR performance is quite poor when single 

features are used for classification. The number of wrong trials 

may be even higher when only target power or SNR are used as 

features, which makes this method unsuitable for our proposed 

system. The ACC and ITR performances are significantly 

improved when the CCA method is used; however, the 

averaged ACC is still below 80%, thus the number of wrong 

trials is still too high for the system to be acceptable. This 

situation reveals the difficulty that may be encountered when 

only two channels are used, without conduction gel or channel 

preparation being applied prior to the experiment. To 

compensate for the lack of signal quality, voting mechanisms 

equipped with a decision-making threshold to skip trials with 

no clear user intention are adopted and compared.  

TABLE 3. PERFORMANCE OF ORIGINAL FEATURES. 

Feature ACC Correct Wrong ITR 

Target Power (O1) 46.59% 629 721 4.31 

Target Power (O2) 52.52% 709 641 7.07 

SNR (O1) 45.56% 615 735 3.92 

SNR (O2) 51.78% 699 651 6.68 

Harmonic (O1) 51.48% 695 655 6.53 

Harmonic (O2) 52.30% 706 644 6.95 

CCA1 

(only targets) 
66.96% 904 446 17.98 

CCA2 

(only harmonics) 
58.44% 789 561 10.76 

CCA3 

(targets + harmonics) 
72.30% 976 374 23.85 

    The results of the four-vote method proposed in previous 

work [26] are also calculated and shown in Table 4 to make the 

comparison more complete. From the results, we can see that 

using SNR and harmonics as features for the four-vote method 

results in much-improved accuracy of 81%. However, the 



number of no answer trials is fairly large, thus the system 

execution rate is significantly suppressed. Another problem is 

that the number of wrong trials is still large enough for the 

system to make frequent mistakes. 

TABLE 4. RESULTS OF 4 VOTE MECHANISM. 

Feature ACC Correct Wrong Skipped 
Exe 

Rate 
ITR 

Target P + 

SNR 

73.23

% 
503 183 664 

37.26

% 
12.76 

Target P + 

Harmonics 

74.47

% 
531 182 637 

39.33

% 
14.05 

SNR + 

Harmonics 

82.73

% 
527 110 713 

39.04

% 
14.89 

 

Table 5 shows the performance of the six-vote method. It is 

clear that accuracy is improved and that the number of wrong 

trials is also effectively suppressed as the applied method or 

threshold becomes higher.  

Table 6 shows the performance of the seven-vote 

mechanism. Note that the CCA voter in this table applies the 

first CCA feature mentioned in Table 3 (CCA1), which does 

not consider the harmonic components. There is a clear trend 

that, as more voters are included, accuracy increases, and the 

number of misclassified trials is suppressed. Table 7 

demonstrates the adoption of the best features in Table 3 

(CCA3), which includes both target frequency and harmonic 

information. Compared to the results in Table 6, using both 

target frequencies and harmonics as CCA features could 

produce more correct trials and fewer wrong trials. Note that 

the best ITR of 29.43 is achieved by the six-vote method shown 

in Table 5, and the second highest ITR of 29.21 is also achieved 

by the six-vote method. This demonstrates the effect of the 

execution rate. 

TABLE 5. RESULTS OF 6 VOTE MECHANISM. 

TABLE 6. RESULTS OF 7 VOTE MECHANISM (CCA : ONLY TARGET). 

Method ACC Correct Wrong Skipped 
Exe 
Rate 

ITR 

>=3 68.96% 871 392 87 64.52% 18.76 

>=4 79.67% 733 187 430 54.30% 23.20 

>=5 90.12% 538 59 753 39.85% 23.80 

>=6 93.53% 289 20 1041 21.41% 14.23 

7 98.39% 122 2 1226 9.04% 7.06 

max 65.33% 882 468 0 65.33% 16.41 

TABLE 7. RESULTS OF 7 VOTE MECHANISM  (CCA : TARGET + HARMONICS). 

Method ACC Correct Wrong Skipped 
Exe 

Rate 
ITR 

>=3 69.85% 885 382 83 65.56% 19.73 

>=4 81.08% 750 175 425 55.56% 24.88 

>=5 90.91% 550 55 745 40.74% 24.94 

>=6 93.38% 296 21 1033 21.93% 14.50 

7 99.21% 126 1 1223 9.33% 7.53 

max 66.44% 897 453 0 66.15% 17.47 

 

Table 8 lists and compares the four most representative 

methods. From the results, we can see that using CCA without 

a voting mechanism produces accuracy of 72.30% and the 

largest number of correct trials. However, this level of accuracy 

is not ideal when compared with other proposed SSVEP-based 

BCI [2]. The poor CCA performance may be caused by the lack 

of channel number, the design of the visual stimulation 

interface, and the experiment environment. As mentioned, we 

adopt only two channels with dry sensors for the convenience 

of being able to wear the cap. The design of the visual 

stimulation in our system is different from the traditional design 

because we have embedded small icons to indicate the options. 

The experiment is conducted in a general room rather than the 

shielded room commonly adopted for EEG recording. All these 

may also be the reasons why the overall accuracy and ITR 

performance of this system is relatively low when compared 

with previous SSVEP-BCI studies. From the results of the six-

vote method, we can see that accuracy is improved and the 

number of misclassification trials is significantly suppressed. 

However, the number of correct trials or the execution rate is 

dramatically reduced. Since reducing the number of wrong 

trials is more important, considering the usability of this 

system, the seven-vote method is adopted, as the number of 

wrong trials is effectively suppressed in this method. Although 

the execution rate is still not ideal, the number of wrong trials 

Method ACC Correct Wrong Skipped 
Exe 

Rate 
ITR 

>=3 80.09% 917 228 205 67.93% 29.43 

>=4 89.31% 677 81 592 50.15% 29.21 

>=5 95.82% 413 18 919 30.59% 21.89 

=6 98.91% 182 2 1166 13.48% 10.74 

max 72.52% 979 371 0 72.52% 24.12 



is reduced. As explained previously, wrong trials may lead to 

unpleasant and time-wasting page switch, whereas a low 

execution rate only slows execution. From all the results shown, 

we conclude that the seven-vote method is the most suitable 

method for our system. 

TABLE 8. COMPARISON OF THE BEST METHODS. 

Method ACC Correct Wrong Skipped 
Exe 
Rate 

ITR 

CCA 

(target + 

harmonics) 

72.30% 976 374 0 72.30% 23.85 

6 Votes 

>=4 
89.31% 677 81 592 50.15% 29.21 

6 Votes 

>=5 
95.82% 413 18 919 30.59% 21.89 

7 Votes 

(CCA 

target) 

>=5 

90.12% 538 59 753 39.85% 23.80 

7 Votes 

(CCA 

target+ 

harmonics) 

>=5 

90.91% 550 55 745 40.74% 24.94 

     

    To furtherly illustrate the performance of the selected 

algorithm with the adopted flickering frequencies, the 

confusion matrix is shown in Table 9. The classification 

accuracy of each frequency is shown in ACC column. Although 

24Hz is less accurate compared with other frequencies due to 

the weaker response for higher flickering frequencies [21], the 

overall accuracy shows that it is usable and the selection of 

frequencies is appropriate. 

TABLE 9. CONFUSION MATRIX OF 7 VOTES (CCA TARGET + HARMONICS). 

 14Hz 16Hz 18Hz 20Hz 24Hz Skipped ACC 

14Hz 154 0 4 6 0 106 93.9% 

16Hz 5 76 0 5 0 184 88.4% 

18Hz 5 0 145 1 0 119 96.0% 

20Hz 9 2 0 107 0 152 90.7% 

24Hz 9 1 1 7 68 184 79.1% 

Skipped 0 0 0 0 0 0 N/A 

Total 182 79 150 126 68 745 N/A 

 

B. User feedback and feasibility test 

User feedback about this assistive system was collected via 

questionnaire and verbal communication with 15 invited 

subjects. All subjects agreed that the operating procedure was 

convenient, the functions provided would meet their needs if 

they were unable to use their hands, the movement of the 

robotic arm was safe, and no discomfort was experienced when 

wearing the wireless dry sensor EEG cap or staring at the 

flickering screen. Most subjects preferred the seven-vote 

method to the six-vote method because wrong decisions 

significantly detracted from their user experience, whereas 

skipping trials attracted little of their attention. Therefore, 

although the six-vote method achieved the highest ITR and had 

comparable accuracy to the seven-vote method, we 

nevertheless adopted the seven-vote method in our system.  

Three of the 15 subjects were invited to test the feasibility of 

this assistive system after the finalization of voting method 

based on offline testing results. The participants were asked to 

make selections following a randomly predetermined list 

during the online test. An average accuracy of 85% were 

achieved supporting the feasibility of the system. 

IV. CONCLUSION 

In this study, we extended our proposed wireless SSVEP-

based BCI assistive eating system into a multifunctional 

assistive system that provides many more functions and 

services to the user. This system not only provides more 

services than currently proposed BCI systems; it also offers 

functions that are more interactive. To make the system more 

applicable and convenient, we have successfully reduced the 

time cost caused by wrong decision through the adoption of 

harmonic components and extended voting mechanisms. The 

average classification accuracy and ITR achieved is 90.91% 

and 24.94 respectively. Because this study contributes more to 

the integration of multiple interactive services and the 

applicability of the BCI assistive system, there is room for 

improvement in our investigation of signal characteristics and 

the development of a classification algorithm. Furthermore, as 

the main potential users of our system would be the elderly, and 

age is considered a factor influencing SSVEP-based BCI 

performance, to furtherly improve our system and work with 

hospitals to recruit old people or patients with disabilities for 

validating system usability and feasibility are also important. 

Our group will therefore focus on these aspects in our future 

work. 
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