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ABSTRACT 

This paper proposes MH-MAC, a new MAC protocol for 

wireless sensor networks capable of handling applications 

that generate infrequent huge peaks of traffic. Existing 

protocols are not adapted to this kind of applications. 

Asynchronous protocols are energy efficient for the long 

inactive periods, but fail to cope with the bandwidth and 

latency requirements of the traffic peaks when more than two 

nodes are sending data to a common sink. Synchronous 

protocols that support contention free slots provide good 

throughput for handling the load peaks, but consume 

unnecessary energy maintaining clocks synchronized for very 

long idle periods. MH-MAC is a multimode hybrid protocol 

that can be configured by the application to run in 

asynchronous mode or in synchronous mode, with or without 

contention, providing the best possible trade-off. MH-MAC is 

a single-hop MAC, which supports multi-hop applications 

through a cross-layering API. The paper includes simulation 

results with the energy consumption, latency and throughput 

for the operation modes of MH-MAC, showing the 

asynchronous-synchronous trade-offs and the state transition 

overhead.  

I. INTRODUCTION 

Energy efficiency is a dominant concern on the design of the 

medium access control (MAC) layer protocols for wireless 

sensor networks (WSNs). Nevertheless MAC protocols must 

also satisfy the application delay and throughput 

requirements. Applications that generate infrequent huge 

peaks of traffic pose a challenging problem for the existing 

MAC protocols.  

Standard WSN MAC protocols are usually designed 

under the assumptions of periodic traffic, or seldom traffic, 

but not for applications where both characteristics are needed 

at different instants. Duty cycling is a common mechanism 

for achieving energy efficiency. Nodes periodically cycle 

between an awake state and a sleep state. Protocols designed 

for seldom traffic, such as B-MAC [1] and X-MAC [2], let 

nodes run their duty cycles independently. They rely on low 

power listening (LPL), also called preamble sampling, to link 

together the sender and the receiver asynchronously. Packet 

sending is preceded by a large preamble, or a sequence of 

small preambles, larger than the duration of a duty cycle 

period. Protocols designed for periodic sending, such as S-

MAC [3], T-MAC [4], SCP-MAC [5], and Z-MAC [6], 

require the additional clock synchronization overhead. Nodes 

run synchronized duty cycle periods. S-MAC [3] is a periodic 

synchronous protocol, which runs a CSMA (Carrier Sense 

Multiple Access) MAC contention resolution protocol during 

the fixed duration of the awake state. T-MAC [4] improves S-

MAC by adapting the awake state duration to the load. If the 

radio is inactive for more than a threshold time the node goes 

asleep before the end of the normal awake duration time. 

SCP-MAC [5] introduces the scheduled channel polling 

technique to achieve awake duty cycle values as low as 

0.01%. During a very short awake time nodes scan the 

medium for energy. If energy is detected, nodes stay awake 

and wait for a packet reception. This mechanism requires very 

precise synchronization between the sender and the receiver, 

due to the small durations proposed for the awake state and 

for the sender's awake signals (packets). A common problem 

for CSMA contention based protocols are collisions with 

nodes two hop away, called the hidden terminal problem. A 

common solution to the problem is the RTS/CTS exchange. 

However, this solution can incur in high bandwidth overhead 

[1]. Z-MAC [6] improves CSMA using a TDMA contention 

free mode when the traffic increases. It introduces the 

overhead of creating and maintaining a global slot schedule. 

Nonetheless, WSN applications often create a sink tree [7] 

where the trunk links demand much more throughput than the 

leaf links. Z-MAC fails to cope with such applications 

because it divides TDMA slots evenly amongst neighbor 

nodes. Bursty traffic presents a challenge to the synchronous 

WSN MAC protocols, due to the high synchronization 

overhead paid during the idle periods, when no packets are 

flowing. On the other hand, asynchronous protocols delay 

packet sending and limit the maximum throughput.  

This paper proposes MH-MAC, a multimode hybrid 

MAC protocol that is capable of running in asynchronous 

mode and synchronous mode. MH-MAC allows applications 

to operate in the asynchronous mode for most of the time, and 

change to contention-free synchronous mode during the data 

traffic peaks, optimizing the overall performance.  

 In the following, Section 2 presents the MH-MAC 

protocol. MH-MAC application programming interface is 

described in Section 3. Section 4 evaluates the protocol 

performance using TOSSIM [8] simulations. Section 5 

provides a discussion of future work and our conclusions. 

II. MH-MAC DESIGN 

Multimode hybrid MAC protocol (MH-MAC) is designed to 

support cross-layering applications for packetizing radios, 

like the Chipcon CC2420. MH-MAC can be in one of three 

states: asynchronous state; synchronous state; or the full-on 

state, where the node does not sleep. By default MH-MAC 

state is asynchronous, but applications can change it to full-

on, or synchronous. In the full on state, data packets are 

preceded by an RTS/CTS exchange, and are acknowledged. 

In the synchronous state, temporarily contention-free slots can 

be reserved for the communication with neighbor nodes, 
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trading off energy for throughput and delay. The following 

subsections present the MH-MAC operation modes 

associated with the two duty cycling states, and the state 

transition protocol.  

A. Asynchronous Mode 

The MH-MAC asynchronous mode runs a LPL algorithm 

similar to the X-MAC protocol [2]. Senders send a sequence 

of short preambles during at most twice the time of the duty 

cycle period, before sending the data packet. This assures that 

the receiver is awake when the data packet is sent. The 

preambles contain the destination address and are separated 

by pauses. This allows MH-MAC unicast receivers to send 

early preamble acknowledgments as soon as they awake and 

receive a preamble, shortening the unicast preamble durations 

(Fig. 1). However, for broadcast, the full preamble is 

required. MH-MAC improves X-MAC overhearing protection 

using an additional field in the preamble: the missing 

preamble time to the data packet transmission. Broadcast 

receivers (Fig. 2) use this field to schedule a radio sleep until 

the beginning of the data packet transmission. Unicast senders 

use this field to schedule a precise sleep period when they are 

waiting to send a packet and receive preambles destined to 

someone else.  

 

Figure 1: Unicast asynchronous transmission. 

MH-MAC handles preamble collisions using the SHUT-UP 

packet. Receivers send a SHUT-UP packet to the recent 

senders with a probability p when it hears more than one 

preamble. The SHUT-UP packet includes the active sender 

address and its missing preamble time, allowing the other 

senders to back off and sleep until the end of the packet 

transmission. Inter-preamble time includes a jitter that 

improves the probability of not having preamble collisions 

between concurrent senders. 

Only unicast data packets are acknowledged. After a data 

packet reception, the receiver stays awake for a short period, 

waiting for possible new packets before returning to sleep. 

B. Synchronous Mode 

The MH-MAC synchronous mode was designed to optimize 

data collection from a distributed set of sensor nodes into a 

single sink, over a sink tree. Therefore, it provides basic 

flooding, neighbor detection, and slot conflict resolution 

functionalities. MH-MAC organizes the duty cycle period 

into a sequence of fixed length slots (100 ms). Each slot is 

capable of carrying an average of 11.87 data packets with 112 

bytes on 802.15.4 radios. Nodes run synchronized duty cycle 

periods. Each node has one or more public slots, and zero or 

more dedicated slots to communicate with specific neighbors.  
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Figure 2: Broadcast asynchronous transmission. 

On public slots nodes run a contention-based protocol similar 

to T-MAC [4]. Senders run a backoff timer and scan the 

network before sending a data packet. Unicast packets are 

acknowledged and are preceded by a RTS/CTS exchange 

when their length is above a threshold value. If no energy is 

detected in the channel in a public slot for 25 ms, the receiver 

node goes into sleep. The public slot supports premium and 

regular traffic. The first 15 ms are reserved for MAC 

signaling and premium packets (usually application 

signaling). The remaining 85 ms can be used by all kinds of 

traffic. Dedicated Slots are reserved for unicast 

communications between two nodes. Senders run a short 

random backoff timer before scanning the networks' energy 

and sending the data packets. Data sent through dedicated 

slots is also acknowledged, but no RTS/CTS packets are sent. 

In order to maintain synchronization, nodes send sparse 

SYNC packets on their public slots, defining the beginning of 

the duty cycle period. The SYNC packet contains the local 

address, the local slot assignment plan, and a hop counter. 

Initial slot assignment is done radially, from the sink to the 

farthest located nodes, taking into account the slots occupied 

by neighbor nodes. Each node keeps track of its public slot, 

its dedicated slots, and the slots occupied by other neighbor 

nodes. A SYNC packet has a maximum validity of 180 

seconds, and its information is discarded after that time. 

Nodes are asleep during empty slots or slots occupied by 

neighbors. If a node has more than one public slot, it runs the 

contention-based access algorithm present above for each 

slot, possibly with distinct groups of nodes. 

Nodes in asynchronous or full-on modes can exist in the 

neighborhood of nodes in synchronous mode. In these cases, 

asynchronous and full-on nodes must maintain a table with 

the slots of each synchronous neighbor node, and start the 

packets transmission on a public slot. When the destination 

node state is unknown, synchronous nodes must send a 

preamble preceding the data packets. If the awake periods are 

aligned, the preamble overhead is minimized by the 

immediate reception of an early preamble acknowledge. After 

the state transition period, collisions in dedicated slots can be 

avoided on static WSN networks only if all nodes are set to 

the synchronous state.  

Fig. 4 illustrates a possible slot allocation schedule for the 

sink tree shown in Fig. 3. An eleven slot duty-cycle period is 

used and dedicated slots were allocated for all connections. 

All nodes are within two hops of the sink and share the same 

public slot (0). Fig. 4 presents the slots occupied by neighbors 

in grey, and the local dedicated slots in black. Node A uses 

the slots 3, 6, and 10 respectively to communicate with nodes 

B, D and C. Node A has slots 5, 8, and 9 occupied by 
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neighbor nodes C and D. Dedicated slots in Fig. 4 are 

organized in a staggered wakeup schedule that minimizes the 

source to sink delay [9]. Although MH-MAC only manages 

synchronous connections at a local level, its API (application 

programming interface) allows applications to specify the slot 

assignment. By default, MH-MAC distributes slots randomly. 

In order to minimize the packet propagation delay from a 

branch node to the sink node, the application must select the 

nearest free slot before the sink's slot. In Fig. 4, C's would 

search backwards for a free slot starting on A's slot (10). 
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Figure 3: A synchronous WSN topology example. 

 

Figure 4: Example slot assignment for Fig.3’s WSN.  

C. Mode Swapping 

Applications can modify the MH-MAC state using the API 

presented below. State changes are notified to the neighbor 

nodes using Hello packets. These packets have an MH-MAC 

state field and a slot reserve bit (SRBit). Hello packets are 

broadcasted using the asynchronous mode algorithm to allow 

all neighbor nodes to detect the state changes.  

The most demanding state change occurs from the 

asynchronous state to the synchronous state. Fig. 5 illustrates 

the packets exchanged during this transition. Node A 

broadcasts the Hello packet preceded by a sequence of 

preambles, signaling the synchronous state. After receiving 

this packet, nodes B and C send a SynchronizeReq event to 

their applications that includes the SRBit and the sender 

address. The application can decide to accept a slot request or 

to ignore it, but MH-MAC layer always store the A's public 

slot schedule. The receiving nodes start a random backoff 

timer, sense the network for other transmissions, and finally 

transmit a Request packet. If the node does not receive an OK 

packet, it restarts the backoff timer and repeats the procedure, 

until a maximum time of 1100ms after the reception of the 

Hello packet.  

The Request packet also carries a SRBit. The Request/OK 

exchange is used to assign a dedicated slot when the SRBit in 

the Request packet is set, or to free it otherwise. When the 

synchronous node (A in Fig. 5) sends a Hello packet with the 

SRBit set, it requests every neighbor to ask for dedicated 

slots. The synchronization node assigns the dedicated slots for 

each Request packet received. The synchronization process 

ends at the beginning of the next duty cycle period (if it is 

already defined by a neighbor), and after waiting for a 

minimum of 1100ms. At that instant, MH-MAC sends a 

SynchronizeDone event to the sender's application with the 

list of neighbors and the dedicated slots assigned. It also 

broadcasts a SYNC packet, defining the instant when the 

neighbors can also start their synchronization process. The 

application on each neighbor can start its synchronization 

independently. The duration of the state transition from the 

asynchronous state to the synchronous state on each node is 

equal to the preamble duration (twice the duty cycle period), 

plus a varying time between 1100 ms and 1100 ms plus the 

duty cycle time. 
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Figure 5: Asynchronous to synchronous state change. 

Nodes must change their state to synchronous, starting 

from the sink node, to synchronize the duty-cycle periods 

within the sink tree. In order to avoid packet collisions, only 

one node can run the state change protocol within one hop 

radio range at each instant. Interferences can occur at two hop 

distant nodes or more [10]. However, nodes use a RSSI 

interference detection method to avoid collisions. Even if the 

initial synchronization fails, nodes can still change their state 

when a SYNC packet is latter received. If the radio 

interference effects are ignored, the maximum time to change 

all nodes on a WSN to the synchronous state can be given by 

(1), where vmax represents the maximum number of neighbors, 

r represents the depth of the sink tree, and T the duty cycle 

period. The effective time can be lower because some nodes 

have less than vmax neighbors, and we are considering the 

maximum possible value for the individual synchronization 

time. In order to have a faster transition to the synchronous 

state, the cycle time period could be shorter, resulting in less 

dedicated slots available and a more awake time. For the 

eleven slot duty cycle period presented in Fig. 4, T is equal to 

1100ms. The time to set the seven nodes presented in Fig. 3 

to synchronous mode would be 26.4 seconds.  

 [ ]msTvrimeTotalSyncT )11003())1(2( max +×−+≤  (1) 
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Dedicated slots can also be canceled, created or reassigned 

after the initial synchronization setup phase, running the 

Request/OK packet exchange. Due to the limited number of 

slots available some neighbors may not have dedicated slots 

assigned to them. These neighbors can use the public slots for 

data transfer. MH-MAC allows applications to reassign the 

slots. MH-MAC API allows the application to get the 

currently assigned slots and to reassign them, accordingly to 

the active application sink tree.  

III. APPLICATION PROGRAMMING INTERFACE 

In order to support the cross-layering interaction between 

MH-MAC and the application and transport layers, the API 

defines a set of commands (com.) and events. Table 1 

presents a subset of the API, organized in pairs of associated 

commands and events. The commands interface is 

implemented by MH-MAC and the event interface is 

implemented by the applications. 

Table 1:  Application Programming Interface 

Type Command 

com. Asynchronize 

event AsynchronizeDone 

com. FullOn 

event FullOnDone 

com. Synchronize (addr, dedic, [slot]) 

event SynchronizeDone(neig[],dedic[]) 

event SynchronizeReq(addr,dedic)  
com. ContinueReq(dedic)  

com. StopSynchronize(addr) 

event SynchronizeKilled(addr) 

 

 The Asynchronize, FullOn, and Synchronize commands 

are used to modify the MH-MAC state. The associated events 

AsynchronizeDone, FullOnDone, and SynchronizeDone are 

generated when the state change protocol ends. The 

Synchronize command starts the synchronization protocol 

presented in the previous section when addr is the broadcast 

address. The SRBit is set to true when dedic is not zero. 

When addr is an unicast address, it starts a Request/OK 

packet exchange to assign dedic dedicated slots, optionally 

defining the requested slots. The SynchronizeDone event 

returns the neighbor list and the slots assigned to each 

neighbor. The SynchronizeReq event is received when the 

HELLO packet is received, and the application uses the dedic 

parameter of the ContinueReq command to accept or ignore 

the request. The application can use the StopSynchronize to 

free a dedicated slot. It can be reassigned after receiving the 

SynchronizedKilled event. Additional commands are 

available to control the duty cycle period duration, to get the 

current MH-MAC state, and to send premium messages. 

IV. PERFORMANCE EVALUATION 

The MH-MAC prototype was implemented in TinyOS 2.0 

[11] and was tested on Xbow Telos B motes [12]. However, 

due to the small number of motes available for this project, 

the performance evaluation was done using the TOSSIM 

simulator [8]. The current TOSSIM version does not support 

the CC2420 radio stack used by the LPL library. Therefore, 

we emulate the CC2420 radio stack and modified TOSSIM 

interface implementations to resolve the synchronization 

problems that occurred when the radio interface is turned off. 

Additionally, meters were placed on the MAC code to 

measure the number of milliseconds used for data 

transmissions, for data receptions, and the time spent in active 

and radio sleep states. Using the current consumption 

specifications shown in Table 2, we were able to estimate the 

total current consumption for the three states of MH-MAC. 

Following [2][5], we considered that in idle or receiving state 

the mote has the consumption of operation MCU+Radio RX, 

in radio sleep has the consumption of operation MCU Active, 

and during packet transmissions has the consumption of 

operation MCU+Radio TX.  

Table 2:  Xbow Telos B current consumption [12] 

Operation Current 

Mote Standby (RTC on) 5,1μA 
MCU Idle (DCO on) 54,5μA 
MCU Active 1,8 mA 

MCU + Radio RX 21.8 mA 

MCU + Radio TX (0dBm) 19,5 mA 

 

We analyzed a single-hop scenario where several nodes send 

packets to a single sink, for the three MH-MAC modes. A 

duty cycle period with eleven slots is used on the 

synchronous mode, supporting one public slot plus ten 

dedicated slots. In the synchronous state nodes generate 

SYNC packets every 60 seconds. Nodes generate 100 bytes 

data packets spaced with an average inter packet time (IPT). 

The interval between packet transmissions is a random 

variable with a uniform distribution in the interval [0.5xIPT, 

1.5xIPT]. The load is uniformly distributed over the nodes.  

Fig. 6 shows how the current consumption depends on 

the IPT value, with four active senders. Results show that 

when the interval between data packets is large, asynchronous 

mode (X-MAC) optimizes energy savings because it 

maximizes the time the nodes are asleep. However, when IPT 

is small, its current consumption increases significantly due to 

the preamble overhead. Synchronous mode presents the best 

energy efficiency for high data rate conditions, where IPT is 

very short. 

Fig. 7 shows the maximum throughput measured when a 

varying number of nodes send a burst of 20 packets to a sink 

node at the MH-MAC mode’s maximum speed. Results show 

that the asynchronous mode (X-MAC) is very efficient when 

one or two neighbor nodes compete, as reported in [1][2]. 

However, they also show that the asynchronous mode's 

throughput, and therefore B-MAC and X-MAC's throughput, 

collapse when three or more senders compete for the access to 

a single sink. For more then four senders, the synchronous 

mode outperforms all other modes, maintaining a controlled 

current consumption.  

 Fig. 8 shows how the latency evolves with the number of 

nodes, for an IPT of 1 second. It clearly shows that 

asynchronous mode is only effective for up to two active 

senders in the simulated conditions. For more than two active 

senders, the network latency increases fast with the number of 
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senders. Full-on mode is clearly the mode that minimizes the 

network latency, at the cost of also maximizing the current 

consumption. Therefore, synchronous mode presents the best 

trade-off for a tree shaped network, with more than two active 

neighbors sending data to a single sink node.  

 

Figure 6: Current consumption with 4 nodes and one sink. 

 

Figure 7: Throughput for a burst of 20 packets per node. 

 

Figure 8: Latency for a burst of 20 packets per node. 

V. CONCLUSIONS AND FURTHER WORK 

In this paper we propose MH-MAC, a new multimode MAC 

protocol designed specifically for cross-layering applications. 

Simulation results show that each mode has a different 

scenario where it is advantageous: asynchronous for low 

power sporadic communication; full-on for very low delay; 

synchronous for handling data bursts. The synchronous mode 

setup delay can be amortized if large bulks of data are 

transferred. MH-MAC is being used for the development of 

asynchronous sensor monitoring and alarm applications in 

scattered WSNs. Mobile vehicles drive around the WSNs 

from time to time, collecting all the data stored since the last 

visit. MH-MAC improves the energy efficiency. 

 Future work in MH-MAC includes the improved 

handling of radio interference (inter-slot and on 

synchronization deployment), and the reduction of the 

asynchronous to synchronous transition overhead. We also 

envision improved WSN mobility support.  
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