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Summary. A method of synthetic seismogram computation for teleseismic 
SV-waves is developed in order to treat quantitatively SV-waves in problems 
of body wave source inversion and source-receiver structure studies. The 
method employs WKBJ theory for a generalized ray in a vertically inhomo- 
geneous half-space and the propagator matrix technique for waves in near- 
surface homogeneous layers. Wavenumber integration is done along the real 
axis of the wavenumber plane and anelasticity is included by using complex 
velocity in all regions of the earth model. The near-surface source structure 
is taken into account in the computation for the case of the shallow source 
by allowing a point source to be located in the homogeneous layers. Source 
and receiver area structures are also allowed to differ. A general moment 
tensor point source is considered. 

Introduction 

SV-waves have received little attention from seismologists in comparison to studies of 
P-, or even SH-, waves. This is due to the relatively complex nature ofSV-wave propagation 
where receiver Sp conversions and shear-coupled PL-waves serve to obscure the direct SV 
arrival. Furthermore, they are poorly understood from a wave propagation standpoint. 
These facts make it difficult to use the SV-wave in standard travel-time studies and in 
detailed source mechanism studies. However, SV-waves potentially contain as much source 
information as P- or SH-waves from earthquakes and explosions, and they should be usable 
in earth structure studies in much the same ways as the other phases. The non-isotropic 
explosion problem (e.g. Langston 1983; Masse 1981) could benefit from the inclusion in 
source modelling studies of long-period SV data. Where observable, long-period SV-waves 
are intermediate in frequency content between the relatively short-period P-wave and long- 
period surface waves. Seismic anisotropy in earth structure (Crampin 1977; Ando, Ishikawa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Yamazaki 1983) may also be investigated by the combined use of SV and SH in waveform 
studies of upper mantle structure. In order to treat quantitatively the SV-wave in problems 
of body wave source inversion and source-receiver structure studies, synthetic seismogram 
computation for SV-waves is necessary. 
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There are a variety of approaches available for the computation of body waves propagat- 
ing in stratified media. Following Chapman’s (1978) divisions, these may be classified as 
slowness methods or spectral methods, depending on the order in which inverse transforms 
are performed. The slowness method includes generalized ray theory or Cagniard-deHoop 
methods which are useful when only a relatively small number of generalized rays are 
needed to build the solution of interest. Ray solutions may be exact (e.g. Pekeris, 
Abramovici zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Jarosch 1965; Helmberger 1968; Wiggins & Helmberger 1974) or be 
composed of a suitable approximation (Mellman & Helmberger 1978; Chapman 1978) of 
sufficient accuracy for a particular problem. Spectral methods include the reflectivity 
method of Fuchs & Muller (1971) and Kind (1978), direct numerical integration (Kennett 
& Kerry 1979; Kennett 1980; Apse1 1979; Wang & Herrmann 1980; Bouchon 1981), the 
locked mode method of Harvey (1981), and the ‘full wave’ method of Cormier & Richards 
(1976, 1977), Choy (1977), and Cormier (1980). The principal drawback of using most 
spectral methods for body wave computations lies in the high cost involved in the many 
layer matrix computations needed when parameterizing velocity gradients by many discrete 
horizontal layers. Several authors, notably Frazer (1977), Woodhouse (1 978), Chapman 
(1978), Cormier & Richards (1976, 1977), and Cormier (1980) have suggested the use 
of WKBJ or uniform asymptotic expansions to compute the effect of waves propagating 
in layers with smooth velocity functions. These approximations effectively reduced 
computation time by avoiding the fine layering needed to represent a velocity gradient. 

Frazer’s (1977) work is of direct importance to this study and motivates many of the 
approaches used here. He reduced the computational time in the synthesis of teleseismic 
SV-waves by using the Langer (1949) approximation in the radial wave functions for a 
generalized ray with a turning point in the mantle, and the spherical layer matrix in the 
crust. His theoretical formulation is especially convenient for the investigation of P-wave 
velocity gradients below the MohovoriEit discontinuity. Unfortunately, the method neither 
included the effect of near-source structure on SPL-wave excitation for shallow sources, 
nor anelastic attenuation. 

In order to overcome some of the limitations of previous methods for synthesis of 
SV-waves, and to provide more realistic interpretations of the seismogram, a comprehen- 
sive method of synthetic seismogram computations for teleseismic SV-waves is developed 
in the current study. The theory is formulated for vertically inhomogeneous earth structure 
in a cylindrical coordinate system (Fig. 1). Spherical models are incorporated by using an 
Earth-flattening transformation which produces the equivalent vertically inhomogeneous 
model (Muller 1971, 1977; Chapman 1973; Gilbert & Helmberger 1972). The method 
employs WKBJ theory for a ‘generalized’ ray in a vertically inhomogeneous half-space and 
the propagator matrix technique for waves in near-surface homogeneous layers (Fig. 2). 
Because teleseismic SV-waves are heavily influenced by the crust and upper mantle, the 
propagator matrix technique is applied to these regions allowing multiple reflections and 
conversions of P-S-wave phases in layers. The Sp-diffraction which is initially set up at the 
Moho is under the computational control of the matrix formulation. The scheme of the 
WKBJ ray in the structure below the low-velocity zone down to the lower mantle reduces 
the computational time significantly. Anelasticity is included by using complex valued 
velocity in all regions of the earth model. 

We show in the companion paper (Baag & Langston 1985) that the effect of near-surface 
source structure is important for SV and SPL generated from a shallow source, since large 
reverberations of P- and S-wave types leak into the mantle as SV-waves. This near-surface 
source structure is included in the calculation for the case of shallow sources by allowing a 
point source to be located in the upper layers with appropriate discontinuities in stress 
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Figure 1. Coordinate systems and conventions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 
VERTICALLY 

INHOMOGENEOUS 
HALF-SPACE 

PROPAGATOR 
MATRIX 

WKBJ 
T H E O R Y  

Figure 2. Schematic diagram for excitation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof SPL-waves by deep and shallow sources, and the 
mathematical techniques used in formulating the theory. 

and displacement at the source depth (Fig. 2). The downgoing SV-wave potential in the half- 
space is evaluated using propagator matrix techniques and then is converted to the WKBJ 
potential for a turning wave. The upgoing wave at the receiver interacts with receiver struc- 
ture. The WKBJ potential of the upgoing wave, evaluated at the half-space boundary in the 
receiver structure, is transformed to the potential coefficient used in the propagator matrix 
to generate the response for the near-surface receiver structure. The source and receiver 
structure are allowed to be different, since the SPL-wave is seen to be generated near the 
receiver but the radiated SV-wave near the source is strongly affected by source structure 
particularly for a shallow source. 

The solution is evaluated in the frequency domain by evaluating a wavenumber integral 
over a specified range of real-valued wavenumbers, and the result is inverse Fourier- 
transformed to get displacement at the free surface in the time domain. 
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WKBJ formulation for an inhomogeneous half-space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. -E. Baug and C. A.  Langston zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
me approximate Green’s function, Gij, for the directional point force with delta function 
time and unit strength is given by (see Appendix A) 

where A and A are Sommerfeld-like integrals of the WKBJ solution given by 

for P- and S-waves respectively. Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiw( l /a2(z) - 1 / ~ ~ ) ” ~ ,  and vp(z)  = iw( l /pz(z) 
- 1 /~ ’ )~ / ’ .  z is the depth, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, the source depth, r the horizontal distance, k the horizontal 
wavenumber, w the angular frequency. p(z ) ,  a(z), p(z) are the density, and the velocities 
of the compressional and the shear waves. xi, xi, Jo(kr) ,  6ij  are. the components of the 
coordinates, Bessel function of order zero, and Kronecker delta symbol, respectively. 

In order to get solutions for various dislocation sources, the displacement discontinuity 
term of the representation theorem for inhomogeneous media is used 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ui(2) = [ U j ( z ’ ) ]  q k p q ( ? ’ )  ?Zk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 Gj,(%, x’) ds’ ( 3 )  SJ‘ dxq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S’ 

where the prime indicates source coordinates, [ i i j (x’)]  is the displacement discontinuity, 
q k p q  are elastic constants, and n k  is the surface unit vector (Burridge & Knopoff 1964). 

By using displacement-potential equations (Langston & Helmberger 1975 ; Harkrider 
1976) with the modification of a factor of ~ - l / ~ ( z , )  in the cylindrical coordinate system, 
the potentials of the three types of dislocation cases are obtained. The results for shear wave 
potentials are as follows: 

Here 
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Computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV synthetic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseismograms 391 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(-): for downgoing waves 

(+): for upgoing waves 

+ for downgoing waves 

- for upgoing waves. 
€ =  { 
t j l ,  J / 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG 3  are SV-wave potentials for vertical strike-slip, vertical dip-slip, and 45" dip-slip 
dislocation source cases, respectively. A A 2 ,  and A ,  are the corresponding source orienta- 
tion terms (Langston & Helmberger 1975). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is the shear modulus at the source, and D(w)  
the Fourier transformed dislocation time function. 

In the derivations of these potentials, the approximations 

az 

az zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL- eup(z,) [I + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (i 31 Fp k E U P ( Z , )  Fp 

were used. 
When the WKBJ downgoing wave eventually turns, its amplitude is modified, and the 

ratio of amplitude of the upgoing wave to the downgoing wave is defined as a reflection 
coefficient. This reflection coefficient is obtained by using Stoke's equation and its Airy 
function solution assuming linear dependence of the square of vertical slowness, q2(z), 
on z around the turning point (Budden 1961). The result is 

zp is the turning point of a ray such that the vertical slowness q(z)  = 0. If the depth z is real 
and ~ ( z )  is a real-valued function, this equation has a real-valued zero, i.e. a real value of 
turning point. If intrinsic attenuation is introduced through complex-valued velocity, the 
effective velocity becomes (Schwab & Knopoff 1972) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 1 

u,(z) u(z)  l1 -&I (7) 

where Q(z) is the slowly varying, depth-dependent, and frequency-independent seismic 
quality factor. With this effective velocity the square of vertical slowness, q2(z), has no 
real-valued zero, 1.e. no turning point in real-falued depth, since it is a complex-valued 
function 

However, in reality there are still turning points even where intrinsic attenuation exists. 
It is useful to introduce complex-valued depth, z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx + iy ,  to find the turning point. The 
analytical solution of ~ ( z )  = 0 is not easy, since the separation of real and imaginary parts 
of the function q2(z) with complex-valued depth z is very complicated. A good way to find 
the solution is .to find the position in the complex z plane of the minimum of the absolute 
value of q2(z) numerically instead of finding the exact position of the zeros. This can be 
done by moving a diamond-shaped searching net consisting of five points over a finely- 
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Imag 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z Real 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

......... ......... ......... ......*.. 
( b )  

Figure 3. Location of the complex-valued turning point of WKBJ ray. (a) Plot of absolute value of the 
square of vertical slowness. (b) Moving diamond-shaped searching net on complex-valued depth plane. 

divided grid in the complex z plane (Fig. 3). The centre part of the net is the turning point 
when it has a minimum value among the surrounding four points. This technique is valid 
because a single turning point is allowed and the function of absolute value of v2(z )  is a 
monotonically decreasing and increasing function, respectively, on the opposite sides of the 
minimum point (Fig. 3). The depth integral of v(z) in the equation (6) is done along a 
contour to the complex-valued turning point. The contour follows the real z-axis first and 
then a parallel to the imaginary axis connecting the turning point. 

By assuming that u(z) and Q(z> vary linearly with depth around the turning point, or 

u(z) = uo + u1z 

Q(z)=  Qo + Qiz (QizYQo 1, 

the square of vertical slowness can be shown by the method of successive approximations 
to be v2(z) - ho + hlz.  This satisfies the linearity of $(z) in Stoke’s equation. Here ho 
and hl are complex numbers. 

( U l Z ) / U O  < 1 
(9) 

Propagator matrix method for the near-surface region 

The treatment of waves propagating in the near-surface region of homogeneous layers is 
straightforward and follows the developments of Thomson (1?50), Haskell (1953, 1960, 
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Computing SV synthetic seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA393 
1962) and Harkrider (1 964). The numerical problem of machine accuracy in evaluating 
the wave solution in terms of propagator matrices has been discussed by many investigators 
(e.g. Knopoff 1964; Dunkin 1965 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; Abo-Zena 1979). We apply Watson’s (1 970) reduced 
compound matrix formulation in computations of the layer matrix to avoid the problem and 
get faster machine computation. 

A wave from a source in a stack of layers arrives at the half-space, and it is assumed to 
propagate through the inhomogeneous half-space as a WKBJ turning shear wave. The down- 
going S-wave potential coefficient of the wave transmitted from the stack of layers at the 
half-space boundary is needed in order to convert the wave into a WKBJ form. Here a 
coefficient is presented which is very efficient in numerical calculation. 

The derivation of the relation between surface displacement and the wave coefficients in 
the half-space is given in detail by Harkrider (1 964). 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ = E- lA and 

Here &, and &’,, are normalized potential coefficients of downgoing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- and S-waves at the 
half-space. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtio and Wo are radial an: vertical particle velocities at the free surface. A is 
Haskell’s layer matrix. E-’ and Aa- are the inverse layer matrices at the half-space and 
above the source, respectively (Appendix B). The 6i are components of the displacement 
discontinuity at the source depth (Harkrider 1964). These components for the explosion or 
the dislocation sources are given in Appendix B. 

Of the four unknowns in equation (1 0), two solutions are given as (see Appendix B) 

Rii is the compound matrix element (Harkrider 1970; Appendix B) which is based on 
Dunkin’s formulation (Dunkin 1965) of the second-order subdeterminant of the Haskell 
matrix. 

where i or j are the numbers 1 , 2 , 3 , 4 , 5 , 6  which correspond to the pairs kl or mn = 12, 13, 
14, 23, 24, 34 respectively. jii is the element of a 2 x 4 matrix produced by the subtraction 
of elements between rows of the J matrix (Appendix B). 
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394 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SV-waves as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC-E. Baagand C. A.  Langston 

From equations (10) and (1 l), we get the coefficient below the half-space boundary for 

Even though this solution is concise, it poses problems in actual numerical calcula+' Lions. 

All three types of matrix elements J, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR and A are needed in each layer, and the product and 
subtractions of these matrix elements result in significant numerical errors. The following 
technique is used to circumvent these problems. 

By separation of the elements JiiRkl into half-space and layer portions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J ~ ~ R ~ , =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 E;A A , , , ~ R ~ H , R ; ,  

m n  

where superscripts Hand  L indicate half-space and layer, and with the definition of a new 
matrix H for the half-space (Appendix B) 

[H21, Hz2, H23, H241 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [Ei1'RE + E i i R L  ET;RE, EiiR!!! - Ei:R?3$ - E ; i R E ] , ,  (15)  

the coefficient is reformed to be 

(16) 
1 

GL = - [Hzi,ffzz,H23,H241 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
R11 

-0 0 A41 A42 

The multiple matrix multiplications have been removed for the half-space and the layers 
below the source, but they still remain for the layers above the source. 

By separation of the element A i j  into matrix elements below and above the source 

(17) = A , ~ , A ; ~  
k 

where superscript b and a indicate below and above the source, and by using Dunkin's 
second-order subdeterminant technique, we get the final result 

This yields the complete separation of matrix types into half-space, layers-below, and 
layers-above the source with no double or triple multiplication of matrix elements in any 
one layer. This reduces the time of numerical computation and enhances the accuracy. 

If a seismic wave from a vertically inhomogeneous half-space comes toward the surface 
as a direct or turning wave, it will eventually arrive at the layer-half-space boundary near 
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Computing SV synthetic seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA395 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the receiver. By assuming that the potential coefficients of these waves under the stack of 
layers are known, the displacements at the Earth's surface can be easily calculated. 

From the matrix equation of surface displacements and the half-space coefficients 
(Harkrider 1964) 

the radial and vertical velocity at the surface is obtained as 

The vertical function of a wave potential in the formulation for the layer matrix can 
exponentially decay due to either a large value of ray parameter which results in a vertically 
inhomogeneous wave or to the seismic quality factor Q of anelastic attenuation. This 
property of decay appears mathematically in the form of complex number in the non- 
dimensional vertical slownesses r,  of a P-wave and rp of an S-wave. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABe are the effective velocities of P- and S-waves in attenuating media defined 
in equation (23). If we choose the functions 

&(z, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ i (ot  - kr,z)] 

@p(z, t )  = exp [i(wt - krpz)] 

as the vertical wave functions of P- and S-waves propagating downward in the positive z 

direction, the effective velocities in an anelastic medium can be represented by 

1 1  
-= -  [ I - i k ]  
ffe a 

-=- 1 1  [l-ik] 

Be P 
which have negative signs for imaginary parts. Here, Q, and- Qp are the seismic quality 
factors of P- and S-waves, respectively. With the definition of equations (22) as the wave 
propagating downard, the real parts of normalized vertical slownesses r ,  and rp should be 
positive for this propagation direction, and the imaginary components of them be negative 
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396 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for diminishing amplitude at large depth. Therefore, the space that has positive real and 
negative imaginary values of the vertical slowness is taken as the physical Riemann sheet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. -E. Baag and C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Langston 

Re Re (rp) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Im  (ra),  Im zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(TO) < 0. (24) 

Connection between the layer matrix method for homogeneous layers and WKBJ solution 
in a vertically inhomogeneous half-space 

I f  a wave from a source in a stack of layers over an inhomogeneous half-space propagates 
into the half-space, the potential coefficients of the layer matrix formulation should be 
converted to the equivalent coefficient for the WKBJ solution in the half-space based on 
displacement and stress at the boundary. When the WKBJ wave from an inhomogeneous 
half-space enters into a stack of homogeneous layers, we again need a conversion formula 
between potential coefficients. In order to do this, a depth-dependent variable coefficient 
is introduced for NKBJ potentials. 

There is no unique way to define a variable coefficient and its potential function. In order 
for these to be compared with the constant coefficient and its potentials in a homogeneous 
layer, the WKBJ exponential containing the vertical depth integral is defined as the potential 
function itself and the remainder is assigned to the variable coefficient. With the potential 
written in the form 

E(z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20) is the variable coefficient. The first argument, z ,  of E(z, zo) indicates the depth 
position at which the coefficient is evaluated, and the second one is for the reference 
position of the potential function. If a new reference position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 is chosen, the potential 
becomes 

@(k z ,  a) = E(z, z d  exp [ T jzy v,(x> dx] exp [ i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJz: va(x) dx] 

(26)  
= ~ ( z ,  2 1 )  exp [ T lzI v,(x) dx] 

where the new coefficient is 

On the other hand, the coefficient E a t  the reference position z = z 1  is 

Therefore, the variable coefficient evaluated at a reference position z1 is actually the 
potential itself at that depth. 

In order to match the coefficients with Haskell's matrix formulation, the variable 
coefficients are multiplied by the normalization factors - k2 - c2/ly2(z,,~) for P-wave 
potentials, and ik3/r(z,,f) for S-wave potentials where y = 2(pz/c2). 
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Computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV synthetic seismograms 397 

The homogeneous coefficient-equivalents of these WKBJ variable coefficients for the 
propagator matrix formulation at the boundary of the half-space are 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- and S-waves, respectively, where ZH is tht. depth at the top of the half-space. 
A WKBJ-type S-wave from an isotropic or dislocation source is assumed to propagate 

up to the half-space boundary as a direct or turning wave. The coefficients are evaluated 
at the depth of zH of the half-space boundary for the S-wave potentials. 

Including the ‘WKBJ’ reflection coefficient and equation (28), the coefficient due to an 
SV-wave from an isotropic source is 

Here the superscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” indicates an upgoing wave, and the subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn indicates the nth layer, 
i.e. the half-space. The arguments of exponential terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT D  and TT are defined to be vertical 
phase times for the direct and turning wave given as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J ZS 

The coefficients for dislocation sources are obtained in an analogous manner using 
equations (4,6,28,30). They are as follows 

x [exp (- i o T D )  + i exp (- i b x T ) ]  

P N O )  
K(w)= - 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2 . 

4nw P (ZS) 

Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&:n, &&, and && are the coefficients for vertical strike-slip, vertical dip-slip, and 45” 
dip-slip dislocation sources, respectively. 

A wave from a source in a stack of homogeneous layers in the source structure arrives at 
the half-space boundary. From here the wave is assumed to propagate as a WKBJ turning 
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398 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wave deep in the inhomogeneous media. The wave eventually appears at the boundary of the 
half-space at the receiver structure. A total of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) and (n’ - 1) layers are assumed in the 
source and the receiver structures, respectively, over the inhomogeneous half-space. The 
depth to  these half-space boundaries are ZH and zh. 

The normalized potential coefficient of a downgoing SV-wave at ZH and an upgoing 
SV-wave at z;I are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C.-E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABaag and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. A.  Langston 

where the definitions of E’ and E” are 

1 JzH J 

E”(z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl) = 6’lW(zH) qP1”(z) exp [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAio l::qo(x) d x ]  

(33) 

and GrW(zH), G t rW(z~)  are the coefficients of the WKBJ potentials of downgoing and 
upgoing waves at z = zH, respectively. 

The amplitude ratio of the upgoing wave to the downgoing wave at zH is the reflection 
coefficient 

From these equations (32-34), the coefficient of the upgoing SV-wave under the half- 
space boundary at the receiver structure side 

is obtained. 

coefficient for a P-wave becomes 
In the same way as the S-wave case (and with the normalization factor - k 2  [c/.] ’) the 

(36)  

The computed vertical phase time (i.e. depth integral part of equations (30) or (35-36)) 
is a complex number to be used as the input data for the WKBJ potential coefficient at the 
depth of the lowest boundary of the layers. The imaginary part of it is concerned with the 
amplitude attenuation due to anelasticity. This is comparable to half the ratio of body wave 
travel time to the average Q value, T/Q, usually used as an approximation in computations 
for the geometric ray. Therefore, conceptually the imaginary part is not actual time, and 
only the real part of the vertical phase time is used for the calculation of the horizontal 
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range that the WKBJ ray reaches. The horizontal propagation range is represented by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d 

A ( p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - -Real (7). 
dP 

(37) 

Integral representation of displacement 
The analysis of the previous sections can be classified as two cases. One is the case of a 
source in the inhomogeneous half-space and the other is a source in homogeneous layers. 
In both cases, the vertical and horizontal displacements at the Earth’s surface are derived 
in the wavenumber-frequency domain. From equation (20) vertical and horizontal 
components of velocities at a receiver are 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jl2  . )) -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu o -  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - a n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C R11 

$0 Jll - )) - 2 -a,, 
c R11 

- 

-- 

assuming no upgoing P-wave at the bottom of layers. If the source is in the inhomogeneous 
half-space, the potential coefficient of an upgoing SV-wave in equation (38) becomes 
either Lj;,, of an ‘isotropic’ SV source in equation (29), or Gy,, (i = 1, 2, 3) of dislocation 
sources in equation (31). 0; also represents the potential coefficient &:,@a of a turning 
SV-wave (equation 35) travelling from the bottom of layers at the source, if the source is in 
layers. The coefficient of the downgoing SV-wave below layers in source structure is obtained 
from the matrix equation (18). 

In order to obtain the final time series at a field point, the inverse transform from the 
wavenumber domain to radial distance is done first and the transform from frequency to 
time next. The transforms are performed by numerical integration along real values of 
wavenumber and then also by numerical integration over real values of frequency (inverse 
Fourier transform) in the way of Fuch’s reflectivity method (Fuchs 1968a, b; Kind 1978). 

The integrals in the wavenumber domain are as follows: 

‘1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALi, 
U(Y, W )  = - - - J,(kr) dk 

!k c 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, 
w(r, a) = - [i ; Jo(kr) dk 

for the explosion and ‘isotropic’ shear source, and 

U(T,  8 ,  a)= - C 
2 

J ,  + (kr) dk [a, cos no t b,  sin no] 
n = o  

J,(kr) dk [a, cos no t b, sin no] 
n =o  

where, 

1 

2 
a, = -sin h sin 26 bo = 0 

a1 = cos h cos 6 b l  = - s i n h c o s 2 6  

(39) 

1 

2 
a2 = - sin A sin 26 b2 = cos h sin 6 
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400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for  dislocation sources. Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 9, 1, 2 are for the cases of 45" dip-slip, vertical dip-slip, 
and  vertical strike-slip, dislocations respectively. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa i  and b are source orientation terms. 
The source orientation angles 6 and X are dip and rake respectively, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 indicates the 
azimuth (Fig. 1). 

The integral representations of the displacements in equations (39) and (40) are 
summarized in the form 

C.-E. Baagand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. A. Langston 

G(r, a) = F(k, w) J,(kr) d k ,  n = 0, 1, 2. (41) J 
The integration is limited to a finite slowness p-window rather than wavenumber k- 

window in order to examine interesting generalized rays with particular incidence angles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A cosine taper is applied to the end points of F(k,  w )  in p-space in order to minimize 
non-physical diffraction effects caused by the sudden truncation of the kernel. The 
variation of the kernel F(k,  w )  in the slowness domain is small for the low-frequency case. 
Therefore, the interval of the sampled slowness p value for numerical calculation of the 
kernel is taken to be large for low frequencies and the sampling rate is linearly increased 
with increasing frequency. 

The amplitude and phase spectrum of the kernel F(k,  w )  are much simpler in form 
compared to  the real and imaginary components individually. A simple linear phase-curve 
o f  the kernel with a steep slope in the phase-slowness space corresponds to rapid oscil- 
lations of real and imaginary Components of the function which lead to higher-order terms 
of  polynomials in curve-fitting. Taking advantage of this simplicity, a linear interpolation 
scheme in amplitude and phase is used to reduce the number of calculation points in slow- 
ness space. A test for linearity is done before applying interpolation, and the slowness 
interval of computation of F(k, w )  is halved successively in the non-linear region until the 
predefined tolerance value in linearity is met. 

Preliminary calculations of the kernel F(k, w )  are done at a predetermined slowness 
interval to find an approximate maximum amplitude and to set up blocks for the linearity 
tests. A block is defined as a region between two adjacent slowness points. It is assumed 
that the phase difference of the kernel between two end points of a block is less than 180". 
In the linearity test the block is halved by a slowness point at the middle of the block. The 
first test is done using the three values of F(k,  w )  at the middle and end points of the block. 
The area of the triangle made by three points of these amplitude values of the kernel in the 
amplitude-slowness space, and the triangular area made by three points of phase values in 
the phase-slowness space are divided by the slowness interval of the block. The results are 
approximate error densities of the linearity for the linear curves of the kernel in the block. 
The error density of amplitude is divided by the maximum amplitude of the spectrum, and 
the error density of phase is divided by 2n to get relative error densities of linearity. The 
values of these relative error densities should be smaller than the predetermined tolerance 
values to meet the linearity test. If the test does not meet the criteria, each half-block 
becomes a new test block. These new blocks are tested in the same procedures as was done 
for the original block until the linearity is satisfied. 

After linearity of the phase and the amplitude is verified, the phase and amplitude are 
interpolated linearly in a phase interval between 20 and 30" to get interpolated F(k,  w )  
at points in slowness space with uneven slowness intervals. 

It was found that the phase interpolation and variable interval technique of sampling 
was not necessary for every wavenumber integration problem. However it can be usually 
used to find a proper sampling rate in the p domain for the constant slowness-interval 
scheme in a specific model case. The linearity test itself requires some additional computa- 
tion time, and this additional time might be used for the computations of F(k,  a) at more 
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points. As long as the proper constant interval of slowness for each frequency is used, the 
result of the integration is as accurate as the case for a variable interval. 

Since teleseismic waves are of primary interest, Hankel’s asymptotic expansion 
(Abramowitz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Stegun 1964) is used for the Bessel function. The integration between 
adjacent wavenumber points at which the values of the kernel F(k,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) are known is done 
analytically (Apse1 1979) to accommodate the rapid oscillation of the Bessel function in 
the interval. Finally the Fast Fourier Transform is used to transform the spectra into the 
time domain. 

Validation and comparison 

The validation of the current theory and the computational method is established in two 
steps. First, a computer program was written using Kind’s (1978) formulation of the 
extended reflectivity method with some modifications of the source term and computational 

Figure 4. Layered distribution of the Gutenberg-Bullen earth model. (a) Velocity distribution. VP: 
velocity of P-wave, VS: velocity of S-wave. (b) Density distribution. (c) Combined Q distribution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQP: 
Q of P-wave, QS: Q of S-wave. 

Figure 5. Continuous and layered distribution of the Gutenberg-Bullen earth model. (a) Velocity 
distribution. VP: velocity of P-wave, VS: velocity of S-wave. (b) Density distribution. (c) Combined Q 
distribution. QP: Q of P-wave, QS: Q of S-wave. 
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402 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC.-E. B u g  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. A.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALangston zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RFIY PFIRFIHETER l S E C / D E G .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I2 1 Y  16 1.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 
0 0 

Y O 0  600 800 REAL f o0 lYM1 1200 1400 

(b) 

Figure 6. Turning points of WKBJ ray for source depth of 600 km in the Gutenberg-Bullen earth mode:. 
(a) Turning point and ray parameter. (b) Real and imaginary components of turning point. 

methods. The result of the computation with this program was compared with Apsel'r 
(1979) result. Even though Apse1 did not produce SV-waves and the comparison was done 
for a full seismogram of P, S and Rayleigh waves at short range, the correctness of the 
formulation and computational method can be proved. Secondly, S- and SPL-waves were 
computed using Kind's method, since the extended reflectivity method can generate these 
waves as well as other seismic phases. These waves were compared with the waves synthe- 
sized using the current theory. The disadvantage of the conventional reflectivity method for 
teleseismic SV is the long computation time due to the large number of homogeneous layers 
required to approximate the model. 

Since the extended reflectivity method for homogeneous layers can compute a complete 
seismogram, synthetic S- and SPL-waves can be generated by specifying a finite slowness 
window corresponding to these waves. The S- and SPL-waves from two different depths of 
vertical strike-slip sources are produced using the computer program for homogeneous layers 
for comparison with the synthetics from the combined WKBJ and layer matrix method. 

The Gutenberg-Bullen earth model is vertically divided to 24 layers down to the depth 
of 1200 km (Fig. 4) for the homogeneous layer matrix method. For the combined WKBJ 
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I? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IU  16 1'8 20 

R A Y  P A R A M E T E R  ( S E C / O E G . l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. Vertical phase time and ray parameter of the WKBJ ray for source depth 600 km, layer boundary 
at 140 km, Gutenberg-Bullen earth model. 

and layer matrix method, the model is split into two parts, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) the near-surfacc layered 
part down to the depth of 140 km and ( 2 )  the smoothed, continuous half-space part below 
the layer (Fig. 5). The P-wave velocity distribution is not plotted at depths below 140 km, 
since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV WKBJ ray only is assumed at these depths. A reasonable distribution for 
seismic quality factor Q is added to the model in both cases (Figs 4 and 5). Since the 
combined WKBJ and layer matrix method is formulated in two ways, with or without the 
effect of the near-surface source structure, two proposed sources are put at the depth of 
600 km in the inhomogeneous half-space and at 15 km depth in the homogeneous layer in 
order to check both of the formulations. 

For the 600 km source depth case, the low and high limits of the ray parameter used for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S and SPL are 14.2 and 17.6 s deg-', respectively, for both the layer matrix method and 
the combined WKBJ and layer matrix method. For this case the near-surface source struc- 
ture is not considered in the computation with the combined WKBJ and layer matrix 
method. The turning points of the WKBJ ray have real and imaginary parts due to the 
anelastic attenuation as shown in Fig. 6. The complex vertical phase times of Fig. 7 are 
used as the input data for the WKBJ potential coefficient at the 140 km depth, the lower 
boundary of the layers. The range-ray parameter relation and travel times of the WKBJ 
ray are given in Fig. 8. The function exp(-I/ t-  t / 3 ) H ( t )  for source-time history and 
the instrument with To = 30 s and T, = 100 s (Fig. 9) are used for the final synthetics. 
Fig 10 displays the comparison of the synthetic radial and vertical component of the S- and 
SPL-waves at a 30" range produced by the two methods. Both sets of seismograms are 
almost identical except for some arrivals of small amplitude in the seismogram from the 
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Figure 8. Travel time, ray parameter and range of the WKBJ ray for source depth 600 km, layer boundary 
at 140km, Gutenberg-Bullen earth model. (a) Ray parameter and range. (b) Travel time and range. 
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Figure 9. Source time function and instrument response. SRC: source time function exp ( - l / f  - t / 3 ) H ( t ) .  
INS: instrument, To = 30 s, Tg = 100 s. CON: convolution of source and instrument. 
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. 
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 10. Comparison of synthetic SV-waves from the layer matrix method and the combined WKBJ 
and layer matrix method for vertical strike-slip source at  600 km depth, Gutenberg-Bullen earth model. 
(a) Layer matrix method of Kind's formulation. (b) Combined WKBJ and layer matrix method (the 
present method). 

R A Y  PRRAMETER ( S E C l D E G . 1  
I F  1p 2? 26 

RERL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 I K M l  
0 200 Y O 0  600 800 I000 1200 

0 

(b) 

Figure 11. Turning point of WKBJ ray for a source at  15 km in layers with layer boundary at  140km, 
Gutenberg-Bullen earth model. (a) Turning point and ray parameter. (b) Real and imaginary components 
of turning point. 
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IMlG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINART zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*mi 10 R A Y  P A R A M E T E R  ( S E C / O E G .  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 12. Vertical phase time and ray parameter of WKBJ ray for a source at 15 km in layers with layer 
boundary a t  140 km depth, Gutenberg-Bullen earth model. 

homogeneous layer matrix method. These arrivals are interpreted to be caused by the coarse 
layering in the homogeneous layer model. The first peak and the next trough in the radial 
component, and the first peak and the next peak in the vertical component are Sp- and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S- waves, respectively . 

For the case of a source at 15 km depth in the crust, the near-surface source structure is 
taken into account in the computation with the combined WKBJ and layer matrix method 
by taking the lowest boundary of the layers down to a 140 km depth. The ray parameter 
window is put between 14.3 and 23.8 s deg-'. Figs 11-13 exhibit the information on the 
WKBJ ray. The computed S- and SPL-waves from both of the methods, using source and 
instrument as given in Fig. 9, are compared in Fig. 14. The two seismograms are almost 
the same. 

The good agreement between seismograms shown in those tests proves the validity of 
the new method for synthesizing the S- and SPL-waves. 

Conclusions 

The method of synthesizing S- and SPL-waves presented here overcomes some of the 
limitations of the previous methods and should allow for more realistic interpretations 
of source parameters and velocity structure. The method employs the propagator-matrix 
technique for waves in near-surface homogeneous layers, and WKBJ theory for a generalized 
ray in a vertically inhomogeneous half-space below the stack of homogeneous layers. Seismic 
anelasticity is included by using complex-valued velocity in all regions of the earth model. 
The near-surface source structure is taken into account in the computation for the case of 
a shallow source by allowing a point source to be located in the upper layers with appro- 
priate discontinuity 'conditions in stress and displacement at the source depth. The down- 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. Travel time, ray parameter, and range of WKBJ ray for a source at 15 km in layers with iayer 
boundary at  140 km, Gutenberg-Bullen earth model. (a) Ray parameter and range. (b) Travel time and 
range. 

going shear wave potential coefficient in the half-space, excited by a source in a stack of 
layers near the surface, which is used here is in a very efficient form for actual numerical 
computations. All matrix types are separated into half-space, layers below, and layers above 
the source with no double or triple multiplication of matrix elements in any one layer. The 
source and receiver structures are allowed to be different. Both dislocation and explosion 
sources are considered, since the resulting Green’s functions can be used for a full moment- 
tensor source description. Shear wave potentials for dislocation sources in inhomogeneous 
continuous media obtained by the WKBJ approximation were developed for cylindrical 
symmetry. The solution is evaluated in the frequency domain by performing a wavenumber 
integration over a specific range of real wavenumbers, and the result is inverse Fourier 
transformed to get displacement at the free surface in the time domain. 
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408 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-E. Baag and C. A.  Langston zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RRD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI AL VERTICAL 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sa SEC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 14. Comparison of synthetic SV-waves from the layer matrix method and the combined WKBJ 
and layer matrix for vertical strike-slip source at 15 km depth, Gutenberg-Bullen earth model. (a) Layer 
matrix method of Kind’s formulation. (b) Combined WKBJ and layer matrix method (the present 
method). 

Computed SV-waves using the new method compared favourably with synthetic 
SV-waves produced by Kind’s (1978) extended reflectivity method. The reflectivity method 
is appropriate for homogeneous structure but needs a large computational time because 
numerous layers are used to simulate continuous layers in the model. The computational 
time using the new method is reduced to at least one-fifth of that of the reflectivity method 
for the same accuracy in the teleseismic case. 

In the formulation of the theory, the source and receiver structures are allowed to be 
different since the SPL-wave is generated at a teleseismic distance and the property of the 
SV-wave leaking into the mantle in the source side is affected by the source structure for 
the shallow source; future studies can take advantage of this important capability. A second 
study will address physical aspects of SV- and SPL-wave propagation. 
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Appendix A: Green’s function for a directional force in a vertically inhomogeneous medium 

The Fourier-transformed form of the equation of motion with a directional point source 
f ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  = 36 (R)  h(w) is represented by 

in slowly varying vertically inhomogeneous media, where R = [x2 + y 2  4 ( z  - z A ~ ] ~ / ~ .  With 
the substitution of Richards’ (1974) P and S vector potentials A, and A,of U = l / [ ~ ~ ’ ~ ( z ) ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[V(V - A P )  - V B  VBA,], the eqilation of motion is decoupled into P- and S-wave parts 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2 - h(w)a 1 
V 2 A p  + - A , = - -  112 2 a2(z)  4np, a, R 

Applying scalar potentials A ,  

are reduced to 

w2 1 

a2(z) R 

w2 h(w) 

V Z A p  + __ A , = - -  

U2As + __ 
p ( 2 )  A s  = 4Gj% R . 

and A ,  such that 2, = A,U and As = AJ, these equations 

The Bessel-Fourier transform of these equations removes the r dependence and gives 

h(w) exp (- kl z - z, I )  

h(w) exp (- k I z - z ,  I) 
k 

V 2 A p  + w2qi(z) A ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
4np, a, k 
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Computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV synthetic seismograms 41 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where the vertical slowness q:(z)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l / u2 (z )  - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ c2  

By using the WKBJ solution 

of the homogeneous differential equation (Budden 1961; Aki & 
ing the method of variation of parameters, the WKBJ solution of 

is 

z ,  w) = 

Richards 1980) and apply- 

(A51 

= G,(k, z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ;  z,). 

The first equation of (A4) can be solved using the body force term of the representation 
theorem and G, (k ,  z ,  w ;  z,). 

Let the source term of the equation be 

then 

m 

S(k, z’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa; z,) GJk, z ,  w; z ’ )  dz’ 

with the negative sign for the downgoing and the positive sign for the upgoing waves in 
the exponential term. Here, 

and 
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412 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC.-E. Baagand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. A.  Langston zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For the case of z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< z,, the integrand of equation (A8) is expanded to  three terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z exp [k(z’ ~ z,)] exp [ - I ( z )  + ~ ( z , ) ]  
dz ’ 

u p  (z ’ )  
A,(k, z, 0) = K 

zs exp [k(z‘ - z,)] exp [ I ( z )  - I (z ’ ) ]  
dz ’ + Jz vtu/2(z’) 

-dz’ . 1 m exp [- k(z’ - z,)] exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I(z) - I ( z ’ ) ]  

+ Jz, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv p  (z ’) 

With an assumption of slow varying v, (z ) ,  such that 

d exp [kz‘ - I ( z ’ ) ]  exp [kz’ - I (z ’ ) ]  
= 

dz’ v”2(z’)[k - v(z’) ]  vl’2(z’) 
, 

etc., A ,  becomes 

Using the identity k2 ~ v: = k i ,  the result is 

In the same way, the S-wave potential becomes 

The inverse Bessel-Fourier transformed forms of equations (A1 1 j and (A1 2) are 

Jo (kr) d k  
h(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

47r02p ’ /2  (z,) 
Ap(r,  z ,  0) = - 

Using the  vector identity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV @, V @ A ,  = VV-A,-V2A, the displacement can be represented 
by 

u = -  [ V V  * (A&, z, w )  - As(r, z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw)j + V2As(r ,  z ,  w ) ] .  
1 

(A14) 
- 

P’l* ( Z )  
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Computing SV synthetic seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA413 

To reduce (A14) into a simple form, the definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  and A p  given as equation (2) and 
equation (A13) are used. 

A&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- As@, z,  w )  = ( A ~  - A, )  a 

Now we assume the Poisson’s ratio is almost constant, so that 

(Ap - A , )  a. h(w) 

4710 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP (z,) 
&(r, z ,  w )  - As@, z ,  w )  = 2 I f 2  

With the use of equations (A3) and (A13), 

h(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2 

4nw2 p”2  (z,) p2 ( z )  
P A & ,  z ,  w) = ~ A @ .  

the second term of equation (A14) becomes 

(A161 

By substitution of (A15) and (A16) into (A14), the displacement in vector form 

is obtained. 

directional point force with delta time function and unit strength. 
Using the tensor form of ui = Giiai and k(w)  = 1, we get the Green’s function Gii for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix B: formulae related to the layer matrix 

NOTATION 

Subscript m: mth layer 
p m  =density 
d, = thickness 
a, = effective P-wave velocity (refer to equation 23) 
0, = effective S-wave velocity (refer to equation 23) 

r2  = [c/a,12 - 1  
~ r n  = 2 t Pm /c12 

;m 
r/3, = [C/Pml2 - 1 
P m  = krmdrn, ern= b p m d m  
CP =cosP,, CQ=cosQm 
STP= rff sin P,, 
SDP= sin Pm/ra, 

STQ = rp sin Q, 
SDQ = sin e m i r o  
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H A S K E L L  M A T R I X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Al l  = A 4 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy CP + ( 1  - 7) CQ 
A 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = A 34 = i [ y - 1 ) SDP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt y STQ] 

A14 = i ( p c 2 ) - '  [SDP t STQ] 
A 2 1 = A 4 3 = - i [ y S T P + ( y - 1 ) S D Q ]  

A23 = i (pc2)- '  [STP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf SDQ] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A32 = ipc' [(y - 1)2 SDP + y 2  STY] 
,441 = ipc' [y2 STP t (y - 1)2 SDQ] 

A13 =A24 = - ( P C ' ) - '  [CP-CQ] 

A 2 2  = A 3 3  = ( 1  -7) CP + yCQ 

A31 =A42 = p c 2 y ( y -  l)(Cp-CQ) 

C O M P O U N D  L A Y E R  M A T R I X  

R11 = R 6 6  = - 2y(y- 1) + (2y2 - 2 y +  1) CP. CQ - y2 STP- STQ - (7- 1)2 SDP. SDQ 
R12 = RS6 = i (pc2)- '  [CP * SDQ t CQ * STP] 
R13=R14=R36=R46 = - ( P ~ ~ ) - ' 1 ( 2 y - l ) ( l - C P .  CQ)+(y - l )SDP.  SDQ 

f y STP - STQ)] 
R15 = R26 = - i ( p c 2 ) - '  [CQ SDP t CP - STQ] 
R16 = ( p ~ ~ ) - ~  [2(1 - CP. CQ) + STP 
R21 = R65 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi (pc ' ) [ (y  - 1)2 CQ - SDP t y2 CP * STQ] 

R23=R24=R35 = R 4 5 = i [ ( y - 1 ) C Q *  S D P t y C P .  STQ] 

STQ t SDP - SDQ] 

R7.2 = R55 = CP . CQ 

R25 = SDP * STQ 

R31 = R 6 3  =R64 = (pC2) [ [ y (y -  1)(27(')- 1)(1 - CP ' CQ) t (7- 1)3  SDP * SDQ 
f y3 STP * STQ] 

R32 = R42 = RS3 =R54 =- i [ (y-  1) CP * SDQ t yCQ - STP] 

R33 = R44 = 1 -t 2y(y- 1)(1- CP - CQ) -t (7 - SDP * SDQ t y2 STP * STQ 
R34 =R43 =R33 - 1 
R S 1  = R62 = - i ( p c 2 ) [ ( y -  1)2 CP - SDQ t y 2  CQ - STP] 

R61 = ( p ~ ~ ) ~  [2y2(y-  1 ) 2 ( 1  - CP - CQ) t (y- 1 ) 4  SDP - SDQ + y 4  STP - STQ] 
R52 = STP . SDQ 

I N V E R S E  O F  H A S K E L L ' S  H A L F - S P A C E  M A T R I X  
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E matrix: E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J matrix: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 

61 =- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMo(u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 n  

[ A  

J matrix: 5 = EA 

-~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,' 
0 for vertical dip-slip 

0 

Computing SV synthetic seismograms 415 

I EL: 3 - E;:, E;: 7 - E i i  

- E;: 3 Eii, - E;:, Eii  

1 J i i  - J z i ,  J i z  - J 2 2 2  J 1 3  - J 2 3 ,  J i 4  - J 2 4  

J 4 1  - J 3 1 ,  J 4 2  ~ J 3 2 .  J 4 3  - J 3 3 ,  J44  - J 3 4  

S O U R C E  D I S C O N T I N U I T Y  M A T R I X  

(1) Dislocation source 

a 2  =% 1 I for vertical strike-slip 

4kZ . 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa s  

0 

7' 
for 45" dip-slip. 

Here Mo is the seismic moment. 

(2) Explosion source 

r o i  

where a,  = radius of source cavity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ps = pressure in the cavity. 
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416 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC.-E. Baag and C. A.  Langston 

MATRIX FORMULATIONS O F  P A R T I C L E  V E L O C I T I E S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 A N D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
From the matrix equation (lo), a matrix X 

is defined for convenience to solve the equation. From this we get 

X 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 3  

X 4 = D 4 .  

Here X3 and X4 are solved in terms of D3 and D4. The substitution of Xin  equation (1 0) gives 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ~ J ~ ~ X ~ + J ~ Z X Z + J ~ ~ D ~ + J ~ ~ D ~ '  J2iXi + J22X2 +J23O3 'J24O4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA; Jiixi + J i 2 X 2 + J 1 3 D 3  +J14D4 

J41X1 + J42X2 + J43D3 + J44D4 

These simultaneous equations are solved for XI and X2 by subtraction of the elements of 
two rows. The result gives 

ID] 
I 

J12 - J22, J14 - J24 

J42 - J32, J44 - J34 

JI I  - JZI, J14 - J24 

J41 -J31, J44 - J34 

I D,+ I J l2 - J22>  J13 -J23 
X I =  - 

det l l  J42 - J32, J43 - J33 

Ji i  -J21, J i 3 - J 2 3  

J41 -J31, J43 - 5 3 3  

'where 

J11 - J21, J12 - J22 
det = 

J41 - J31> J42 -J32 

The substitution of elements of the J matrix results in 
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Computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV synthetic seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA417 

and 

Using the Dunkin's formulation Rij (equation 12), the solutions are transformed to 

1 

R11 

1 

R11 

x1= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (R13D3 + R 1 5 D 4 )  

x2=-- (R12D3+R13D4) 

where R14 = R13 is used. 
Inserting the solutions X1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 2 ,  X3, and X4 to the definition of X matrix, we get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u o -  1 
(R13D3 'R15D4) - Dl 

-- - 
c R11 

15 
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