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ABSTRACT 

A model of viral infection of monocytes population by dengue virus is formulated in a system of four ordinary differen-
tial equations. The model takes into account the immune response and the incidence rate of susceptible and free virus 
particle as Beddington-DeAngelis functional response. By constructing a block, the global stability of the uninfected 
steady state is investigated. This steady state always exists. If this is the only steady state, then it is globally asymptoti- 
cally stable. If any infected steady state exists, then uninfected steady state is unstable and one of the infected steady 
states is locally asymptotically stable. These different cases depend on the values of the basic reproduction ratio and the 
other parameters. 
 
Keywords: With-In Host Model; Dengue Viral Infection; Basic Reproduction Ratio; Beddington-DeAngelis Immune 

Response 

1. Introduction 

Dengue is an infections mosquito-borne viral disease. It 
is estimated that about 50 million infections occur annu- 
ally in over 100 countries [1]. There is no specific treat- 
ment for curingdengue patients. Hospital treatment in 
general is given as supportive care which includes bed 
rest, antipyretics, and analgesics. Most dengue infections 
are asymptomatic. Few of them suffer dengue fever and 
dengue haemorrhagic fever, which may end up in fata- 
lity.  

Dengue virus is one of the most difficult arboviruses to 
isolate. There are four serotypes of the dengue virus and 
each of the serotype has numerous virus strains. Infection 
with one dengue serotype may provide lifelong immunity 
to that serotype, but there is no cross-protective immu- 
nity to other serotype, [2]. Identification of the primary 
target cells of dengue virus replication in infected human 
body has proven to be extremely difficult. It is generally 
believed that the target cells of dengue virus are mono- 
cytes or its differentiated cells the macrophages [3]. 

It is usually believed that dengue virus is quickly cleared 
in human body within approximately 7 days after the day 
of sudden onset of fever [1]. Naturally this clearing pro- 
cess is done by the immune system which is a result of 
complex dynamic reactions. Following [4], in this paper 
we try to understand the process using a mathematical 
model.  

Mathematical modeling of dengue disease transmis- 

sion in human and mosquito populations has been done 
since the beginning of last century. Some of the recent 
models could be seen in [2-5]. Several studies on infec- 
tion model within human body have been done for vari- 
ous cases [2,3] and [5-11]. Meanwhile, mathematical 
modeling for with-in host dengue viral disease is quite 
new.  

The model for with-in host dengue viral infection with 
Beddington-DeAngelis incidence rate and immune re- 
sponse is as following.  
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The constant , is the rate constant characterizing 
infection of the cells. The constants 

0a 
,   are positive.  

In the above     , ,S t I t V t   and  Z t



  repre- 

sent the density of susceptible monocytes, infected 
monocytes, free virus particles and immune cells in 1 μl 
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blood at time t, respective. The production of susceptible 
monocytes by bone marrow is assumed at a constant rate  

μ and the life span of susceptible monocytes is 
1


. The  

flow from susceptible monocytes to the infected mono-
cytes depends on the incidence rate of susceptible mo- 
nocytes and free virus particle. This rate is shown by  

1

SV

S V  
 where 

1

aS

S V  
 is the incidence re- 

sponse of susceptible monocytes to free virus particles. 
The period of infected monocytes is assumed constant as  
1


. We assumed virus multiplication is at constant rate  

k and the virus clearance rate is at constant rate  . We 
also assumed the immune cells are produced at constant  

rate   and their life span is 
1


. Moreover we assumed  

there is stimulation of immune cells production due to 
the increase of infected cell which is proportional to the 
density infected monocytes at a constant rate c as well as 
from the contacts with infected cells at the rate d and the 
immune cells will eliminate the infected monocytes at a 
constant rate v. Finally, the positive constants   and 
  have some biological meanings.  

The above model is valid for only one serotype of 
dengue virus circulate in an infected host and dengue 
infects monocytes in blood stream.  

For more detail the reader is referred to [4] and refer- 
ences therein. 

The local stability of the equilibrium points of the sys- 
tem (1) for Lotka-Voltera functional response i.e.  

, has been discussed in [4]. The model (1) is a 
generalization of the self-regulating cytotoxic T lym- 
phocytes (CTL) response model. The predator-prey like 
CTL response model and the linear immune response 
model in chapter 6 of [5]. 

 S aS 

In this paper, we will analyze the global of stability of 
the viral free equilibrium for Beddington-DeAngelis in- 

cidence response, 
1

aS

S V  
. In fact we will show  

that if this equilibrium is the only rest point of the system 
(1), then it is globally asymptotically stable. If there are 
some other equilibria, then the local stability of them 
depends on the values of the parameters. 

2. Global Stability of the Uninfected  
Equilibrium 

In this section, at first we will find the equilibrium points 
of the system (1) and the eigenvalues of this system at 
these points. This information leads us to prove the locally 
asymptotical stability of the equilibrium points. 

At an equilibrium point of the system (1) we must 
have  

1

1

0,
1

0,
1

0,
1

0

aSV
S

S V

aSV
I IZ

S V

aSV
kI V

S V

c I dIZ Z

 
 

 
 


 



     
     

   

 
   

         (2) 

From the first equation we obtain, 
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Substituting this value of V into the third equation yields,  
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  is one of the equilibrium points of the  

system (1). If,  
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then  

3 2
3 2 1 0 0,q S q S q S q               (3) 

where,  

  3 1q dk e a b e a        , 
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In the following we consider the stability property of 

the equilibrium point . In order to do this we check 
the sign of the eigenvalues of Jacobi matrix of (1) at . 
The Jacobi matrix is  0y
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   The eigenvalues of  0yJ  are the roots of the charac- 
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Clearly, 1x , 2x  and 3x  have negative real part. If 

4x  has negative real part, then the equilibrium 0  is 
locally asymptotically stable. But 

y

4x  is negative if and  

only if, 1

1
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 . This condition equals 
Thus, 1x    and 2x    are two of the eigen- 

values and the other two are the roots of 
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to, 
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. This number is called  

the basic reproduction ratio [7].  
Therefore we have the following theorem. 
Theorem 2.1. If, 0 , the equilibrium point 0  is 

locally asymptotically stable and if , the equilib- 
rium  is unstable.  

1R  y

0 1R 

1
0

Now we will show that if, 0 , then the equilib- 
rium, 0  is globally asymptotically stable. In order to 
see this, first of all consider the following domain in the 
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. Since on the sur- 

face  , , ,K S I Z V C  of the boundary of , we 
have 

CQ
0S    and * 0    and  

  * 2
1 01 R   0   , therefore 

d
0

d

K

t
 . Thus the flow  

gets into  on, CQ  , , ,K S I Z V C

0C 

. Hence the flow 
gets into CQ  from its boundary. Therefore  is an 
attractor in D for all . But 

CQ

0 0C C . Thus 

0  is a global attractor. Thus we have proved the fol- 
lowing theorem.  

y   Q
y

Theorem 2.2. If, 0 1R  , then 0  ,the uninfected 
equilibrium is the only equilibrium of the system (1). 
Moreover this equilibrium is globally asymptotically 
stable.  

y

Since 0  is globally asymptotically stable for 0y 1R  , 
any other equilibrium points of the system (1) cannot 
exist for 0 1R  . Therefore,  is the unique equilib- 
rium point for 

0y

0R 1 .   

3. Stability of the Other Equilibrium Points  

In this section, we consider the stability of the other rest 
point of the system (1). In order to this, we consider the 
Equation (3). First, we consider this equation for 1 0c   
and then for 1 0c  .  

There are two cases for  as follows. 1 0c 
Case 1. 0c d   
In this case, the system (1) has two equilibrium points, 
 and another one. To see this, from the first equation  0y

of (2) we obtain, 
1

aSV
S
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. Since 0c d    

from the fourth equation we get . Substituting 
these values of V  and 

0Z 
Z  into the second equation  

yields, 
1

S
I

 



 . By using the value of I  and the  

third equation we get 
  1

1

k S
V

  
 

 
 . Using these  

K S I V Z  along the orbits of 
the system (1), we obtain: values into the Equation (3), we obtain,  
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Thus one of the roots is x   . The other roots are 
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 3.1. If, , then the equilibrium point 
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2 1,q q  
d 0q  we see that 2 1,q q  and are po ve. More- 

over, it is easy to che at, 2 0q q q . By the Rouths 
Hurwitz Criteria, all roots of th lynomial have 
negative real part. Therefore we have the following 
theorem.  
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If  and ,  

then 
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librium y1 , is locally asymptotically stable and for  
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4. Numerical Simulation 

For the following numerical simulations, we use para- 
meters of T-cells as the parameters of immune cells, those  

are  80 cell day μl   , 
1

3
   days. The estimated va-  

lue of   is obtained by assuming that the equilibrium 
value of the density of immune cells in the absence of 

us of the disease depends 

disease. On the contra the inc

infection is 2000 cells. 
In this model the endemic stat

on the individual response toward incoming viruses. The 
larger the invasion rate a , the chance is higher to catch 
the rease of the elimination 
rate 

ry 
  of infected  o cell, the risk f infection is lower. 

For 1   ,
1

1 ,y

   0.265 cell day μl   ,  

0.5, 0.8, 0.0c 1, 20, 0.001, 0.03k d    
ha

   , we 
ve 

For 1, 0    we obtain the same result in the 
above table.  

If 0, 1    then for the same value of parameters 
we ha e the following table. v

5. Conclusions 

In order to understand the main characteristic of De
ry, the author in [4] assumed that this virus can be 

el ed by immu
e system (1). 

 using linea
he existence of the endemic 

rom the analysis of the endemic 

ngue 
myste

iminat ne response which is described by the 
last equation of th

By r incidence rate of susceptible and free 
virus particle, they analyzed t
virus equilibria.  

In this paper, f
equilibria it is found that, for Beddington DeAngelis in- 
cidence rate of susceptible and free virus particle, the 
same results are valid. 

The reson for this correspondence is that in both models, 
the feature of the immune response is described by the 
term cI dIZ   . However, the parameter   in Bed- 
dington DeAngles makes the elimination of dengue virus 
by immune response in a shorter time. This fact can be 
seen by comparing Tables 1 and 2.  
 
Table 1. Status of equilibrium points of system (1) in the case 

1   . 

Status of system (1) 
a

0

 
R  Equiliburia points Statuse of stability

0.001 0.2041  0 240,0,0,0y   Globally stable 

 0 240,0,0,0y   Globally stable 0.002 0.2885

0.003 0.3531  0 240,0,0,0y   Globally stable 

 
Table 2. Status of equilibri m (1) in the case um points of syste

0  , 1  . 

Status of system (1) 
a  

0R  Equiliburia points 
 Statuse of

stability

0 240,0,0y   ,0 Un stable

 1 239.3557,0.3599,0.7292,0y   Unstable0.001 2.7811

Un stable

2y  Not exist

 0 240,0,0,0y   

 1 238.6419,0.7586,18.400,0y   Unstable

Not exist

0.002 3.5452

2y  

 0 240,0,0,0y   Un stable

 1 237.9324,1.1549,28.0127,0y   Unstable0.003 3.9844

2y  Not exist
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By Theorem 2.2, if the on number, 
is less than one, then uninfected equilibrium point, 
the only steady tate point of system (1) and it is g
asymptotically state. This means that the viru
minated by immune response. For larger values 

0R  

0  is 
ally 

s is eli- 

y
lob

 basic reproducti

 s

of   and 
 , 0R  is attractor and the virus is clea

If the basic reproduction number,  is more e; 
for , besides of the uninfec steady
wh  uninfected, there are some d te
Here we consider two cases of endemic virus. 

Fist, for , we have only one infected

more red much 
faster.  

0R
ted 

 infecte

than on

1 0c   state y0  
e. ich is  s ady stat

0c d   endemic 

1 . If 0y   , there is no immune response, so the dens  
of susceptible moncytes equal zero. In 0

ity
  , this de sity  

equals 

n



, so it does not depend on the other parameters  

for virus load of infected cell. For lager values of   and 
 , the infected endemic 1y  is closer to the uninfected 
endemic 0y  and it is more controlla

Second, for 0c
ble. 

   and 0d  , from Theorem 3.2 
we see that if d   is negative or positive small, then 
there is only one infected endemic equilibrium 0y  which 
is owever if stable. H d   is positive and large, then 

e endemi  virus equilibrium 2y  exists and is stable. 
This means that we found 
th c

  new threshold for 0R . For 
condition 0R  is less than this thresho  dynamic of ld the

dethe mo l is qualitatively same as the case 0c d  . 
When ld, we 

eq

 R0

endemic virus equilibrium, 2y  which is stable a  the 
uilibrium points 0y  and 1y

 is greater than th

 

is thresho have a n
nd

ew 

  are unstable. From the 
componen of the endemic equilibrium ts 2

ter the onset o mptom d  increases, the V  
and 

y  we see that 
af f  the sy , if 

I  compo equilibria decrease and the S  and 
Z-components of equilibria will increase. Conv sely, if 
a  and 

nents of 
er

  increase, the d I-components of equili- 
bria will decrease but the virus lo  increases at the initial 
viral infection.  

For case 1 0  and large and 0 1R  , the model has a 
unique endemic virus. The V  and 

V  an
ad

 c
I  compone s 

equilibr m point decrease as a  increases and the S  
and Z-components of it increa  as d  increases.  

Therefore, ,d a  and 

nts of thi
iu

es
  ar the important parameters 

to capture the phenomena that dengue v us is quickly 
cleared in a  shorter time.  

6. Acknowledgements 

The authors would like to thank the anonymous reviewers 

e 
ir

fo le 

NCES 

, “Dengue and Dengue Hemorrhagic Fever,” 
Clinical Microbiology Reviews, Vol. 11, No. 3, 1998, pp. 
480-496. 

[3] E. A. Henchal e Viruses,” 

6, 2009, pp. 1148-1155.  

r their valuab comments and suggestions to improve 
the manuscript. 

REFERE
[1] WHO, “Tropical Disease Research, Making Health Re- 

search Work for Poor People,” Progress 2003-2004, World 
Health Organization, Geneva, 2005. 

[2] D. J. Gubler

and J. R. Putnak, “The Dengu
Clinical Microbiology Reviews, Vol. 3, No. 4, 1990, pp. 
376-396. 

N. Nuraini, H. Tasman, E. Soewono[4]  and K. A. Sidarto, 
“A With-In Host Dengue Infection Model with Immune 
Response,” Mathematical and Computer Modelling, Vol. 
49, No. 5-
doi:10.1016/j.mcm.2008.06.016 

[5] M. A. Nowak and R. M. May, “Virus Dynamics: Mathe-
matical Principles of Immunology and Viroloy,” Oxford 

 and Methods in Ap- 
8, pp. 593-646.  

University Press, Oxford, 2000. 

[6] N. Bellomo, N. K. Li and P. Maini, “On the Foundation 
of Cancer Modeling: Selected Topics, Speculations and 
Perspectives,” Mathematical Models
plied Sciences, Vol. 18 No. 4, 200
doi:10.1142/S0218202508002796 

[7] C. Castillo-Chavez, Z. Feng and W. Huang, “On the 
Computation of R0 and Its Role on Global Stability,” In: 
Mathematical Approaches for Emerging and Reemerging 
Infectious Diseases: An Introduction, Springer-Verlag, New 
York, 2002, pp. 229-250. doi:10.1007/978-1-4613-0065-6 

[8] L. Esteva and C. Vargas, “Analysis of a Dengue D
Transmission Model,” Mathematica

isease 
l Biosciences, Vol. 150, 

No. 2, 1998, pp. 131-151.  
doi:10.1016/S0025-5564(98)10003-2 

[9] L. Esteva and C. Vargas, “A Model for Dengue Disease 
with Variable Human Population,” Journal of Mathe- 
matical Biology, Vol. 38, No. 3, 1999, pp. 220-240.  
doi:10.1007/s002850050147 

[10] L. Esteva and C. Vargas, “Coexistence of Different Sero- 
types of Dengue Virus,” Journal of Math
Vol. 46, No. 1, 2003, pp. 31-47.  

ematical Biology, 

doi:10.1007/s00285-002-0168-4 

[11] Z. Feng and J. X. Velasco-Hernandez, “Competitive Ex- 
clusion in a Vector-Host Model for the Dengue Fev
Journal of Mathematical Bio

er,” 
logy, Vol. 35, No. 5, 1997, 

pp. 523-544. doi:10.1007/s002850050064  

 

 

http://dx.doi.org/10.1142/S0218202508002796
http://dx.doi.org/10.1142/S0218202508002796
http://dx.doi.org/10.1142/S0218202508002796
http://dx.doi.org/10.1007/978-1-4613-0065-6
http://dx.doi.org/10.1007/978-1-4613-0065-6
http://dx.doi.org/10.1007/978-1-4613-0065-6
http://dx.doi.org/10.1007/978-1-4613-0065-6
http://dx.doi.org/10.1016/S0025-5564(98)10003-2
http://dx.doi.org/10.1007/s002850050147
http://dx.doi.org/10.1007/s00285-002-0168-4

