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A WISE Method for Designing IIR Filters
Andrzej Tarczyn´ski, Gerald D. Cain, Senior Member, IEEE, Ewa Hermanowicz, Member, IEEE, and

Mirosław Rojewski

Abstract—The problem of designing optimal digital IIR filters
with frequency responses approximating arbitrarily chosen com-
plex functions is considered. The real-valued coefficients of the
filter’s transfer function are obtained by numerical minimization
of carefully formulated cost, which is referred here to as the
weighted integral of the squared error (WISE) criterion. The
WISE criterion linearly combines the WLS criterion that is used
in the weighted least squares approach toward filter design and
some time-domain components. The WLS part of WISE enforces
quality of the frequency response of the designed filter, while the
time-domain part of the WISE criterion restricts the positions of
the filter’s poles to the interior of an origin-centred circle with
arbitrary radius. This allows one not only to achieve stability of the
filter but also to maintain some safety margins. A great advantage
of the proposed approach is that it does not impose any constraints
on the optimization problem and the optimal filter can be sought
using off-the-shelf optimization procedures. The power of the
proposed approach is illustrated with filter design examples that
compare favorably with results published in research literature.

Index Terms—Discrete time filters, IIR digital filters, least
squares methods, optimization methods.

NOMENCLATURE

Numerator and denominator of
the filter. These are real-coeffi-
cient polynomials in .

,
.

Degrees of polynomials and
, respectively.

point in -dimensional
space.

-dimensional space of
IIR filters.
Various subspaces and subsets of

.
Bar above the name of a subset
denotes enclosure of the subset.
Admissible maximum radius of
poles of the designed filter.
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Origin-centered circle on a com-
plex plane with radius .
Rational functions in

: ,
,

Number of distinct poles of .
Poles of for

.
Multiplicities of poles of .

.
Star as a superscript denotes com-
plex conjugation.
Normalized frequency (sampling
frequency is ). All func-
tions of are periodic

and hermitean symmetric
.

Frequency response of
and respectively, e.g.,

.
Complex-valued target frequency
response of the designed filter.
Complex-valued frequency re-
sponse error
Real, even, non-negatively valued
frequency domain weight function.
Normalized time. Variable is al-
ways a whole number.
Impulse response of ,

, , respectively.
Weighting factor—a real number
such that .
Version of cost (optimization cri-
teria).
Version of cost (optimization cri-
teria).
Version of cost (optimization cri-
teria).
Version of cost (optimization cri-
teria).

I. INTRODUCTION

One of the most popular objectives of designing a filter is to
shape the frequency response of the filter prototype in such a
way that it approximates a pre-selected complex-valued func-
tion. In order to perform the design in an optimal manner, we

1053–587X/01$10.00 ©2001 IEEE
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choose a criterion (cost) that measures quality of the approxi-
mation. Very often, the cost takes a form of a squared weighted

norm of the frequency response error

(1)

where
frequency response of the designed
filter;
desired frequency response of the
filter;
frequency response error,
real, non-negative weight function.

The methods that aim at minimizing the above criterion tradi-
tionally share a common name: weighted least squares (WLS)
methods. Consequently, cost (1) is called the WLS criterion.

Designing digital filters through minimization of (1) is
a classic approach that has been successfully applied to
constructing good quality FIR filters [1]. In such cases, the
coefficients of the filter’s transfer function are obtained by
determining the minimum of a relatively simple quadratic form.
Practical methods that are used for such calculations include
an explicit matrix formula that expresses the solution in an
analytic form [2] and an eigenfilter approach that is based on
determining a suitable eigenvector of a square matrix [3].

Subsequent research has shown that the WLS approach can
be used to construct FIR filters that are optimal in the sense of
criteria other than those built around weighted. Those new
costs can be minimized by putting the WLS algorithm inside a
loop that iteratively modifies the weight function . It has
been demonstrated in [4] that by using the Lawson’s algorithm
(LA) for updating , it is possible to minimize weighted

(Chebyshev) norm of the frequency response error. Later,
a modified LA was used [2] to achieve the same goal in much
shorter time. LA constituted a competitive approach to the fa-
mous Remez exchange algorithm [5]. A great advantage of the
approaches based on LA was that they could have been used for
designing filters with arbitrarily chosen frequency responses,
whereas the traditional version of the Remez exchange algo-
rithm [5] was suitable only for the linear-phase ones. Only re-
cently have departures to nonlinear-phase become feasible,
e.g., [6]. Burruset al. [7] have broadened designers’ options by
proposing algorithms for modifying the weight function to en-
able designing filters that are optimal in the sense of criteria
based on weighted norm with arbitrary .

These important achievements obtained for FIR filters are
only partially matched by results of similar quality and strength
pertaining to IIR filters. Design of IIR filters faces at least a
couple of new problems that are hardly noticeable when FIR
design is tackled. First, in the case of IIR filters, (1) is no longer
a quadratic form of the transfer function’s coefficients. There-
fore, we have the following

a) Nonlinear optimization techniques have to be deployed to
determine the coefficients of the filter transfer function
for which (1) achieves minimum.

b) Cost (1) may have more than one local minimum. Conse-
quently, we have no guarantee that the solution delivered
by a numerical procedure that minimizes (1) is the global,
and not a local, minimum. This is a common problem of
virtually all general purpose optimization procedures, and
we are not going to overcome this limitation in our paper.

Second, if no constraints are imposed on the optimization
process, the filter, whose frequency response minimizes (1),
can turn out to be unstable. Therefore, the formulation of the
optimization problem must be extended beyond the bland
requirement of minimizing (1).

As we mentioned earlier, design of IIR filters usually leads to
usage of nonlinear optimization procedures. There is, however,
one important exception that permits avoidance of this com-
plication —Levy’s linearization [8]. Although this method has
some drawbacks, it has attracted a lot of attention and inspired a
number of interesting algorithms. The main concept of Levy’s
linearization is to replace criterion (1) with

(2)

The new weight function is defined as
, where is frequency re-

sponse of optimal . Levy’s linearization simplifies the
filter design problem. Cost (2) can be represented in a quadratic
form similar to that obtained in design of FIR filters. Its
minimization is similarly easy. However, Levy’s linearization
introduces a new problem. In order to properly formulate (2),
one has to partially know the solution, i.e., the magnitude re-
sponse of the denominator of the optimal filter transfer function

. A way of avoiding the problem is to apply an iterative
Sanathanan–Koerner algorithm [8] that generates a sequence of
improving approximations of the optimal . Unfortunately,
this algorithm may not converge, and even if it does converge,
it may not reach a local minimum of cost (1) [12]. Another
problem is that Levy’s linearization does not address stability
of the filter; hence, this aspect of the design has to be solved
separately. Approaches that allow one to impose stability of the
designed filter together with use of Levy’s linearization can be
found in [9]–[11]. Despite its apparent attractiveness, Levy’s
linearization shows rather limited practical usefulness. It is not
a reliable tool for general purpose IIR filter design.

In order to minimize (1) without use of Levy’s linearization,
we may use one of the many general-purpose optimization tech-
niques developed for solving nonlinear problems. A major issue
that still has to be somehow tackled is stability of the filter.

It is perhaps, at this juncture, worth mentioning an area of
optimization that has enjoyed some popularity throughout the
past couple of decades: use of “natural algorithms.” These
algorithms forego traditional deterministic iteration schemes,
seeking instead to somehow emulate processes observed in
nature, such as Darwinian evolution and molecular alignment
of cooling materials. This category of techniques includes such
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variants as genetic algorithms [13], Darwinian design/evolu-
tionary programming, and simulated annealing [14], [15]. All
of these methods have been applied to the design of fixed (and
even adaptive) IIR filters in an attempt to overcome entrapment
in local cost function minima. Although the issue of ensuring
stability is usually easily achieved and some useful specific de-
signs have emerged from several authors in the DSP literature,
all these methods deploy numerous highly problem-specific
parameters to aid convergence. We believe that the fragmentary
successes obtained have provided little general insight and
do not at present offer compelling alternatives to the more
conventional thrust we advocate here.

Maintaining stability of an IIR filter whose coefficients are
obtained by minimizing (1) is, in general, not straightforward.
A literature search shows that many authors simply leave out
this topic and concentrate merely on good approximation of the
desired frequency response. Such an approach is not a major
problem when one designs a filter for which only the magni-
tude, and not phase response, is important. In this case, all un-
stable factors in the filter transfer function can be
replaced with their stable counterparts that have identical mag-
nitude response . If, however, phase response is
also important, this method cannot be applied since it changes
the phase response of the filter.

There are four major approaches that can be applied for filter
stabilization when optimization techniques are used for mini-
mizing (1). None of them is perfect, and hence, probably none
of them can be recommended as a universal tool. Here, we give
a brief overview of these approaches along with specimen ref-
erences where more details can be found.

i) Historically, the first method was proposed by Deczky
in the classic paper [16]. His concept was to modify
a standard, gradient-based optimization. The author
suggested that the starting point for the optimization
procedure should be a stable filter. After that, the size
of the searching step should be controlled so that the
searching trajectory never leaves the stability area.
Deczky’s approach can be justified as follows. If the
target frequency response takes only finite values
and any pole of the designed filter is placed on the
unit circle, then cost (1) has infinite value. Therefore,
any steepest decent trajectory that starts at the point
representing a stable transfer function will avoid the
border of stability.

The algorithm proposed by Deczky is generally con-
sidered to be computationally expensive. However, its
main drawback is the necessity to interfere with the con-
tents of the optimization procedure, which may be diffi-
cult if one uses off-the-shelf general-purpose optimiza-
tion software.

ii) The second approach to filter stabilization is to choose
the target frequency response in such a way that the op-
timal filter is stable. Two examples of such an approach
found in the literature suggested that if the target fre-
quency response is minimum phase [17] or the group
delay of the target frequency response is large enough
[18], then the resultant filter will be stable. The problem
is that often, the designer’s flexibility to modify the target

frequency response is restricted and, in many cases, may
be too rigid to achieve stabilization of the filter.

iii) The third approach to filter stabilization is to impose ex-
plicit constraints on the coefficients of the denominator

of the filter’s transfer function to enforce stability
of the filter. Since the expressions used for the inequality
constraints complicate quickly when increases, this
approach is useful if . This limitation is en-
hanced by the fact that the space of vectors of coefficients
that represent stable filters is convex only if
or . In all other cases, the space is concave.
This seriously complicates the optimization process. The
problem can be avoided when the denominator of the
transfer function is represented as a product of at most
second-order factors [9], [19]. In such a case, stability of
the filter can be enforced by imposing linear inequality
constraints on the coefficients of each factor. The draw-
back of factorization is that it creates saddle points in the
optimization criterion. This may prevent the optimiza-
tion algorithm from converging to a local minimum. An
approach that eludes many of the problems mentioned
above has been advanced in [11]. The authors avoided
factorizing the denominator of the filter and maintained
stability by imposing linear constraints: Re
on all . Unfortunately, the constraints provide
sufficient but not necessary conditions for filter stability.
This means that some stable filters are permanently ex-
cluded from the set of admissible solutions, even if they
are optimal in the sense of the preselected criterion. We
will show an example where this limitation affects the
quality of the filter.

iv) The fourth group of methods of imposing stability of the
filter arise from modification of the cost in such a way
that its minima always lie in the stable area. This ap-
proach has several advantages over the other ones men-
tioned above. First, unlike i), it does not require changing
the code of the optimization procedure; secondly, unlike
ii), this approach does not require changing the target fre-
quency response; third, unlike iii), it allows use of uncon-
strained optimization methods that usually are much sim-
pler and faster than those capable of handling constraints.
An example of such an approach has been presented
in [20]. The author represented the denominator of the
transfer function as a product of first- and second-order
factors and used nonlinear transformation of each factor
so that regardless of the values of the optimization pa-
rameters, the transfer function was always stable.

In this paper, we propose an algorithm that also belongs to
group iv). The novelty of the approach consists in formulation
of a new cost—weighted integral of the squared magnitude re-
sponse error (WISE criterion). This criterion consists of two
components that are linearly combined. The first component is
simply WLS performance index (1). The second component is
chosen in such a way that as long as the poles of the designed
filter stay inside the permissible area, the value of that compo-
nent is practically constant. However, as soon as at least one
pole leaves the designated area, the second component soars
immediately, forcing the optimization algorithm to pull back
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and stay within the required limits. Here, the permissible area
is defined as — a disk centred at the origin of the com-
plex plane and radius. The WISE optimization problem can
be solved with use of any general-purpose numerical procedure
capable of performing unconstrained minimization of nonlinear
performance index. In order to ease implementation of the pro-
posed approach, we show how to effectively calculate not only
the value of the WISE criterion but also its gradient and Hes-
sian. This supplementary information is useful when utilizing
optimization platforms like the MATLAB environment. The re-
sults presented in this paper constitute direct expansion of our
earlier work [21], which suggested its scope and promise.

II. M AIN RESULTS

A. Confining Pole Positions of the Designed Filter—WISE
Criterion

We start with defining some sets and spaces used throughout
this section and in Appendix. Let denote an -di-
mensional linear space of IIR filters whose transfer functions
can be represented by

(3)

Each point of the space is described by the vector of coefficients
of the filter’s transfer function .
The space consists of three subsets:

1) —representing filters with all poles inside ;
2) —representing filters with at least one pole outside

.
3) — separating and that represents filters with at least

one pole at the border of and with all other poles
inside .

Set contains an -dimensional linear subspace of,
which is denoted , consisting of points representing filters
with all poles placed at the origin (FIR filters).

Our filter design problem can be rephrased as follows. Obtain
such that for every . Here,

denotes enclosure of. The solutions to this problem are
called globally optimal. When we use a numerical procedure
to minimize cost, e.g., (1), we usually solve a slightly different
problem. Determine such that
for every , where is some neighborhood of.
Solutions to this problem are called locally optimal. Normally,
different locally optimal solutions can be obtained by running
the same optimization program using different parameters such
as starting point (or points), initial length of the searching step,
stop conditions, etc. This fact must be taken into account when
filter design optimization techniques are compared with each
other.

The method of confining pole positions that we propose to
use in this paper is based on a technique that is occasionally de-
ployed to solve some optimization problems with constraints.
The approach consists of modifying the original cost (1) by
combining it with auxiliary cost

(4)

where . Instead of performing minimization of cost
(1) with constraints, we are going to minimize (4) without im-
posing any constraints. In order for both problems to have iden-
tical solutions, we should choose and in such a way
that the set of locally optimal solutions to the original problem
is identical with the set of local minima of (4). Selecting such

and is not an easy task since we have to perform
it without a priori knowledge of the positions of the locally
optimal solutions. The best way of tackling the problem is to
choose such that is (almost) constant in-
side , and it soars rapidly outside this area. This, with suitably
chosen , will not only preserve the positions of cost’s local
minima inside but will also shape the steepest descent lines
of in so that their points of attraction are in.

Two demands that we impose on are slightly con-
tradicting. The gradient of should be large outside
and close to zero inside it. Normally, the gradient is a contin-
uous function of , and it cannot be changed in a stepwise way.
Therefore, one should expect existence of a “transition area”
in the close neighborhood of, where the gradient has interme-
diate values. A locally optimal solution placed inmay be af-
fected by the existence of the transition area. The local minima
of (4) appropriate to these solutions may not stay at the posi-
tions of the locally optimal solutions but be moved into their
close neighborhood inside. Of course, the faster the gradient
of changes between and , the narrower the tran-
sition area is, and the whole problem becomes less important.
The following Lemma suggests how to construct ap-
propriate to our optimization problem.

Lemma 1: Polynomial has all its roots inside if
and only if the impulse response of satisfies

.

Proof of this lemma is given in the Appendix.
In view of this Lemma, we propose to construct cost (4) as

follows:

(5)

where and are suitably chosen positive integers. The
second term in (5) is referred to as partial energy of impulse
response (PEIR). To distinguish WLS criterion (1) from (5),
we will call the latter one the WISE criterion and the approach
based on minimization of (5) the WISE method.

As we will see later, the properties of (5) are very much de-
pendent on grad . This gradient can be calculated as
follows. By definition

grad

(6)

The derivatives of with respect to are zero.
Therefore, we will only calculate derivatives of
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with respect to , . It follows from (5) that
. Since

(7)

therefore

(8)

where is the impulse response of
Now, we have to decide how to choose the values of the

WISE-specific parameters: and such that the gradients
of the costs (1) and (5) are (almost) identical inside S and the
steepest descent lines of (5) that start inconverge to . Al-
though it is difficult, if possible at all, to give a precise formula
that would produce the best values for those three numbers, it
is still possible to provide practical guidelines that allow the de-
signer to make a sensible choice of their values. Lemma 2 gives
a few properties of , knowledge of which will help to
formulate guidelines for selecting and

Let and
grad .

Note that is a pseudo-norm since can be zero
even through . On the other hand, is the
Euclidean norm (length) of its argument.

Lemma 2: If , , then

a) if and only if ;
b)
c) grad if and only if ;
d) grad ;
e) if then grad .
Proof of this lemma is given in the Appendix.
It follows from Lemma 2(c) that if , ,

and , then for every . Since
grad is a continuous function of therefore there ex-
ists such that for every grad for

. This implies that if , then
has no local minima in or, in other words, all its

local minima are located inside. In such a case, minimizing
(5) yields a stable filter. In the reminder of this paper, we will
assume that , although can do the job as well.

Now, we need to make sure thatgrad is suffi-
ciently small inside so that grad in this area is domi-
nated by grad and very large in so that grad
is dominated by outside . Thesis (e) of Lemma 2
suggests that we can achieve at least the first goal by selecting
sufficiently large value of . The discussion below will give us
better understanding of howaffects the size of grad
and will help to choose its value in a rational way.

It can be easily checked that the impulse responses
and used in (8) are given by

and , where
and are polynomials of degrees and ,

respectively. It follows from (8) that . In the subse-
quent discussion, we will use this fact to approximate grad

and its length with the dominant components.
To simplify discussion, we assume that and

, although similar results can be
derived even when . Note that

(9)

where is a function such that . Let
. Then

(10)

Hence

(11)
In a similar way

(12)
Since , we can combine (8)
with (11) and (12) to obtain

(13)

where . By extracting the dominant com-
ponents of (13), we obtain

(14)

Now, we can approximategrad as

grad

(15)

It is clearly visible from (15) that if , then for suffi-
ciently large values of grad is small. On the
other hand, when , then grad is large. We
propose to choose in such a way that when the pointmoves
across the transition area, the gradient increases its length
certain amount of times. Let the transition area be described by
limits imposed on , where
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and . Let be the point in appropriate to
and be the point appropriate to .

Define grad grad .
We will demand that is sufficiently large. It follows from (15)
that

(16)

Assuming that the transition area is very thin and, hence,does
not drift away much inside when travelling from to

so that , we can claim that
and . In such a case, , and

(17)

Therefore, if we demand that , then we should choose
such that

(18)

It follows from (18) that one can narrow down the transition area
and/or enlarge the ratiobetween the values of on

both sides of by increasing . For example, if we demand that
, and , then we obtain

. However, if we select ,
, then the recommendation is . The authors’

experience shows that usually, it suffices to take .
Even if the ratio between grad inside

and inside is very large, we still have no guarantee that
grad in these areas is dominated by grad
and grad , respectively. However, we can gain this
confidence if is chosen so that grad and

grad are approximately equal in . Note
that when , then . It follows from (15) that in a
typical case when

grad (19)

Hence, the value of that matches the lengths of both weighted
gradients is inverse proportional to. Our experience shows
that for the values of recommended in this paper, a sensible
choice of is in the range . It is worth noting that
the larger is the less sensitive is the resultant filter to the value
of . This fact is clearly illustrated in Example 3.

B. Gradient and Hessian of the Cost Function

Cost (5) can be minimized with use of practically any gen-
eral-purpose numerical algorithm capable of solving multidi-
mensional, nonlinear optimization problem without constraints.
Normally, such algorithms require access to a subroutine calcu-
lating the cost to be minimized. More sophisticated and usually

more efficient procedures may also need access to the gradient
and even the Hessian of the cost [22]. Therefore, we provide
here analytical formulation of these derivatives and formulate
practical guidelines on how to calculate them numerically.

The gradient of the WISE cost can be obtained analytically
by using

(20)

(21)

The Hessian of can be obtained from

(22)

(23)

(24)

where is the impulse response of .

C. Practical Aspects of Calculating the Cost and Its
Derivatives

It follows from (5) and (20)–(24) that every time we need to
find out the values of the cost and its derivatives, we
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have to calculate a few integrals. In a few benign cases, the ex-
pressions will have forms permitting closed-form integration to
be done, but in most situations, we propose to use approximation
of the integrals with finite sums. Since the function integrated in
(5) is periodic, we can approximate the integral in that expres-
sion as follows:

(25)

In a similar way, we can tackle integrals in (20)–(24). For ex-
ample, integrals in (20) and (22) can be approximated with

(26)

(27)

Note that all summations that replace integrals in (20)–(24)
are in fact inverse discrete fourier transforms (IDFTs) of appro-
priate spectra. Time and computational effort can be saved by
deploying here the inverse FFT algorithm, provided thatex-
ceeds sufficiently . The only problem with this approach
is that the argument that appears in (22)–(24) can go neg-
ative. When inverse FFT is used in formulas similar to (27), the
argument is allowed to vary only between 0 and . This lim-
itation can be overcome by exploiting periodicity of the IDFT,
e.g., .

It is worth mentioning that the approximated gradient and
Hessian calculated with use of formulas similar to (26) and (27)
are in fact the accurate gradient and Hessian of the approximated
cost function calculated with use of (25). Therefore, when ap-
proximations like (25) and (27) are applied for calculating the
cost, its gradient, and the Hessian, the original problem of min-
imizing (5) is practically replaced with the demand of mini-
mizing a summed version of the WISE criterion

(28)

III. N UMERICAL EXAMPLES

In this section, we present examples of designing digital fil-
ters using WISE approach. The method has been implemented
in MATLAB with use of the Optimization Toolbox, version
2. To minimize cost (28), we have used functionfminunc[22],
which is capable of solving nonlinear minimization problems
without constraints. The function utilizes both the gradient and
the Hessian of the cost.

A. Example 1

In the first example, we design a high-pass filter whose spec-
ifications were proposed in [11]. The required frequency re-
sponse is

if
if

(29)

and the size of the filter is described by . To allow
a transition band in the filter’s response, we introduce a weight
function in a similar way to what was done in [11]:
if ; otherwise, . In order to
stabilize the filter, we chose and created the following
WISE criterion:

(30)

The results are compared to those presented in [11]. Fig. 1 shows
the plots of magnitude of weighted frequency response errors
for both filters. Note that the results obtained by WISE method
compare very favorably with the outcome of [11]. The reason for
the difference in the quality of the filters is that WISE method
allowed the search for solution throughout the whole space of
stable filters, whereas the approach in [11] restricted the search
to a subset described Re ; see iii) in Section III of
this paper. Fig. 2 shows the plots of Re for both filters.
It is obvious from these plots that filter that we designed was
excluded from the set of admissible solutions in [11].

B. Example 2

This example shows how the WISE method can be utilized to
design filters that are optimal in the sense of weighted Cheby-
shev norm. This objective is achieved with use of a modified
Lawson’s algorithm. We follow, to some extend, the concept
that was successfully applied for FIR filters [2]. The basic idea
of the approach is to solve a sequence of WLS (in FIR case)
or WISE (in IIR case) problems with the weight function being
modified as follows:

envel (31)

Here, denotes the weight for the Chebyshev norm,
whereas envel is the envelope of the mag-
nitude of the weighted frequency response error. The objective
is to design a filter that minimizes . The
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Fig. 1. Magnitude of frequency response error for both filters.

filter that we attempted here was a two-band filter whose ideal
frequency response was given by

when
otherwise.

(32)

Note that the required delay of the filter is 14.3 samples in the
low-frequency band and 20 samples in the high-frequency band.
Moreover, the required magnitude response of the filter drops
down from unity in the low-frequency band to 0.5 in the high
frequencies. We allow a narrow transition band by using the
following weight function for the Chebyshev norm:

when
otherwise.

(33)

An additional requirement is that the maximum magnitude of
the poles of the designed filter should not exceed .
Here, we will design a family of optimal filters, each of them
having 31 coefficients to tune, i.e., . We
start with FIR filter and then gradually increase
this number, ending up with so-called all-pole structure

. For the needs of the PEIR part of the
criterion, we always use , , and .
Table I shows the value of the weighted Chebyshev norm
obtained for filters with . Notice that the best IIR
filter was obtained when . Fig. 3 shows the weighted
magnitude of the frequency response error for FIR filter and for
the best IIR filter. Finally, Fig. 4 shows phase delays and Fig. 5
magnitude responses of these filters. Note that the IIR filter is
significantly better than its FIR counterpart.

C. Example 3

This example illustrates how sensitive the WISE optimal fil-
ters are to the choice of and . We analyze two features of the
filters: their quality (as measured by WLS cost) and the largest
magnitude of the filter poles.

The target frequency response is the same as in Example 2.
The permissible radius for the filter poles is again . The
structure of the filter is defined and . In this case,
our objective is to design a filter that minimizes WLS cost rather

Fig. 2. Comparison of for both filters.

TABLE I
VALUE OF THE WEIGHTED CHEBYSHEV NORM AS A FUNCTION OF THE

NUMBER OF NONZEROPOLES OF THEFILTER

Fig. 3. Frequency response error of FIR and two-pole IIR filter.

Fig. 4. Comparison of phase delays of FIR and IIR filters.
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Fig. 5. Magnitude responses of FIR and two-pole IIR filters.

Fig. 6. Sensitivity of WISE-optimal filters to values ofT and�. Solid lines:
WLS cost. Dashed lines: maximum radius of poles.

than the Chebyshev norm of the weighted error. Function (39)
is used as the weight in WLS part of the WISE criterion. We set

. The other two WISE-specific parameters are varied.
takes three different values (300, 500, and 700), whereas

changes on a logarithmic scale between and 0.99. For
each pair , we design a WISE optimal filter and record its
quality, as measured by WLS criterion, and the largest radius of
the filter poles. The results are shown in Fig. 6. Note that both
analyzed features of the filter are not very sensitive to the choice
of . Moreover, the sensitivity decreases whengoes larger.
Note that in this example, some minimum value ofmust be
maintained to confine the poles to the interior of . If is
increased above this value, the poles stay inside the permissible
area, but the quality of the filter slightly deteriorates. Significant
deterioration occurs whenapproaches 1.

Analysis of the results in this example suggests a simple
method of verifying whether or not the value ofwas correctly
chosen. First, if for all poles of the filter are inside ,
then WISE design reduces to the WLS approach. Otherwise,

should be increased until the largest magnitude of the filter
poles equals . It is also possible to check whether or not the
value of is properly chosen. If the quality of the filter de-
signed with being tuned as described above does not change

significantly when increases, it means that is sufficiently
large, and the gradient of is small enough to allow the
local minima of to stay at the positions of local minima
of inside . Such subtle tuning of and is needed
only when the designer needs to approach the optimal solution
very closely. Otherwise, one or two iterations of choosing
and suffice to obtain a satisfactory filter.

IV. CONCLUSIONS

A new approach to designing IIR filters whose frequency
responses approximate an arbitrarily chosen complex-valued
function has been presented. The method allows control of pole
positions of the designed filter by confining them to the interior
of an origin-centred circle with selectable radius. The novelty of
the approach consists in such reformulation of the problem that
it can be solved as an optimization problem without constraints.
This is achieved by expanding the popular WLS criterion
to embrace another time-domain term—PEIR—which, if
properly used, preserves local minima of the original cost
inside the permissible area and removes all local minima
outside it. The new criterion is called the weighted integral of
the squared error (WISE). It is worth mentioning that if the
WISE specific parameters are selected as recommended in
this paper, then in the case of FIR design, the WISE criterion
automatically collapses to WLS. Therefore, the new criterion
can be considered to be a natural and seamless expansion of
WLS. The gradient and the Hessian of the WISE cost function
have been obtained to allow implementation of the method by
using virtually all general-purpose optimization packages. The
proposed approach has been tested on a number of design tasks
and proved to be robust, efficient, and fast in delivering good
quality results.

APPENDIX

A. Proof of Lemma 1

Necessity : If has all its roots inside , then
is stable, and its impulse response satisfies

. This implies that .
Sufficiency :
Let be the impulse response of .

Since

(A1)

it suffices to prove that if , then polynomial
has all its roots inside . We can model as a

cascade of first-order state space subsystems whose transfer
functions are . Let the output of theth sub-
system is the input to the st subsystem, and let the numbers

satisfy . By denoting the input,
output, and the state of each subsystem as and , respec-
tively, we can build their state-space models:

for (A2)

for (A3)
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These can be combined into one state-space model of
with being the input and being the
output signal

(A4)

(A5)

where

...
...

.. .
. . .

. . .
...

and ...

It follows from (A4) and (A5) that . If
, then , where

(A6)

Vector can be expressed as ,
where the observability matrix is given by

. Since det , the
observability matrix is not singular. Hence

(A7)

and . Consequently, . By
using (A2), we obtain . Therefore, .
Since all other numbers have magnitude no larger than,
we conclude that all of them are inside .

B. Proof of Lemma 2

Thesis (a): Necessity : Note that implies
, . Using notation

introduced in the proof of Lemma 1, we can describe this ob-
servation as . It follows from (A7) that

, and consequently, .
Since , we conclude that

. This implies that for
Thesis (a): Sufficiency : If , then .

Therefore, for . This implies that .
Thesis (b): Let be such

that . Denote the poles of the filter represented by
as . Let represent a filter with zeros

identical with zeros of and poles . It can be

easily verified that . Let

and . Note

that . By using partial fraction expansion, we
can represent as

(A8)

Therefore

(A9)

The impulse response of is
, where are poly-

nomials whose coefficients depend only on the multiplicity
of the appropriate pole, e.g., , ,

, etc. Now, we obtain

(A10)

It follows from (A10) and (5) that

(A11)

Let us impose an additional constraint on, namely, that
for all such that .

Now, if we choose such that , then
. Since and therefore

, we see that is
a polynomial in with non-negative coefficients such that not
all of them are zero. Hence, . This
implies that

Thesis (c): Necessity : The initial elements of
grad are always zero. Therefore, it suffices to prove
that when grad , then , where

grad (A12)

Since , it follows from (8) that

grad

(A13)

where is Hankel matrix shown in (A14) at the top
of the next page, and is a diagonal matrix

...
...

. ..
...

(A15)

Since the length of one side of is not greater than the
order of the system whose impulse response was used to gen-
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...
...

. . .
...

(A14)

grad (A18)

erate the matrix ( is of order ), then
det [23].

Now, note that the impulse response of
can be generated using recursive formula

. Therefore, (A13) can be put as

grad
(A16)

where is the Hankel matrix

...
...

.. .
...

(A17)

Using arguments similar to those when was analyzed, we
claim that is a nonsingular matrix. It follows from (A16) that
if grad , then for , which
means that .

Thesis (c): Sufficiency : If , then and
. Therefore, and for . By

using (8), we conclude that grad
Thesis (d): We use notation introduced in the proof of

thesis (c). Note thatgrad grad .
According to (A16) we obtain (A18), shown at the top
of the page. Note that is a nonsingular matrix.
Therefore, is a positive definite matrix.
Moreover, . Therefore,

grad .
Thesis (e): If , then both and have

their poles inside . Hence, according to Lemma 1
, and . This observation

along with (8) implies that grad
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