
In: Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC'07), Athens, Greece, 3-7 September 2007

1 of 5

A WIRELESS SENSOR MAC PROTOCOL FOR BURSTY DATA TRAFFIC

Luis Bernardo Rodolfo Oliveira Miguel Pereira Mário Macedo Paulo Pinto
FCT, Universidade

Nova de Lisboa

FCT, Universidade

Nova de Lisboa

FCT, Universidade Nova de

Lisboa

Inesc-ID FCT, Universidade

Nova de Lisboa

P-2829-516 Caparica P-2829-516 Caparica P-2829-516 Caparica P-1000-029 Lisboa P-2829-516 Caparica

Portugal Portugal Portugal Portugal Portugal

lflb@fct.unl.pt rado@fct.unl.pt miguelpereira.pro@gmail.com mmm@fct.unl.pt pfp@fct.unl.pt

ABSTRACT

This paper proposes MH-MAC, a new MAC protocol for

wireless sensor networks capable of handling applications

that generate infrequent huge peaks of traffic. Existing

protocols are not adapted to this kind of applications.

Asynchronous protocols are energy efficient for the long

inactive periods, but fail to cope with the bandwidth and

latency requirements of the traffic peaks when more than two

nodes are sending data to a common sink. Synchronous

protocols that support contention free slots provide good

throughput for handling the load peaks, but consume

unnecessary energy maintaining clocks synchronized for very

long idle periods. MH-MAC is a multimode hybrid protocol

that can be configured by the application to run in

asynchronous mode or in synchronous mode, with or without

contention, providing the best possible trade-off. MH-MAC is

a single-hop MAC, which supports multi-hop applications

through a cross-layering API. The paper includes simulation

results with the energy consumption, latency and throughput

for the operation modes of MH-MAC, showing the

asynchronous-synchronous trade-offs and the state transition

overhead.

I. INTRODUCTION

Energy efficiency is a dominant concern on the design of the

medium access control (MAC) layer protocols for wireless

sensor networks (WSNs). Nevertheless MAC protocols must

also satisfy the application delay and throughput

requirements. Applications that generate infrequent huge

peaks of traffic pose a challenging problem for the existing

MAC protocols.

Standard WSN MAC protocols are usually designed

under the assumptions of periodic traffic, or seldom traffic,

but not for applications where both characteristics are needed

at different instants. Duty cycling is a common mechanism

for achieving energy efficiency. Nodes periodically cycle

between an awake state and a sleep state. Protocols designed

for seldom traffic, such as B-MAC [1] and X-MAC [2], let

nodes run their duty cycles independently. They rely on low

power listening (LPL), also called preamble sampling, to link

together the sender and the receiver asynchronously. Packet

sending is preceded by a large preamble, or a sequence of

small preambles, larger than the duration of a duty cycle

period. Protocols designed for periodic sending, such as S-

MAC [3], T-MAC [4], SCP-MAC [5], and Z-MAC [6],

require the additional clock synchronization overhead. Nodes

run synchronized duty cycle periods. S-MAC [3] is a periodic

synchronous protocol, which runs a CSMA (Carrier Sense

Multiple Access) MAC contention resolution protocol during

the fixed duration of the awake state. T-MAC [4] improves S-

MAC by adapting the awake state duration to the load. If the

radio is inactive for more than a threshold time the node goes

asleep before the end of the normal awake duration time.

SCP-MAC [5] introduces the scheduled channel polling

technique to achieve awake duty cycle values as low as

0.01%. During a very short awake time nodes scan the

medium for energy. If energy is detected, nodes stay awake

and wait for a packet reception. This mechanism requires very

precise synchronization between the sender and the receiver,

due to the small durations proposed for the awake state and

for the sender's awake signals (packets). A common problem

for CSMA contention based protocols are collisions with

nodes two hop away, called the hidden terminal problem. A

common solution to the problem is the RTS/CTS exchange.

However, this solution can incur in high bandwidth overhead

[1]. Z-MAC [6] improves CSMA using a TDMA contention

free mode when the traffic increases. It introduces the

overhead of creating and maintaining a global slot schedule.

Nonetheless, WSN applications often create a sink tree [7]

where the trunk links demand much more throughput than the

leaf links. Z-MAC fails to cope with such applications

because it divides TDMA slots evenly amongst neighbor

nodes. Bursty traffic presents a challenge to the synchronous

WSN MAC protocols, due to the high synchronization

overhead paid during the idle periods, when no packets are

flowing. On the other hand, asynchronous protocols delay

packet sending and limit the maximum throughput.

This paper proposes MH-MAC, a multimode hybrid

MAC protocol that is capable of running in asynchronous

mode and synchronous mode. MH-MAC allows applications

to operate in the asynchronous mode for most of the time, and

change to contention-free synchronous mode during the data

traffic peaks, optimizing the overall performance.

 In the following, Section 2 presents the MH-MAC

protocol. MH-MAC application programming interface is

described in Section 3. Section 4 evaluates the protocol

performance using TOSSIM [8] simulations. Section 5

provides a discussion of future work and our conclusions.

II. MH-MAC DESIGN

Multimode hybrid MAC protocol (MH-MAC) is designed to

support cross-layering applications for packetizing radios,

like the Chipcon CC2420. MH-MAC can be in one of three

states: asynchronous state; synchronous state; or the full-on

state, where the node does not sleep. By default MH-MAC

state is asynchronous, but applications can change it to full-

on, or synchronous. In the full on state, data packets are

preceded by an RTS/CTS exchange, and are acknowledged.

In the synchronous state, temporarily contention-free slots can

be reserved for the communication with neighbor nodes,

2 of 5

trading off energy for throughput and delay. The following

subsections present the MH-MAC operation modes

associated with the two duty cycling states, and the state

transition protocol.

A. Asynchronous Mode

The MH-MAC asynchronous mode runs a LPL algorithm

similar to the X-MAC protocol [2]. Senders send a sequence

of short preambles during at most twice the time of the duty

cycle period, before sending the data packet. This assures that

the receiver is awake when the data packet is sent. The

preambles contain the destination address and are separated

by pauses. This allows MH-MAC unicast receivers to send

early preamble acknowledgments as soon as they awake and

receive a preamble, shortening the unicast preamble durations

(Fig. 1). However, for broadcast, the full preamble is

required. MH-MAC improves X-MAC overhearing protection

using an additional field in the preamble: the missing

preamble time to the data packet transmission. Broadcast

receivers (Fig. 2) use this field to schedule a radio sleep until

the beginning of the data packet transmission. Unicast senders

use this field to schedule a precise sleep period when they are

waiting to send a packet and receive preambles destined to

someone else.

Figure 1: Unicast asynchronous transmission.

MH-MAC handles preamble collisions using the SHUT-UP

packet. Receivers send a SHUT-UP packet to the recent

senders with a probability p when it hears more than one

preamble. The SHUT-UP packet includes the active sender

address and its missing preamble time, allowing the other

senders to back off and sleep until the end of the packet

transmission. Inter-preamble time includes a jitter that

improves the probability of not having preamble collisions

between concurrent senders.

Only unicast data packets are acknowledged. After a data

packet reception, the receiver stays awake for a short period,

waiting for possible new packets before returning to sleep.

B. Synchronous Mode

The MH-MAC synchronous mode was designed to optimize

data collection from a distributed set of sensor nodes into a

single sink, over a sink tree. Therefore, it provides basic

flooding, neighbor detection, and slot conflict resolution

functionalities. MH-MAC organizes the duty cycle period

into a sequence of fixed length slots (100 ms). Each slot is

capable of carrying an average of 11.87 data packets with 112

bytes on 802.15.4 radios. Nodes run synchronized duty cycle

periods. Each node has one or more public slots, and zero or

more dedicated slots to communicate with specific neighbors.

Data

Receive Data

Sender

Receiver

Time

Time

Short Preambles

with time left to Data

Radio Wakes Up

Radio sleeps until

data arrival

Figure 2: Broadcast asynchronous transmission.

On public slots nodes run a contention-based protocol similar

to T-MAC [4]. Senders run a backoff timer and scan the

network before sending a data packet. Unicast packets are

acknowledged and are preceded by a RTS/CTS exchange

when their length is above a threshold value. If no energy is

detected in the channel in a public slot for 25 ms, the receiver

node goes into sleep. The public slot supports premium and

regular traffic. The first 15 ms are reserved for MAC

signaling and premium packets (usually application

signaling). The remaining 85 ms can be used by all kinds of

traffic. Dedicated Slots are reserved for unicast

communications between two nodes. Senders run a short

random backoff timer before scanning the networks' energy

and sending the data packets. Data sent through dedicated

slots is also acknowledged, but no RTS/CTS packets are sent.

In order to maintain synchronization, nodes send sparse

SYNC packets on their public slots, defining the beginning of

the duty cycle period. The SYNC packet contains the local

address, the local slot assignment plan, and a hop counter.

Initial slot assignment is done radially, from the sink to the

farthest located nodes, taking into account the slots occupied

by neighbor nodes. Each node keeps track of its public slot,

its dedicated slots, and the slots occupied by other neighbor

nodes. A SYNC packet has a maximum validity of 180

seconds, and its information is discarded after that time.

Nodes are asleep during empty slots or slots occupied by

neighbors. If a node has more than one public slot, it runs the

contention-based access algorithm present above for each

slot, possibly with distinct groups of nodes.

Nodes in asynchronous or full-on modes can exist in the

neighborhood of nodes in synchronous mode. In these cases,

asynchronous and full-on nodes must maintain a table with

the slots of each synchronous neighbor node, and start the

packets transmission on a public slot. When the destination

node state is unknown, synchronous nodes must send a

preamble preceding the data packets. If the awake periods are

aligned, the preamble overhead is minimized by the

immediate reception of an early preamble acknowledge. After

the state transition period, collisions in dedicated slots can be

avoided on static WSN networks only if all nodes are set to

the synchronous state.

Fig. 4 illustrates a possible slot allocation schedule for the

sink tree shown in Fig. 3. An eleven slot duty-cycle period is

used and dedicated slots were allocated for all connections.

All nodes are within two hops of the sink and share the same

public slot (0). Fig. 4 presents the slots occupied by neighbors

in grey, and the local dedicated slots in black. Node A uses

the slots 3, 6, and 10 respectively to communicate with nodes

B, D and C. Node A has slots 5, 8, and 9 occupied by

3 of 5

neighbor nodes C and D. Dedicated slots in Fig. 4 are

organized in a staggered wakeup schedule that minimizes the

source to sink delay [9]. Although MH-MAC only manages

synchronous connections at a local level, its API (application

programming interface) allows applications to specify the slot

assignment. By default, MH-MAC distributes slots randomly.

In order to minimize the packet propagation delay from a

branch node to the sink node, the application must select the

nearest free slot before the sink's slot. In Fig. 4, C's would

search backwards for a free slot starting on A's slot (10).

A

B
C

G

F

D

E

Figure 3: A synchronous WSN topology example.

Figure 4: Example slot assignment for Fig.3’s WSN.

C. Mode Swapping

Applications can modify the MH-MAC state using the API

presented below. State changes are notified to the neighbor

nodes using Hello packets. These packets have an MH-MAC

state field and a slot reserve bit (SRBit). Hello packets are

broadcasted using the asynchronous mode algorithm to allow

all neighbor nodes to detect the state changes.

The most demanding state change occurs from the

asynchronous state to the synchronous state. Fig. 5 illustrates

the packets exchanged during this transition. Node A

broadcasts the Hello packet preceded by a sequence of

preambles, signaling the synchronous state. After receiving

this packet, nodes B and C send a SynchronizeReq event to

their applications that includes the SRBit and the sender

address. The application can decide to accept a slot request or

to ignore it, but MH-MAC layer always store the A's public

slot schedule. The receiving nodes start a random backoff

timer, sense the network for other transmissions, and finally

transmit a Request packet. If the node does not receive an OK

packet, it restarts the backoff timer and repeats the procedure,

until a maximum time of 1100ms after the reception of the

Hello packet.

The Request packet also carries a SRBit. The Request/OK

exchange is used to assign a dedicated slot when the SRBit in

the Request packet is set, or to free it otherwise. When the

synchronous node (A in Fig. 5) sends a Hello packet with the

SRBit set, it requests every neighbor to ask for dedicated

slots. The synchronization node assigns the dedicated slots for

each Request packet received. The synchronization process

ends at the beginning of the next duty cycle period (if it is

already defined by a neighbor), and after waiting for a

minimum of 1100ms. At that instant, MH-MAC sends a

SynchronizeDone event to the sender's application with the

list of neighbors and the dedicated slots assigned. It also

broadcasts a SYNC packet, defining the instant when the

neighbors can also start their synchronization process. The

application on each neighbor can start its synchronization

independently. The duration of the state transition from the

asynchronous state to the synchronous state on each node is

equal to the preamble duration (twice the duty cycle period),

plus a varying time between 1100 ms and 1100 ms plus the

duty cycle time.
B A C

Random

Timer

between

0ms and

1000ms

Random

Timer

between

0ms and

1000ms Synchronization

zone - 1100ms

T
im
e

Hell
o Hello

Request

Req
uest

OK

OK

Sync
Sync

Figure 5: Asynchronous to synchronous state change.

Nodes must change their state to synchronous, starting

from the sink node, to synchronize the duty-cycle periods

within the sink tree. In order to avoid packet collisions, only

one node can run the state change protocol within one hop

radio range at each instant. Interferences can occur at two hop

distant nodes or more [10]. However, nodes use a RSSI

interference detection method to avoid collisions. Even if the

initial synchronization fails, nodes can still change their state

when a SYNC packet is latter received. If the radio

interference effects are ignored, the maximum time to change

all nodes on a WSN to the synchronous state can be given by

(1), where vmax represents the maximum number of neighbors,

r represents the depth of the sink tree, and T the duty cycle

period. The effective time can be lower because some nodes

have less than vmax neighbors, and we are considering the

maximum possible value for the individual synchronization

time. In order to have a faster transition to the synchronous

state, the cycle time period could be shorter, resulting in less

dedicated slots available and a more awake time. For the

eleven slot duty cycle period presented in Fig. 4, T is equal to

1100ms. The time to set the seven nodes presented in Fig. 3

to synchronous mode would be 26.4 seconds.

 []msTvrimeTotalSyncT)11003())1(2(max +×−+≤ (1)

4 of 5

Dedicated slots can also be canceled, created or reassigned

after the initial synchronization setup phase, running the

Request/OK packet exchange. Due to the limited number of

slots available some neighbors may not have dedicated slots

assigned to them. These neighbors can use the public slots for

data transfer. MH-MAC allows applications to reassign the

slots. MH-MAC API allows the application to get the

currently assigned slots and to reassign them, accordingly to

the active application sink tree.

III. APPLICATION PROGRAMMING INTERFACE

In order to support the cross-layering interaction between

MH-MAC and the application and transport layers, the API

defines a set of commands (com.) and events. Table 1

presents a subset of the API, organized in pairs of associated

commands and events. The commands interface is

implemented by MH-MAC and the event interface is

implemented by the applications.

Table 1: Application Programming Interface

Type Command

com. Asynchronize

event AsynchronizeDone

com. FullOn

event FullOnDone

com. Synchronize (addr, dedic, [slot])

event SynchronizeDone(neig[],dedic[])

event SynchronizeReq(addr,dedic)
com. ContinueReq(dedic)

com. StopSynchronize(addr)

event SynchronizeKilled(addr)

 The Asynchronize, FullOn, and Synchronize commands

are used to modify the MH-MAC state. The associated events

AsynchronizeDone, FullOnDone, and SynchronizeDone are

generated when the state change protocol ends. The

Synchronize command starts the synchronization protocol

presented in the previous section when addr is the broadcast

address. The SRBit is set to true when dedic is not zero.

When addr is an unicast address, it starts a Request/OK

packet exchange to assign dedic dedicated slots, optionally

defining the requested slots. The SynchronizeDone event

returns the neighbor list and the slots assigned to each

neighbor. The SynchronizeReq event is received when the

HELLO packet is received, and the application uses the dedic

parameter of the ContinueReq command to accept or ignore

the request. The application can use the StopSynchronize to

free a dedicated slot. It can be reassigned after receiving the

SynchronizedKilled event. Additional commands are

available to control the duty cycle period duration, to get the

current MH-MAC state, and to send premium messages.

IV. PERFORMANCE EVALUATION

The MH-MAC prototype was implemented in TinyOS 2.0

[11] and was tested on Xbow Telos B motes [12]. However,

due to the small number of motes available for this project,

the performance evaluation was done using the TOSSIM

simulator [8]. The current TOSSIM version does not support

the CC2420 radio stack used by the LPL library. Therefore,

we emulate the CC2420 radio stack and modified TOSSIM

interface implementations to resolve the synchronization

problems that occurred when the radio interface is turned off.

Additionally, meters were placed on the MAC code to

measure the number of milliseconds used for data

transmissions, for data receptions, and the time spent in active

and radio sleep states. Using the current consumption

specifications shown in Table 2, we were able to estimate the

total current consumption for the three states of MH-MAC.

Following [2][5], we considered that in idle or receiving state

the mote has the consumption of operation MCU+Radio RX,

in radio sleep has the consumption of operation MCU Active,

and during packet transmissions has the consumption of

operation MCU+Radio TX.

Table 2: Xbow Telos B current consumption [12]

Operation Current

Mote Standby (RTC on) 5,1μA
MCU Idle (DCO on) 54,5μA
MCU Active 1,8 mA

MCU + Radio RX 21.8 mA

MCU + Radio TX (0dBm) 19,5 mA

We analyzed a single-hop scenario where several nodes send

packets to a single sink, for the three MH-MAC modes. A

duty cycle period with eleven slots is used on the

synchronous mode, supporting one public slot plus ten

dedicated slots. In the synchronous state nodes generate

SYNC packets every 60 seconds. Nodes generate 100 bytes

data packets spaced with an average inter packet time (IPT).

The interval between packet transmissions is a random

variable with a uniform distribution in the interval [0.5xIPT,

1.5xIPT]. The load is uniformly distributed over the nodes.

Fig. 6 shows how the current consumption depends on

the IPT value, with four active senders. Results show that

when the interval between data packets is large, asynchronous

mode (X-MAC) optimizes energy savings because it

maximizes the time the nodes are asleep. However, when IPT

is small, its current consumption increases significantly due to

the preamble overhead. Synchronous mode presents the best

energy efficiency for high data rate conditions, where IPT is

very short.

Fig. 7 shows the maximum throughput measured when a

varying number of nodes send a burst of 20 packets to a sink

node at the MH-MAC mode’s maximum speed. Results show

that the asynchronous mode (X-MAC) is very efficient when

one or two neighbor nodes compete, as reported in [1][2].

However, they also show that the asynchronous mode's

throughput, and therefore B-MAC and X-MAC's throughput,

collapse when three or more senders compete for the access to

a single sink. For more then four senders, the synchronous

mode outperforms all other modes, maintaining a controlled

current consumption.

 Fig. 8 shows how the latency evolves with the number of

nodes, for an IPT of 1 second. It clearly shows that

asynchronous mode is only effective for up to two active

senders in the simulated conditions. For more than two active

senders, the network latency increases fast with the number of

5 of 5

senders. Full-on mode is clearly the mode that minimizes the

network latency, at the cost of also maximizing the current

consumption. Therefore, synchronous mode presents the best

trade-off for a tree shaped network, with more than two active

neighbors sending data to a single sink node.

Figure 6: Current consumption with 4 nodes and one sink.

Figure 7: Throughput for a burst of 20 packets per node.

Figure 8: Latency for a burst of 20 packets per node.

V. CONCLUSIONS AND FURTHER WORK

In this paper we propose MH-MAC, a new multimode MAC

protocol designed specifically for cross-layering applications.

Simulation results show that each mode has a different

scenario where it is advantageous: asynchronous for low

power sporadic communication; full-on for very low delay;

synchronous for handling data bursts. The synchronous mode

setup delay can be amortized if large bulks of data are

transferred. MH-MAC is being used for the development of

asynchronous sensor monitoring and alarm applications in

scattered WSNs. Mobile vehicles drive around the WSNs

from time to time, collecting all the data stored since the last

visit. MH-MAC improves the energy efficiency.

 Future work in MH-MAC includes the improved

handling of radio interference (inter-slot and on

synchronization deployment), and the reduction of the

asynchronous to synchronous transition overhead. We also

envision improved WSN mobility support.

VI. ACKNOWLEDGEMENTS

We thank David Moss for the support on the development of

MH-MAC. This work was partially supported by the

Fundação para a Ciência e Tecnologia under the project

SIGAPANO POSC/EIA/62199/2004.

REFERENCES

[1] J. Polastre, J. Hill, D. Culler, "Versatile low power media access for
wireless sensor networks," in: Proceedings of the 2nd ACM Int. Conf. on

Embedded Networked Sensor Systems (SenSys), 2004, pp. 95–107.

[2] M. Buettner, G. Yee, E. Anderson, R. Han, "X-MAC: A Short Preamble
MAC Protocol for Duty-Cycled Wireless Sensor Networks," in:

Proceeding of the 4th ACM International Conference on Embedded

Sensor Systems (SenSys), 2006, pp. 307-320.

[3] W. Ye, J. Heidemann, D. Estrin, "An energy-efficient MAC protocol for

wireless sensor networks," in: Proceedings of the Joint Conference of

the IEEE Computer and Communications Societies (InfoCom), Vol. 3,
2002, pp. 214–226.

[4] JT. van Dam, K. Langendoen, "An adaptive energy-efficient MAC

protocol for wireless sensor networks," in: Proc. of the ACM Int. Conf.
on Embedded Networked Sensor Systems (SenSys), 2003, pp. 171–180.

[5] Wei Ye, Fabio Silva, and John Heidemann, "Ultra-Low Duty Cycle

MAC with Scheduled Channel Polling," in: Proc. of the ACM Int. Conf.

on Embedded Networked Sensor Systems (SenSys), 2006, pp. 321-334.

[6] II. Rhee, A. Warrier, M. Aia, J. Min, "Z-MAC: A hybrid MAC for

wireless sensor networks," in: Proceedings of the ACM Int. Conference

on Embedded Networked Sensor Systems (SenSys), 2005, pp. 90–101.

[7] K. Akkaya, and M. Younis, "A survey on routing protocols for wireless
sensor networks," Ad Hoc Networks, vol. 3, no. 3, pp. 325-349, May

2005.

[8] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications,” in: Proc. of the

ACM Int. Conf. on Embedded Networked Sensor Systems (SenSys),

2003, pp. 126-137.

[9] G. Lu, B. Krishnamachari, and C. Raghavendra, “An Adaptive Energy-

Efficient and Low-Latency MAC for Data Gathering in Wireless Sensor

Networks,” in: Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2005, pp. 224- 231.

[10] J. Grönkvist, A. Hansson, “Comparison between Graph-Based and

Interference-Based STDMA Scheduling”, in: Proceeding of ACM
Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc),

2001, pp. 255-258.

[11] TinyOS 2.0 Documentation. http://www.tinyos.net/tinyos-2.x/doc/.

[12] J. Polastre, R. Szewczyk, and D. Culler, "Telos: Enabling Ultra-Low
Power Wireless Research," in Proceeding of Int. Symposium on

Information Processing in Sensor Networks (IPSN), 2005, pp. 364- 369.

