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A WISE Method for Designing IIR Filters

Andrzej Tarczyski, Gerald D. CainSenior Member, IEEEEwa HermanowiczMember, IEEE and

Mirostaw Rojewski

Abstract—The problem of designing optimal digital IIR filters
with frequency responses approximating arbitrarily chosen com-

Clp)

plex functions is considered. The real-valued coefficients of the é(z) F(z) Fy(2),F5(») Rational

filter's transfer function are obtained by numerical minimization

of carefully formulated cost, which is referred here to as the
weighted integral of the squared error (WISE) criterion. The
WISE criterion linearly combines the WLS criterion that is used m
in the weighted least squares approach toward filter design and
some time-domain components. The WLS part of WISE enforces
quality of the frequency response of the designed filter, while the
time-domain part of the WISE criterion restricts the positions of
the filter's poles to the interior of an origin-centred circle with
arbitrary radius. This allows one not only to achieve stability of the  z*
filter but also to maintain some safety margins. A great advantage

of the proposed approach is that it does not impose any constraints v
on the optimization problem and the optimal filter can be sought
using off-the-shelf optimization procedures. The power of the
proposed approach is illustrated with filter design examples that
compare favorably with results published in research literature.

Index Terms—Discrete time filters, IIR digital filters, least
squares methods, optimization methods.

NOMENCLATURE H(v)

Numerator and denominator of
the filter. These are real-coeffi- E(v)
cient polynomials in=—*. B(z) =
bo + - + bp,zT™, Alz) =
l4az 4+ 4 On, 2 .

B(z), A(z)

W(v)

Ny, Ng Degrees of polynomial#(z) and ¢
A(z), respectively.
z x = [a1,--san, b0y 0n,]T
point inn, 4+ n; + 1-dimensional
space. A
P ne + ny + 1-dimensional space of
IR filters. Jwrs
S,8,U,B, T Various subspaces and subsets of
P. JLEVY
S Bar above the name of a subset

denotes enclosure of the subset. Jwise
p Admissible maximum radius of

poles of the designed filter. JCheby
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DP1,P2,- -

ki, ko, ..

aprn

7 krn

A(v), B(v), G(v)

f(#), fa(®), f3(2)

Origin-centered circle on a com-
plex plane with radiug.

functions in
2t G(r)EB(R)/Alz),
F(2)=/A(pz), F5(2)=F(2)
Number of distinct poles af7(z).
Poles of G(z) - A(px) = 0 for
k=1,...,m.

Multiplicities of poles of G(z).
A(z) = [, (1 = pr~h)k.

Star as a superscript denotes com-
plex conjugation.

Normalized frequency (sampling
frequency isy = 1). All func-
tions of v are periodicV(v) =
V(v+1) and hermitean symmetric
V(—1) = V*(v).

Frequency response df(z), B(z)
and G(z) respectively, e.g.,
B(v)=B(ei2),

Complex-valued target frequency
response of the designed filter.
Complex-valued frequency re-
sponse errof(v)=G(v) — H(v)
Real, even, non-negatively valued
frequency domain weight function.
Normalized time. Variablé is al-
ways a whole number.

Impulse response of F'(pz),
Ey(pz), F5(p2), respectively.
Weighting factor—a real number
such thad < A < 1.

Version of cost (optimization cri-
teria).

Version of cost (optimization cri-
teria).

Version of cost (optimization cri-
teria).

Version of cost (optimization cri-
teria).

|. INTRODUCTION
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choose a criterion (cost) that measures quality of the approxi-a) Nonlinear optimization techniques have to be deployed to
mation. Very often, the cost takes a form of a squared weighted  determine the coefficients of the filter transfer function

L, norm of the frequency response error for which (1) achieves minimum.
b) Cost (1) may have more than one local minimum. Conse-
0.5 quently, we have no guarantee that the solution delivered
Jwrs(X)= / G(v) — H()|2W (v)dv by a numerical procedure that minimizes (1) is the global,
i} and not a local, minimum. This is a common problem of
_%f virtually all general purpose optimization procedures, and
it . we are not going to overcome this limitation in our paper.
= / E@)E* ()W (v)dv () second, if no constraints are imposed on the optimization
—0.5 process, the filter, whose frequency response minimizes (1),
where can tt_Jrn _out to be unstable. Therefore, the formulation of the
. ptimization problem must be extended beyond the bland
G(v) = B(v)/A(v) frequency response of the des'gnegequirement of minimizing (1).
f||ter, As we mentioned earlier, design of lIR filters usually leads to
H(v) desired frequency response of the,q,qe of nonlinear optimization procedures. There is, however,
filter; one important exception that permits avoidance of this com-
E(1)=G(v)— H(v) frequency response error, plication —Levy’s linearization [8]. Although this method has
W(v) real, non-negative weight function. some drawbacks, it has attracted a lot of attention and inspired a

The methods that aim at minimizing the above criterion tradiumber of interesting algorithms. The main concept of Levy’s
tionally share a common name: weighted least squares (WU®Bkearization is to replace criterion (1) with
methods. Consequently, cost (1) is called the WLS criterion.

Designing digital filters through minimization of (1) is 05
a classic approach that has been successfully applied toJyryy(x)= |B(v) — H()A(W) Wi pyy (v)de. (2)
constructing good quality FIR filters [1]. In such cases, the b5

coefficients of the filter's transfer function are obtained by
determining the minimum of a relatively simple quadratic fornThe new weight function Wigrvy(r) is defined as
Practical methods that are used for such calculations includg gvy (v)=W (1) /|A(v)|2, where A(v) is frequency re-
an explicit matrix formula that expresses the solution in aponse of optimal/l(z). Levy’s linearization simplifies the
analytic form [2] and an eigenfilter approach that is based ditter design problem. Cost (2) can be represented in a quadratic
determining a suitable eigenvector of a square matrix [3].  form similar to that obtained in design of FIR filters. Its
Subsequent research has shown that the WLS approach mémimization is similarly easy. However, Levy’s linearization
be used to construct FIR filters that are optimal in the senseiofroduces a new problem. In order to properly formulate (2),
criteria other than those built around weightegl Those new one has to partially know the solution, i.e., the magnitude re-
costs can be minimized by putting the WLS algorithm inside sponse of the denominator of the optimal filter transfer function
loop that iteratively modifies the weight functidfi (). It has  |A(v/)|. A way of avoiding the problem is to apply an iterative
been demonstrated in [4] that by using the Lawson’s algorith8anathanan—Koerner algorithm [8] that generates a sequence of
(LA) for updating W (), it is possible to minimize weighted improving approximations of the optimal(:-). Unfortunately,
L+, (Chebyshev) norm of the frequency response error. Latéhijs algorithm may not converge, and even if it does converge,
a modified LA was used [2] to achieve the same goal in muéhmay not reach a local minimum of cost (1) [12]. Another
shorter time. LA constituted a competitive approach to the faroblem is that Levy’s linearization does not address stability
mous Remez exchange algorithm [5]. A great advantage of thiethe filter; hence, this aspect of the design has to be solved
approaches based on LA was that they could have been usedségarately. Approaches that allow one to impose stability of the
designing filters with arbitrarily chosen frequency responsedesigned filter together with use of Levy’s linearization can be
whereas the traditional version of the Remez exchange aldound in [9]-[11]. Despite its apparent attractiveness, Levy’s
rithm [5] was suitable only for the linear-phase ones. Only réinearization shows rather limited practical usefulness. It is not
cently havel ., departures to nonlinear-phase become feasibkereliable tool for general purpose IIR filter design.
e.g., [6]. Burruset al.[7] have broadened designers’ options by In order to minimize (1) without use of Levy’s linearization,
proposing algorithms for modifying the weight function to enwe may use one of the many general-purpose optimization tech-
able designing filters that are optimal in the sense of critenagues developed for solving nonlinear problems. A major issue
based on weighted,, norm with arbitraryp. that still has to be somehow tackled is stability of the filter.
These important achievements obtained for FIR filters arelt is perhaps, at this juncture, worth mentioning an area of
only partially matched by results of similar quality and strengtbptimization that has enjoyed some popularity throughout the
pertaining to IIR filters. Design of IIR filters faces at least gast couple of decades: use of “natural algorithms.” These
couple of new problems that are hardly noticeable when FE®gorithms forego traditional deterministic iteration schemes,
design is tackled. First, in the case of IIR filters, (1) is no longeseeking instead to somehow emulate processes observed in
a quadratic form of the transfer function’s coefficients. Therawature, such as Darwinian evolution and molecular alignment
fore, we have the following of cooling materials. This category of techniques includes such
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variants as genetic algorithms [13], Darwinian design/evolu-
tionary programming, and simulated annealing [14], [15]. All
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frequency response is restricted and, in many cases, may
be too rigid to achieve stabilization of the filter.

of these methods have been applied to the design of fixed (andii) The third approach to filter stabilization is to impose ex-

even adaptive) lIR filters in an attempt to overcome entrapment
in local cost function minima. Although the issue of ensuring
stability is usually easily achieved and some useful specific de-
signs have emerged from several authors in the DSP literature,
all these methods deploy numerous highly problem-specific
parameters to aid convergence. We believe that the fragmentary
successes obtained have provided little general insight and
do not at present offer compelling alternatives to the more
conventional thrust we advocate here.

Maintaining stability of an IIR filter whose coefficients are
obtained by minimizing (1) is, in general, not straightforward.
A literature search shows that many authors simply leave out
this topic and concentrate merely on good approximation of the
desired frequency response. Such an approach is not a major
problem when one designs a filter for which only the magni-
tude, and not phase response, is important. In this case, all un-
stable factors in the filter transfer functiaf(1—p; z—*) can be
replaced with their stable counterparts that have identical mag-
nitude response/(»~! — p#). If, however, phase response is
also important, this method cannot be applied since it changes
the phase response of the filter.

There are four major approaches that can be applied for filter
stabilization when optimization technigues are used for mini-
mizing (1). None of them is perfect, and hence, probably none
of them can be recommended as a universal tool. Here, we give
a brief overview of these approaches along with specimen ref-
erences where more details can be found.

i) Historically, the first method was proposed by Deczky

plicit constraints on the coefficients of the denominator
A(z) of the filter's transfer function to enforce stability
of the filter. Since the expressions used for the inequality
constraints complicate quickly when, increases, this
approach is useful ifi, < 2. This limitation is en-
hanced by the fact that the space of vectors of coefficients
that represent stable filters is convex onlynif = 1

or n, = 2. In all other cases, the space is concave.
This seriously complicates the optimization process. The
problem can be avoided when the denominator of the
transfer function is represented as a product of at most
second-order factors [9], [19]. In such a case, stability of
the filter can be enforced by imposing linear inequality
constraints on the coefficients of each factor. The draw-
back of factorization is that it creates saddle points in the
optimization criterion. This may prevent the optimiza-
tion algorithm from converging to a local minimum. An
approach that eludes many of the problems mentioned
above has been advanced in [11]. The authors avoided
factorizing the denominator of the filter and maintained
stability by imposing linear constraints: RE»)] > 0
onallv € [0,0.5]. Unfortunately, the constraints provide
sufficient but not necessary conditions for filter stability.
This means that some stable filters are permanently ex-
cluded from the set of admissible solutions, even if they
are optimal in the sense of the preselected criterion. We
will show an example where this limitation affects the
quality of the filter.

in the classic paper [16] His concept was to m0d|fy IV) The fourth group of methods of imposing Stabl'lty of the

a standard, gradient-based optimization. The author
suggested that the starting point for the optimization
procedure should be a stable filter. After that, the size
of the searching step should be controlled so that the
searching trajectory never leaves the stability area.
Deczky's approach can be justified as follows. If the
target frequency respongé(r) takes only finite values
and any pole of the designed filter is placed on the
unit circle, then cost (1) has infinite value. Therefore,
any steepest decent trajectory that starts at the point
representing a stable transfer function will avoid the
border of stability.

The algorithm proposed by Deczky is generally con-
sidered to be computationally expensive. However, its
main drawback is the necessity to interfere with the con-

filter arise from modification of the cost in such a way
that its minima always lie in the stable area. This ap-
proach has several advantages over the other ones men-
tioned above. First, unlike i), it does not require changing
the code of the optimization procedure; secondly, unlike
ii), this approach does not require changing the target fre-
quency response; third, unlike iii), it allows use of uncon-
strained optimization methods that usually are much sim-
pler and faster than those capable of handling constraints.
An example of such an approach has been presented
in [20]. The author represented the denominator of the
transfer function as a product of first- and second-order
factors and used nonlinear transformation of each factor
so that regardless of the values of the optimization pa-
rameters, the transfer function was always stable.

tents of the optimization procedure, which may be diffi- In this paper, we propose an algorithm that also belongs to
cult if one uses off-the-shelf general-purpose optimizaroup iv). The novelty of the approach consists in formulation

tion software.

of a new cost—weighted integral of the squared magnitude re-

if) The second approach to filter stabilization is to choosgponse error (WISE criterion). This criterion consists of two
the target frequency response in such a way that the mmmponents that are linearly combined. The first component is
timal filter is stable. Two examples of such an approacimply WLS performance index (1). The second component is
found in the literature suggested that if the target freshosen in such a way that as long as the poles of the designed
guency response is minimum phase [17] or the groditter stay inside the permissible area, the value of that compo-
delay of the target frequency response is large enougént is practically constant. However, as soon as at least one
[18], then the resultant filter will be stable. The problenpole leaves the designated area, the second component soars
is that often, the designer’s flexibility to modify the targetmmediately, forcing the optimization algorithm to pull back



1424 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001

and stay within the required limits. Here, the permissible areghere\ € [0, 1]. Instead of performing minimization of cost
is defined asC(p)— a disk centred at the origin of the com-(1) with constraints, we are going to minimize (4) without im-
plex plane and radiugs. The WISE optimization problem canposing any constraints. In order for both problems to have iden-
be solved with use of any general-purpose numerical procedtioal solutions, we should choogerr (x) andX in such a way
capable of performing unconstrained minimization of nonlinedinat the set of locally optimal solutions to the original problem
performance index. In order to ease implementation of the piis-identical with the set of local minima of (4). Selecting such
posed approach, we show how to effectively calculate not onfprr(x) and A is not an easy task since we have to perform
the value of the WISE criterion but also its gradient and He#-without a priori knowledge of the positions of the locally
sian. This supplementary information is useful when utilizingptimal solutions. The best way of tackling the problem is to
optimization platforms like the MATLAB environment. The re-chooseJpgr(x) such that/prmr(x) is (almost) constant in-
sults presented in this paper constitute direct expansion of gigteS, and it soars rapidly outside this area. This, with suitably
earlier work [21], which suggested its scope and promise. chosen), will not only preserve the positions of cost’s local
minima insideS but will also shape the steepest descent lines
Il. MAIN RESULTS of Jwrsg(x) in U so that their points of attraction are

Two demands that we impose dpgr(x) are slightly con-
tradicting. The gradient of prrr(x) should be large outsidg
and close to zero inside it. Normally, the gradient is a contin-

We start with defining some sets and spaces used throughggitis function ofz, and it cannot be changed in a stepwise way.
this section and in Appendix. L&t denote am,, + n; + 1-di-  Therefore, one should expect existence of a “transition afea”
mensional linear space of IIR filters whose transfer functions the close neighborhood &, where the gradient has interme-

A. Confining Pole Positions of the Designed Filter—WISE
Criterion

can be represented by diate values. A locally optimal solution placedfihmay be af-
R fected by the existence of the transition area. The local minima
G(z) = f?(z) _bo+ b7t 4 by 2™ @ of (4) appropriate to these solutions may not stay at the posi-
A(z) 1+ az b+t ap, 2z e tions of the locally optimal solutions but be moved into their

close neighborhood insid€. Of course, the faster the gradient
Each point of the space is described by the vector of coefficierys /i 1;x (x) changes betwees andi/, the narrower the tran-

of the filter's transfer functiox = [a1, ..., an,, bo,---,bn,]".  sition area is, and the whole problem becomes less important.
The space consists of three subsets: The following Lemma suggests how to constrigi;r (x) ap-
1) S—representing filters with all poles inside(p); propriate to our optimization problem.
2) U—representing filters with at least one pole outside Lemma 1: Polynomial A(z) has all its roots insid€'(p) if
C(p). and only if the impulse response 8% z) = 1/A(pz) satisfies

3) B— separating andl{ that represents filters with atleastllim f(t) = 0.
one pole at the border @f(p) and with all other poles * Proof of this lemma is given in the Appendix.
inside C(p). In view of this Lemma, we propose to construct cost (4) as
SetS contains am,;, + 1-dimensional linear subspace #f  follows:
which is denotedS,, consisting of points representing filters
with all poles placed at the origin (FIR filters). 0.5 TM
Our filter design problem can be rephrased as follows. Obta[kaISE(X)ﬁ (1—X) / EW)E* (V)W (v)dv+\ Z F2(t)
X € S such that/ws(X) < Jwrs(x) for everyx € S. Here, re =t
S denotes enclosure &. The solutions to this problem are . )
called globally optimal. When we use a numerical procedure = (1= A)hwis(x) + AMrwm(x) ()

to minimize cost, e.g., (1), we usually solve a slightly different . e
problem. Determine € & such that/wis(%X) < Jwris(x) where T and M are suitably chosen positive integers. The

. . second term in (5) is referred to as partial energy of impulse
for everyx ¢ S NN, whereA is some nelghporhood of. response (PEIR). To distinguish WLS criterion (1) from (5),
Solutions to this problem are called locally optimal. Normall

different locally optimal solutions can be obtained by running.. will call the latter one the WISE criterion and the approach
y op y Eflied on minimization of (5) the WISE method.

the same optimization program using different parameters suc s we will see later, the properties of (5) are very much de-

as starting point (or pon_wts), initial length of the searching ste endent on gradpmm (X). This gradient can be calculated as
stop conditions, etc. This fact must be taken into account wh rflows By definition

filter design optimization techniques are compared with each

other.
The method of confining pole positions that we propose to grad Jomir(x) = |:(9JPEIR"”7 8JPEIR7 OJpEIR
use in this paper is based on a technique that is occasionally de- dbo by, day
ployed to solve some optimization problems with constraints. 8JpEIR} ©6)
The approach consists of modifying the original cost (1) by Y Ban, |

combining it with auxiliary cost/pgig (x)
The derivatives of/pgir(x) with respect tob; are zero.
Jwise(x) = (1 — A\)Jwrs(x) + AJpRr(X) (4) Therefore, we will only calculate derivatives Qfpgr(x)
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with respect toa;, ¢ = 1,...,n,. It follows from (5) that > ¢:(t)(pi/p)" and fo(t) = >0, hi(t)(pi/p)', Where
(0JppiR/da;) = 2310 f( )( f(t)/8a;). Since g:(t) andh;(t) are polynomials of degreds — 1 and2k; — 1
respectively. It follows from (8) that > 7. In the subse-

9 9 e . , quent discussion, we will use this fact to approximate grad
f(t) _ F(CJQTFV)CJQTFth’/ . . .
D = Oa; Jrem(x) and its length with the dominant components.
—0.5 To simplify discussion, we assume thpt| > |p2| and
05 i irmu(t—i) lp2| > |ps| = -+ > |pm|, although similar results can be
- _ / P T derived even whetp;| = |p2|. Note that
J AQ(pCjQﬂ'V) \ ,
- <P1> 1 _i_zm: gk (%) <pk>
= —p " t—1 7 f t) = g t — —
p " fat —4) () ®) =a(®) o — g1(t) \p1
therefore )t )
a7 T+M = g1(t) <7) (1+o(t™)) 9)
“ga =% X JORE-D) t) | | |
@ =T 1 whereo(z) is a function such thdim,_.¢(o(z)/x) = 0. Let

. . gl(t) = akl_ltkl_l + -+ ag. Then
where f»(t) is the impulse response of A?(pz)

Now, we have to decide how to choose the values of the( )= apat® —1(14 Wom2,m1 Y0 e
WISE-specific parameter§:, A, and\ such that the gradients 9 -t Qg —1 Oy —1

of the costs (1) and (5) are (almost) identical inside S and the  — , _ -1 (14 o(t703)) . (10)
steepest descent lines of (5) that stardficonverge taS. Al-

though it is difficult, if possible at all, to give a precise formulddence
that would produce the best values for those three numbers, it t
is still possible to provide practical guidelines that allow the de- f(t) = oy, _ "1} <&> (T4+0ot™) (1+0(t7°?)).
signer to make a sensible choice of their values. Lemma 2 gives P

11
a few properties ofpgr (x), knowledge of which will help to In a similar way (1)
formulate guidelines for selectirifj, M, and A
Let [Ix|] = D i OF and oki—1 [ P1 ' —1 —05
om0 /ST TGOS G, 0= ot () (ot (14 0 (0%
Note that|| - || is a pseudo norm sincéx|| can be zero (12)
even throughx # 0. On the other hand|| - ||» is the Since(t—)?*1~1 = #2*1=1(14 o(¢~%)), we can combine (8)
Euclidean norm (length) of its argument. with (11) and (12) to obtain
Lemma 2:If M = ng,, T > ng, then 4
—0i ' - 0JpEIR g : i\
a) .].I)EIR(X) = 0ifand only if x € Sy; 5 o —2p7" Z gy 1Bk, 172 <_>
b) 111n||x||_>oo JPEIR(X) = 0 a; t=T+1 P
¢) gradJpgmr(x) = 0ifand only ifx € So; M AT 4r)—i
d) it o || grad Jperm (x)]12 = oc; =t o () (13)
e) fxeS thenlimT_>oo ||grademR(x)|| =0. =1 P
Proof of this lemma is given in the Appendix. wherey = —2a, _1fhax, _1. By extracting the dominant com-

It follows from Lemma 2(c) that ifM = n,, T > n,,
and X\ = 1, then Jwisg(x) # O for everyx € U. Since
gradJyis.(x) is @ continuous function ok therefore there ex-
istse > 0 such that for everg € U gradJyi.(x) # 0 for
A €[1—¢e,14c¢] Thisimplies thatifl —e < A < 1, then
Jyise(X) has no local minima i#/ or, in other words, all its
local minima are located insidg. In such a case, minimizing
(5) yields a stable filter. In the reminder of this paper, we will||grad Jpgr (x)
assume tha¥/ = n,, althoughA/ > n, can do the job as well.

. . 2T M

Now, we need to make sure thiggrad Jprrr(x)||2 is suffi- ~ |y |72 <@> Z |p_2|i
ciently small insideS so that grad/,,i.(x) in this area is domi- p — L
nated by grad'w.s(x) and very large idf so that grad/,ise(x) =
is dominated by/pgr (x)S outsideS. Thesis (e) of Lemma 2 It is clearly visible from (15) that ifp;| < p, then for suffi-
suggests that we can achieve at least the first goal by selectiiently large values of” ||grad Jpgmr(x)||2 is small. On the
sufficiently large value of". The discussion below will give us other hand, whefp;| > p, then||grad Jprr(x)||2 is large. We
better understanding of hdivaffects the size of gradrrr(x) propose to choosE in such a way that when the poirtmoves
and will help to choose its value in a rational way. across the transition ared, the gradient increases its length

It can be easily checked that the impulse responsesrtain amount of times. Let the transition area be described by
f(t) and fo(t) used in (8) are given byf(t) = limitsimposed orp; : |p1| € [Pumins Pmax), Wher€pmin < p

ponents of (13), we obtain

a]PEIR & n\7 M n\>"
yI3 2 2 T =1 . 14
da; < p ) 2 < p ) (14)

=1

Now, we can approximatggrad Jpgms (x)||2 as

o

M n 2T
> (%) (1)

=1
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and pn.x > p- Let x;, be the point in? appropriate to more efficient procedures may also need access to the gradient
|p1] = pmin @Ndx,,ax be the point appropriate 11| = pmax. a@nd even the Hessian of the cost [22]. Therefore, we provide
Define #n=(||grad Jprir (Xmax)|l2)/(/|grad Jprmr (Xmin)||2).  here analytical formulation of these derivatives and formulate
We will demand thay, is sufficiently large. It follows from (15) practical guidelines on how to calculate them numerically.

that The gradient of the WISE cost can be obtained analytically
o7 : by using
‘E-erzl (%) Yool Pmak 2T 0.5
0~ — <pméx> aJVVISE(X) . 2(1 _ )\) / E(L/)W(L/)
S ()[R P AW)
—0.5
_ < M)QT. (16) x I2 VR gy, 0o <k <ny, (20)
) Pruin - ) ) &]LSE(X) = —2(1-)) / ww(L,)ej2ﬂvldl,
Assuming that the transition area is very thin and, herames Oy A*(v)?
not drift away much inside7 when travelling fromx,,, to —03
Xiax SO thatXmin & Xuax, We can claim thap; max = P1min iy
and puax & Pmin. IN such a case; ~ 1, and — 2 tz; f -1 0<I<n,.
p 2T (21)
e <E> . a7 _ _
Prmin The Hessian offwisk(z) can be obtained from
Therefore, if we demand that> 10", then we should choose 0.5
T such that 0 Jwrsn(x) _ 21— \) / W)
. b, 0b; |A()|?
S 0.5N (18) _05
(10g10(pmax) - 10g10(p1nin)) ' X exp [‘727TI/(]C — l)] dl/ 0 S k,l < ny (22)
It follows from (18) that one can narrow down the transition aregm = —2(1-))
J and/or enlarge the ratipbetween the values ofpgr(x) on ObrOay .
both sides of7 by increasindg’. For example, if we demand that 0.5 GW ()
Pmax = 1.0050, prmin = 0.995p andn > 10V, then we obtain X < Ao o [j2rv(k — D] dv
T > 115N. However, if we seleCpy.c = 1.003p, pmin = 0.5
0.997p, then the recommendation?s > 192N. The authors’ 0.5
experience shows that usually, it suffices to tdke [100, 500]. + E@)W(v)
Even if the ratio between|gradJpgr(x)||2 inside & o A (w)?
and insideS is very large, we still have no guarantee that —08
gradJwisr(x) in these areas is dominated by grtaghr(x) x exp [j2m(k + 1)] du)
and grad/wis(x), respectively. However, we can gain this
confidence if A is chosen so that\||grad.Jpgr(x)|| and 0<k<ny, 0<I<ng, (23)

(1 — A)||gradJwis(x)|| are approximately equal iff. Note 0.5

that whenx € B, then|p;| = p. It follows from (15) thatina 9*Jwise(x) _ (1= <2 W ()2 = g,
—0.

co

typical case wherk; = 1 dapOay

1

0.5
Y E()G*(v)
lgrad \Jpmm(x)|l, = AWTM | > p%.  (19) +4 TW(u)

1

=1 0.7

Hence, the value of that matches the lengths of both weighted
gradients is inverse proportional . Our experience shows

x exp [j2m(k + 1)] dl’)
that for the values of’ recommended in this paper, a sensible

T+M
choice ofA is in the rangg10—1°, 10~3]. It is worth noting that 4 Ap Z (2falt — k) falt — 1)
the largel is the less sensitive is the resultant filter to the value =
of A. This fact is clearly illustrated in Example 3. T4 fst—k—1) 0<k, <n, (24)
B. Gradient and Hessian of the Cost Function where f3(t) is the impulse response dfA%(pz).

Cost (5) can be minimized with use of practically any gen- ) .
eral-purpose numerical algorithm capable of solving multigfe: Practical Aspects of Calculating the Cost and Its
mensional, nonlinear optimization problem without constraint8€rvatives
Normally, such algorithms require access to a subroutine calcuit follows from (5) and (20)—(24) that every time we need to
lating the cost to be minimized. More sophisticated and usuafipd out the values of the coskyisg(x) and its derivatives, we
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have to calculate a few integrals. In a few benign cases, the ex- [Il. NUMERICAL EXAMPLES
pressions will have forms permitting closed-form integration to

be done, butin most situations, we propose to use approximat{gpg using WISE approach. The method has been implemented
of the integrals with finite sums. Since the function integrated IR MATLAB with use of the Optimization Toolbox, version

(5) is periodic, we can approximate the integral in that eXPres- 1o minimize cost (28), we have used functionnund22],

sion as follows: which is capable of solving nonlinear minimization problems
without constraints. The function utilizes both the gradient and
the Hessian of the cost.

In this section, we present examples of designing digital fil-

0.5 1
EWE* ()W (v)dv = /E(l/)E*(l/)W(l/)dl/

—0.5 0 A. Example 1
1 N_lE o W In the first example, we design a high-pass filter whose spec-
~N z_: (N) (N) (N)' ifications were proposed in [11]. The required frequency re-
=0 (25) Sponse is
o ) ) e if v > 0.25
In a similar way, we can tackle integrals in (20)—(24). For ex- Hp) =9, it |v] <025 (29)

ample, integrals in (20) and (22) can be approximated with
and the size of the filter is described by = n, = 14. To allow

0.5 a transition band in the filter's response, we introduce a weight
E@)W(v) I2mvk gy, function in a similar way to what was done in [11}/(») = 0
J A*(v) if || € [0.2375,0.2625]; otherwise,W(») = 1. In order to
o N1 stabilize the filter, we chosg = 1 and created the following
1 E(%) W(%)cﬂ”f% (26) WISE criterion:
N n=0 A (%) 0.5
05 W(v) expli2m(k — D]y Jwrs = 0.9999 |G(v) — H)|? W (v)dv
AR T 05
—0.5 513
N-1 n 0.0001 t)?. 30
RSNt o0t 2 10 #
N n=0 |A (%) ? i i
n(k —1) B The results are compared to those presented in [11]. Fig. 1 shows
X exp [(7'2% N } =y (k —1). (27) the plots of magnitude of weighted frequency response errors

for both filters. Note that the results obtained by WISE method

Note that all summations that replace integrals in (20)—(249mpare very favorably with the outcome of [11]. The reason for
are in fact inverse discrete fourier transforms (IDFTs) of appr8i€ difference in the quality of the filters is that WISE method
priate spectra. Time and computational effort can be saved #ipwed the search for solution throughout the whole space of
deploying here the inverse FFT algorithm, provided tNagx- stable filters, whereas the approach in [1"_1] restnctgd the search
ceeds sufficientlys, -+n,. The only problem with this approach© @ Subset described RE)] > 0; see iii) in Section III of
is that the argumerit —  that appears in (22)—(24) can go negth'_s paper. Fig. 2 shows the plots qf [Ré»)] for both _fllters.
ative. When inverse FFT is used in formulas similar to (27), t{&iS obvious from these plots that filter that we designed was
argument is allowed to vary only between 0 avd- 1. This lim- excluded from the set of admissible solutions in [11].
itation can be overcome by exploiting periodicity of the IDFT,

e.9. Do (k — 1) = Lp[(k — ) mod NJ. B. Example 2

It is worth mentioning that the approximated gradient and This example shows how the WISE method can be utilized to
Hessian calculated with use of formulas similar to (26) and (2@sign filters that are optimal in the sense of weighted Cheby-
are in fact the accurate gradient and Hessian of the approximaséév norm. This objective is achieved with use of a modified
cost function calculated with use of (25). Therefore, when apawson’s algorithm. We follow, to some extend, the concept
proximations like (25) and (27) are applied for calculating théat was successfully applied for FIR filters [2]. The basic idea
cost, its gradient, and the Hessian, the original problem of migf the approach is to solve a sequence of WLS (in FIR case)
imizing (5) is practically replaced with the demand of minior WISE (in IR case) problems with the weight function being

mizing a summed version of the WISE criterion modified as follows:
LN Wi(v) = Wi_i(v)envel(|Wo(v) Er—1(v)|)- (31)
. - n n n
; =— 2N E(=)E* (= —
Twisn(x) N nz::O (N) (N) W (N) Here, Wo(r) denotes the weight for the Chebyshev norm,
TaM whereas enve||Wy(v)E,_1(»)|) is the envelope of the mag-
+A Z F(0)2. (28) nitude of the weighted frequency response error. The objective
s is to design a filter that minimizesax |Wy()E(»)|. The
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WISE method

The method
i —~ 4
A proposed in [11]
E ‘:“ T RN
R A VA R e
: S 0| \J Pt

Magnitude of the error [dB]

The method
7| proposed
in[11]
WISE method g
-600 0.1 0.2 03 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency Frequency
Fig. 1. Magnitude of frequency response error for both filters. Fig. 2. Comparison of for both filters.
filter that we attempted here was a two-band filter whose ideal TABLE |

VALUE OF THE WEIGHTED CHEBYSHEV NORM AS A FUNCTION OF THE

frequency response was given by NUMBER OF NONZERO POLES OF THEFILTER

H(v) = {exp(—]'27rl/14.3), When|1/_| < 0.25 (32) N, | Joneby | Da| Joney | Ma | Joney | Da | Jcnewy
0.5 exp(—327120), otherwise. 0 |02605| 401211 8 |0.1452 | 12 | 0.1611
1 | 02625501236 | 9 | 0.1191 | 13 | 0.5744
Note that the required delay of the filter is 14.3 samples in the 2 | 0.1133 | 6| 0.1180 | 10 | 0.1859 | 14 | 0.5590
low-frequency band and 20 samples in the high-frequency band. 3 | 0.1141| 7| 01182 | 11 | 0.1755 | 15 | 0.7232
Moreover, the required magnitude response of the filter drops
down from unity in the low-frequency band to 0.5 in the high 03
frequencies. We allow a narrow transition band by using the FIR filter

following weight function for the Chebyshev norm: 2504 A A A Co s

0, when0.23 < |v| < 0.27

1, otherwise. (33)

wa(r) = {

An additional requirement is that the maximum magnitude of
the poles of the designed filter should not exceed- 0.95.
Here, we will design a family of optimal filters, each of them

T

Frequency response error

. . . IIR filter
having 31 coefficients to tune, i.en, +n, + 1 = 31. We 0.05}
start with FIR filter (n, = 0) and then gradually increase
this number, ending up with so-called all-pole structure % 01 02 03 04 0.5
(n, = 30,7, = 0). For the needs of the PEIR part of the Frequency

criterion, we always us& = 300, M = n,, andA = 0.00001.
Table | shows the value of the weighted Chebyshev norm Fig. 3. Frequency response error of FIR and two-pole IR filter.
obtained for filters withn,, € [0,15]. Notice that the best IIR

filter was obtained whem, = 2. Fig. 3 shows the weighted

magnitude of the frequency response error for FIR filter and for 20
the best IIR filter. Finally, Fig. 4 shows phase delays and Fig. 5
magnitude responses of these filters. Note that the IIR filter is
significantly better than its FIR counterpart.

C. Example 3

Phase delay
2

This example illustrates how sensitive the WISE optimal fil-
ters are to the choice @f and\. We analyze two features of the
filters: their quality (as measured by WLS cost) and the largest 1431
magnitude of the filter poles.

The target frequency response is the same as in Example 2.
The permissible radius for the filter poles is agais 0.95. The
structure of the filter is defined, = 4 andn;, = 26. Inthis case,
our objective is to design a filter that minimizes WLS cost rather Fig. 4. Comparison of phase delays of FIR and IIR filters.

IIR filter

FIR filter

0 0.1 0.2 0.3 0.4 0.5
Frequency
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1.4 significantly whenT increases, it means thétis sufficiently
. large, and the gradient ofpgr is small enough to allow the
’ local minima of Jyw1sg to stay at the positions of local minima
o 1 of Jwis inside S. Such subtle tuning of” and A is needed
g T IR filter ; , ,
g only when the designer needs to approach the optimal solution
g 08 very closely. Otherwise, one or two iterations of choosifg
< 0 and A suffice to obtain a satisfactory filter.
= 04} b [V. CONCLUSIONS
FIR ﬁlter‘;-: i
02 i A new approach to designing IIR filters whose frequency
. responses approximate an arbitrarily chosen complex-valued
0 - function has been presented. The method allows control of pole
0 0.1 0.2 0.3 0.4 0.5 ” ) ) . Lo
Frequency positions of the designed filter by confining them to the interior

of an origin-centred circle with selectable radius. The novelty of
Fig. 5. Magnitude responses of FIR and two-pole IR filters. the approach consists in such reformulation of the problem that

it can be solved as an optimization problem without constraints.

This is achieved by expanding the popular WLS criterion
i) 1.00 to embrace another time-domain term—PEIR—which, if
properly used, preserves local minima of the original cost
inside the permissible area and removes all local minima
outside it. The new criterion is called the weighted integral of
the squared error (WISE). It is worth mentioning that if the
WISE specific parameters are selected as recommended in
this paper, then in the case of FIR design, the WISE criterion
automatically collapses to WLS. Therefore, the new criterion
can be considered to be a natural and seamless expansion of
\ WLS. The gradient and the Hessian of the WISE cost function
'}2300 2500 0.92 have been obtained to allow implementation of the method by
using virtually all general-purpose optimization packages. The
proposed approach has been tested on a number of design tasks
and proved to be robust, efficient, and fast in delivering good

Fig. 6. Sensitivity of WISE-optimal filters to values @f andA. Solid lines: qual'ty results.
WLS cost. Dashed lines: maximum radius of poles.

WLS Cost
Maximum radius of poles

10 10 10 10° 10’

APPENDIX

than the Chebyshev norm of the weighted error. Function (39)
is used as the weight in WLS part of the WISE criterion. We sét Proof of Lemma 1

M = 4. The other two WISE-specific parameters are varied. Necessity(=): If A(z) has all its roots insid€’(p), then

T takes three different values (300, 500, and 700), Whe«keai’(z) is stable, and its impu|se response Sati@égo f(t)| <
changes on a logarithmic scale betwel@T?® and 0.99. For . This implies thatim, .. f(¢) = 0.

each pai(T’, A), we design a WISE optimal filter and record its - gyfficiency(<): O
quality, as measured by WLS criterion, and the largest radius off et 1, (¢) be the impulse response B, (z) = » ™« / A(pz).
the filter poles. The results are shown in Fig. 6. Note that botfjnce

analyzed features of the filter are not very sensitive to the choice

of A. Moreover, the sensitivity decreases whEmoes larger. F#) = Finlt +n4) (A1)
Note that in this example, some minimum value)omust be

maintained to confine the poles to the interior@fp). If Ais it suffices to prove that ifim,_. . f,.,(t) = 0, then polynomial

increased above this value, the poles stay inside the permissiffe ) has all its roots insid€(p). We can modek,,(z) as a

deterioration occurs wheh approaches 1. ~ functions are: =1 /(1 — pi(pz)~1). Let the output of théth sub-
Analysis of the results in this example suggests a simpigstem is the input to thet 1st subsystem, and let the numbers

method of verifying whether or not the value bfvas correctly ;- satisfy|p;| > |ps| > --- > |pn,|. By denoting the input,

chosen. First, if for = 0 all poles of the filter are insid€'(p),  output, and the state of each subsystem;ag;, ands;, respec-

then WISE design reduces to the WLS approach. Otherwiggely, we can build their state-space models:

A should be increased until the largest magnitude of the filter

poles equaly. It is also possible to check whether or not the . .

value of T" is properly chosen. If the quality of the filter de- si(t+1) =pip~ si(t) +ui(t), fori=1,....n, (A2)

signed withA being tuned as described above does not change yi(t) = s;(t), fori=1,... n,. (A3)
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These can be combined into one state-space modeé),6f) thatF, (=) = l*f(a—lz). By using partial fraction expansion, we
with »(¢) = u1(¢) being the input ang(t) = v, (¢) being the can represent’(z) as
output signal

m ki -1
Zz:o Cli®

F(z) = — (A8)
s(t+ 1) = As(f) + Bu(#) (A4) = (1 —prp~tz=H)™
t) = Cs(t A5
u(®) ®) (A3) Therefore
where R il Mopaly !
Fa(z) _ (1 ZC:O Cl;o& z l)k. ) (A9)
— — pEp tazT )
plp717 07 ) 07 0 1 = brp
-1
Al Lo pp, 0, 0 2|0 The impulse response of,(z) is fo(t) = Yt
: . . ’ : Sy cicd (apip )y, (£ — 1), where v, (t) are poly-
0, 0, ey 1, pupt 0 nomials whose coefficients depend only on the multiplicity
s51(t) of the appropriate pole, e.gui(t) = 1, va(t) = ¢t + 1,
s2(t) v3(t) = 0.5¢2 4 1.5¢ + 1, etc. Now, we obtain
C=[0,...,0,1] ands(t)= :
. m  k;
$n, (%) fa®) = > > a (™)' o, (t-1) = o' F(1). (AL0)
=1 1=0
_ t
IF follows from (A4) an.d (Ab) thatf,,(t) = CA'B. If It follows from (A10) and (5) that
lims— 00 fn(t) = 0, thenlim,_, ., f,,,(¢) = 0, where
T+M
_ 2t g2
£ () = in(8), Funt + 1), o Font 410 = D]r (AS) ol = 2 <10 o
Vector f,,(t) can be expressed af,(t) = Oys(t), Let us impose an additional constraint en namely, that
where the observability matrixOy; is given by Oy = Jremr(X) < Jpemw(x) for all x such that|x|| = 1.
[(ATYCT, ... (AT)*1CT]T. Since de®y; = 1, the Now, if we choosex such that|x| = [x(«)l, then
observability matrix is not singular. Hence Jrer(X(@)) ; MJPEIR(X)- Since x¢S, and therefore
JPETR(X) = Et:T+1 fQ(t) 7’é 0, we see that]me(x(a)) is
a polynomial ina with non-negative coefficients such that not
s(t) = O () a7 2P “ 9

all of them are zero. Henclm, .« Jremr (x(«)) = co. This
implies thatlim|| oo J/PEIR(X) = o0

andlim; ... s(t) = 0. Consequenthyim, .., s1(¢) = 0. By
using (A2), we obtairs,(t) = (p1p~*)'. Thereforep > |p1|.
Since all other numberg; have magnitude no larger than,

Thesis (c): Necessit{=): The initial n, + 1 elements of
gradJprr(x) are always zero. Therefore, it suffices to prove
that when grad, Jprir(x) = 0, thenx € Sy, where

we conclude that all of them are insidép). O

grad , Jpek(x)= [ Hepmnls),

Lo Y] (A1)
B. Proof of Lemma 2 '

Thesis (a): Necessity=): Note that/pgr = 0 implies SinceM = n,, it follows from (8) that

f&) =0t =T+1,T+2,...,T 4+ n,. Using notation
introduced in the proof of Lemma 1, we can describe this obgrad, Jeemr(x) = — 2[f(T + n.)
servation as,,,(I' + 1 + n,) = 0. It follows from (A7) that X f(T+ne—1),..., f(T+1)H:R

s(T + 1+ n,) = 0, and consequently; (T + 1+ n,) = 0.
Sinces (T + 1+ n,) = (p1p~t)T 1+« we conclude that
p1 = 0. Thisimplies thap; =0fori =1,2,...m

Thesis (a): Sufficiendy=): If = € So, thenF(z) = 1.
Therefore,f(¢) = 0 for ¢ > 0. This implies that/pgr = 0.

(A13)

whereH; is n, x n, Hankel matrix shown in (Al4) at the top
of the next page, anR is a diagonal matrix

Thesis (b): Letx = [ay,...,an,,b0,-..,bn,] € P be such L0 0
that ||| = 1. Denote the poles of the filter represented by 0 p_’Q ’
X aspi, ..., pm- Let X(a) € P represent a filter with zeros R = ’ o ’ (A15)
identical with zeros ofk and polegagpy, . .., ap,,]. It can be :
easily verified thatim,, ... [|l(a)|| — cc. LetF'(z) = [ (1— o 0 o
=1
m Since the length of one side #1,(n,) is not greater than the

o~ 2R and F(2) = [ (1 — (agr)p~'2z~1);*. Note

Faiet order of the system whose impulse response was used to gen-
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f2(T+na_1)a f2(T+na_2)a R fQ(T)
fQ(T+7la—2), fQ(T+7la—3), L) f?(T_l)
H>; = . : : (A14)
fQ(T)7 fQ(T_]-)v s fQ(T_na+1)
lorad yJemm(x)ll2 = 24/ [a1. @z ... an,HHRRTHFH™[a1, az, ..., an,|" (A18)

erate the matrix £(z) = 1/A2(pz) is of order2n,), then  [3]
detH,) # 0[23]. X X
Now, note that the impulse responseofz) = 1/A(pz) 4]
can be generated using recursive formult) =
—>ore ptaif(t — ). Therefore, (A13) can be put as 5
gradA.]pEIR(x) = —2[&1, ar, ..., G, ]HHQR [6]
(A16)
whereH is then, x n, Hankel matrix 7
H= (8]
JT4na=1), f(T4+n.=2), ..., S(T)
f(T+na_2)7 f(T+na_3)7 (AR f(T_l) 9]
f(T)7 f(T_1)7 ey f(T_na+1) [10]
(A17)
(11]

Using arguments similar to those whéh, was analyzed, we
claim thatH is a nonsingular matrix. It follows from (A16) that (1
if grad, Jprr(x) = 0, thena; = 0foré = 1,...,n,, which
means thak € &;.

Thesis (c): Sufficienci=): If x € Sy, thenF'(z) = 1 and
Fy(z) = 1. Therefore,f(t) = 0 and fo(t) = 0 for t > 0. By
using (8), we conclude that gralhrr = 0

Thesis (d): We use notation introduced in the proof of
thesis (c). Note thatgrad Jpgr (x)||2 = ||grad, Joem (x)||2-
According to (A16) we obtain (A18), shown at the top
of the page. Note thalHH;R is a nonsingular matrix.
Therefore, HH,RR H] H' is a positive definite matrix.
Moreover, ||x [a1, a2, ..., an,]||l2. Therefore,
lim”x”_)oo ||grad]pEIR(x)||2 = 0.

Thesis (e):If x € S, then bothF'(z) and F»(z) have

[13]
[14]
[15]

[16]

(17]

(18]

their poles insideC(p). Hence, according to Lemma 1 [19]

lim; o f(¢t) = 0, andlim; ., f2(t) = 0. This observation

along with (8) implies thalimy_, ., ||grad Jpgmr (x)|| = 0. 201
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