
A word-building method based on neural network for text
classification

aState Key Laboratory of Networking & Switching Technology, Beijing University of Posts and
Telecommunications (BUPT), Beijing, P.R.China; bScience and Technology on Communication Networks
Laboratory, Beijing, P.R.China; cSchool of Computing and Engineering, University of West London, London, UK

ABSTRACT

Introduction

Deep learning has made a great progress recently and has played an important role in academia

and industry. In particular, standard natural language processing (NLP) approaches for entity and

relationship extraction are improved (Wang, Ma, Lowe, Feldman, & Schmitt, 2016) and business-

aware concept detection by convolutional neural networks is proposed (Chen, Chen, Chen, & Joshi,

2016). Based on deep neural network, new inspirations are brought to various NLP tasks. Recent

progress in word representation contributes to the development of lexical semantics (Liang,

Paritosh, Rajendran, & Forbus, 2016).

Text classification is a classic topic for NLP, in which one needs to assign predefined categories

to free texts. The range of text classification research goes from designing the best features to

choosing the most possible machine learning classifiers. A good text classifier can be applied in

many applications such as sentiment analysis (also known as opinion mining) (Liu, 2012; Masdeval

& Veloso, 2015; Pang & Lee, 2008; Schulz, Mencía, & Schmidt, 2016), web searching and information

filtering (Lai, Xu, Liu, & Zhao, 2015). Therefore, it has drawn a lot of attention from both industry

Kai Shuanga,b, Hao Guoa, Zhixuan Zhanga, Jonathan Looc and Sen Sua

KEYWORDS

Convolutional neural network; long short termmemory; structure information; text classification; word-buildingmethod

http://orcid.org/0000-0002-8955-5146
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/0952813X.2019.1572654&domain=pdf
jonathan.loo19@outlook.com
Typewritten text
Text classiﬁcation is a foundational task in many natural language processing applications. All traditional text 
classiﬁers take words as the basic units and conduct the pre-training process (like word2vec) to directly generate
word vectors at the ﬁrst step. However, none of them have considered the information contained in word 
structure which is proved to be helpful for text classiﬁcation. In this paper, we propose a word-building method 
based on neural network model that can decompose a Chinese word to a sequence of radicals and learn 
structure information from these radical level features which is a key diﬀerence from the existing models. Then, 
the convolutional neural network is applied to extract structure information of words from radical sequence to 
generate a word vector, and the long short-term memory is applied to generate the sentence vector for the 
prediction purpose. The experimental results show that our model outperforms other existing models on Chinese
 dataset. Our model is also applicable to English as well where an English word can be decomposed down to 
character level, which demonstrates the excellent generalisation ability of our model. The experimental results 
have proved that our model also outperforms others on English dataset.



and academic communities. In this paper, we regard the sentiment classification as the main scene

and design a neural network–based model to explore how to improve the accuracy of it.

Existing neural network–based language models for classification have achieved promising

results (which can be taken as the state-of-the-art) and mostly have two steps. They first do a pre-

training process to learn word embeddings from training corpus (Mikolov, Sutskever, Chen,

Corrado, & Dean, 2013; Pennington, Socher, & Manning, 2014) (these word vectors can remain

static or no-static during the whole process of classification). After the pre-training process, each

word in a sentence is represented by a vector. All vectors are fed into recurrent neural network

(RNN), convolutional neural network (CNN) or other neural network models to encode the whole

sentence and predict the class attribute (Graves, 2012; Kim, 2014; Sundermeyer, Schlüter, & Ney,

2012).

As most of the existing neural network language models always regard the word as a basic and

indivisible unit in languages, they obtain word vectors (formalisation denotations of words) from

a pre-training process which is based on co-occurrence probabilities between different words.

Thus, the vectors contain the syntactic meaning of words. In this paper, we no longer regard the

word as an indivisible unit, but instead show a method to decompose each word in different

languages, namely, Chinese and English, in order to extract the morphological meaning of the

word, which is also called structure information. In Chinese, each word is made up of several

Chinese characters normally one to four, we can decompose each Chinese character into

a sequence of radicals according to Shi, Zhai, Yang, Xie, and Liu (2015) and Y. Sun, Lin, Yang, Ji,

and Wang (2014). For instance, ‘高兴’ (happy) consists of two characters ‘高’, ‘兴’ and ‘手舞足蹈’

(kick up one’s heels) consists of four characters ‘手’, ‘舞’, ‘足’, ‘蹈’. Each Chinese character can be

decomposed into a sequence of radicals which are taken as essential elements for the Chinese

character. For example, the character ‘折’ (snap) can be decomposed into ‘扌’ and ‘斤’, the

character ‘妈’ (mother) can be decomposed into ‘女’ and ‘马’ and the character ‘汗’ (sweat) can

be decomposed into ‘氵’ and ‘干’. Radicals have two main functions: pronunciation and meaning

(Peng, Cambria, & Zou, 2017). For example, the radical ‘女’ in ‘妈’ indicates the meaning and the

radical ‘马’ in ‘妈’ indicates the pronunciation. As the aim of this work is text classification, we only

focus on the radicals that reflect the meaning function.

From the characteristics of Chinese word-building method, we can get two important

regulations. The first is that different Chinese characters with the same radical always carry

the same meanings. For example, ‘海’ (sea), ‘河’ (river) and ‘湖’ (lake) all have radical ‘氵’ which

are all closely related to water. The second is that the same radical may contain different

meanings in different circumstances. For example, the radical ‘辶’ has the meaning of move-

ment when in ‘过’ (pass) and ‘追’ (chase) while it refers to the sense of distance when in ‘远’

(far),‘这’ (this) and ‘近’ (near).

Based on the characteristics of Chinese, we propose a word-building method based on neural

network (WMBNN) where CNN is used to leverage raw information for different languages. Some

researchers have found that convolutional networks are useful in extracting information from raw

signals (LeCun et al., 1989; LeCun, Bottou, Bengio, & Haffner, 1998). In this method, we first employ

our word-building method to decompose Chinese words into a sequence of radicals which are

then fed into CNN to obtain the morphological meaning of each word in the form of vector. Then,

the morphological vectors and the syntactic vectors are concatenated to make up complete word

vectors. Then, these complete word vectors are fed into the LSTM followed by a softmax to predict

the possibility of each class attribute for each sentence. Within the scope of our knowledge, we are

the first to analyse text classification based on the view of word-building method to extract

information of the word.

In order to prove the generalisation ability of WMBNN model, experiments are also conducted

on English dataset. We decompose an English word into a sequence of characters according to Kim

(2014) and X. Zhang, Zhao, and LeCun (2015). The remaining parts are almost the same as that in

the Chinese process which will be discussed in the following parts.



To summarise, our contributions are as follows:

● Based on the characteristics of Chinese word-building method, we decompose each Chinese

word into a sequence of radicals which can reflect the inner structure information of a word.

● CNN is applied to extract the structure information from a sequence of radicals to generate

the morphological word vectors. Then, they are concatenated with syntactic word vectors

(generated from pre-training process) and are fed into LSTM to achieve results which out-

perform the state-of-the-art.

● The capability of WMBNN is further evaluated with English dataset. The experiment results

show that the proposed word-building method is applicable to English where an English

word is decomposed down to the character level. The experiment results show that our

WMBNN model outperforms the state-of-the-art result again.

Related work

Automatic text classification has drawn a lot of attention from industry and academic communities

for many years. The machine learning methods such as Native Nayes, Random Forest, Support

Vector Machine (SVM) and Logistic Regression (LR) in Sebastiani (2002) and Aggarwal and Zhai

(2012) are used for text classification task in early time. They usually represent the text as a vector

with a bag-of-word method and weights are generated by term frequency-inverse document

frequency (TF-IDF). With the development of neural network technology, neural network–based

models are getting more popular for this task (Kim, 2014; Peng et al., 2017; Tang et al., 2014; Zhu,

Sobhani, & Guo, 2015). The power of neural network–based model relies on its ability in learning

continuous text representation from data without any feature engineering. For sentence-level

sentiment classification, traditional studies always have two steps. They first do a pre-training

process to learn word embeddings from data (Bengio, Ducharme, Vincent, & Jauvin, 2003; Mikolov

et al., 2013; Pennington et al., 2014; Tang et al., 2014), and then apply compositional semantic

approaches to compute the vector of a sentence from the vectors of its constituents.

Representative compositional approaches to learn sentence representation include CNN

(Kalchbrenner, Grefenstette, & Blunsom, 2014; Kim, 2014), LSTM (Li, Luong, Jurafsky, & Hovy,

2015; Tang, Qin, & Liu, 2015), tree-structured LSTM (Tang et al., 2014; Zhu et al., 2015) and so on.

In many NLP tasks, neural network models with the pre-training process can always achieve state-

of-art results. As the word vectors from a pre-training process are based on co-occurrence between

different words, they only contain syntactic information and ignore the information contained in

word structure.

Some researchers have changed the attention from words to characters for some applications of

NLP and have proposed some models that use the character-level features for language proces-

sing. For the part-of-speech tagging (Dos Santos & Zadrozny, 2014) and named entity recognition

(Dos Santos & Guimarães, 2015), improvements have been made by representing a word as

a concatenation of its word embedding and an output from a character-level CNN, and using

the combined representation as features in a Conditional Random Field. For text classification,

character-level convolutional network has been proposed without word embeddings (Zhang et al.,

2015). It regards the sentence as a whole and extracts useful information from a sequence of

characters with multiple convolution and max-pooling layers. For language model, a character-

aware neural model that applies convolutional layers with different widths to extract information

from character to represent each word achieves results on par with the existing state-of-the-art

with 60% fewer parameters (Kim, Jernite, Sontag, & Rush, 2016).

As for Chinese, some researches have found that radical is important for the computational

processing of Chinese language (Sun et al., 2014). The reason lies in that characters with the same

radical typically have similar semantic meanings and play similar grammatical roles. Sun et al.

(2014) have started to decompose Chinese characters to radicals and proposed a radical enhanced



Chinese character embedding. However, they only selected one radical from each character to

enhance the embedding. Peng et al. (2017) have proposed the Radical-Based Hierarchical

Embedding model that got radical embedding from a skip-gram-based model. They have decom-

posed characters into radicals and concatenated them in the order from left to right and treat the

radicals as the fundamental units in texts and an average embedding vector has been computed to

represent each sentence. Finally, they have used traditional machine learning methods like LR and

LinearSVC to perform text classification. Shi et al. (2015) have proposed a model called Short-Text

Categorisation (STC) that directly transformed a sentence to a sequence of radicals and applied

a convolution layer with one plain layer to make the classification. It is clear that the radicals from

different characters mixed together in the STC which may bring in much noise.

WMBNN model

Figure 1 presents the overall logic architecture diagram of WMBNN model for Chinese text. It is

clear that the WMBNN model can be divided into two parts from the top of view: (i) word vector

generator and (ii) sentence vector generator.

For a better understanding of our WMBNN model, a top-level flow is described with an example

as follows. The model now takes a Chinese word ‘经历了’ (w3) as the current input. w3 is first fed

into the block called word vector generator which aims to generate a word vector to represent

each Chinese word. When the word w3 go into the vector generator block, it respectively goes into

the above pipeline and the below pipeline. As we can see, there is a syntactic vector generator on

the below pipeline which aims to generate a syntactic vector and the syntactic matrix is generated

from the pre-training process. Along the above pipelines, there are two main entity blocks. The first

is called word decomposer which decomposes each word referring to the WuBi typewriting

method(J. Zhang & Deng, 2012). When the word ‘经历了’ goes into the first block, the output is

a radical sequence. Then, the radical sequence goes into the second block called morphological

vector generator that aims to employ CNN to extract morphological information from the radical

sequence. Finally, the syntactic word vector from below pipeline and the morphological word

Figure 1. Logic architecture diagram of WMBNN for Chinese.



vector from above pipeline are concatenated together to generate the complete word vector of

the w3. So when a sequence of words goes through the word–vector generator, it will become

a sequence of complete word vectors which are fed into sentence vector generator. The sentence

generator below employs LSTM to encode the whole vector sequences to one vector where the

prediction is made.

Word–vector generator

Preprocessing for Chinese text

As is different from English, there is no blank in a Chinese sentence. So we must do some

preprocessing work at first to separate each sentence into several words which is called word

segmentation. In our work, we use an open source tool called JieBa (Sun, 2012) to conduct it. After

the word segmentation, we can transform the whole sentence into a sequence of Chinese words.

For example, when a Chinese sentence ‘中国近几年经历了天翻地覆的变化’ goes through JieBa, it

becomes a sequence of six words that are ‘中国’, ‘近几年’, ‘经历了’, ‘天翻地覆’, ‘的’, ‘变化’,

respectively. In Chinese, as most of words usually contain one to four characters, when a word

exceeds four characters (which is not a common phenomenon), we would just keep the first four

characters.

Method of decomposing Chinese words

The word–vector generator aims at generating a distributed representation of each word. In Figure 2,

we take the same Chinese sentence used in Figure 1 as an example. To get the syntactic word vector,

we can perform a lookup of Chinese word ‘经历了’ embeddings from syntactic matrix X generated

during the pre-training process.

Next, the main attention is focused on how to decompose each Chinese character. Radicals are

graphical components of characters and the structure of the character can be classified into up–

down structure like ‘夺’ or left-right structure like ‘冰’ or semi-enclosed structure like ‘厉’ or full-

enclosed structure like ‘圆’. The radical is the basic unit of the Chinese character and the character

structure instructs the way how these radicals are composed together. The concrete way we

decompose Chinese character refers to a Chinese typewriting method called WuBi. It decomposes

every single Chinese character into most four basic parts according to its structure. Taking the

current word ‘经历了’ (w3) in Figure 2 as an example, it can be decomposed into three Chinese

characters ‘经’, ‘历’, ‘了’ in the order from left to right and every Chinese character can be

decomposed into a radical sequence. For each Chinese character, we perform a lookup of

Chinese radical embeddings (of dimension 15) and stack them to generate the matrix Cm to

represent it. Then, we stack these three matrices Cm together according to the sequence they

appear in w3 to obtain the final matrix Ck which contains some essential semantic information

of w3.

Method of generating complete word vectors

To get a morphological vector from matrix Ck , we employ CNN to achieve it. CNN is useful in

extracting information from raw signals (LeCun et al., 1989, 1998) and it has also been demon-

strated to be effective for various NLP tasks (Collobert et al., 2011). In Figure 2, we can see that

there are 150 filters – 50 filters of width four (pink), 50 filters of width five (blue) and 50 filters of

width six (green). After the convolution layers, there is a max-over-time pooling operation aimed to

obtain a fixed-dimensional representation of the word with dimension 150 (the same as filter

numbers). However, different words may have different lengths of the radical sequence. For batch

processing, we employ zero padding to make sure that each Chinese character has four radical

parts and each word has four Chinese character parts, so the number of columns in Ck is constant

for all words. The details of convolution operations are described as follows.



Let dC be the vocabulary of Chinese radical, dr be the dimension of Chinese radical embeddings

and Q 2 R
dr� dCj j be the matrix of Chinese radical embeddings. Assume that word k consists of

a sequence of Chinese characters ðc1; c2; :::; clÞ . Then, the word-building method–based represen-

tation of k can be transformed into a matrix Ck 2 R4dr�l , where l is the length of the word k and

each character has four-radical space after zero padding operation in our model.

We apply a narrow convolution between Ck and a filter (or kernel) H 2 Rdr�w of width w, after

which we add a bias and apply a non-linearity to obtain a feature map f k 2 R
l�wþ1. Specifically, the

i-th element of f k is given by:

f k½i� ¼ reluðhCk½�; i : iþ w � 1�;Hi þ bÞ (1)

where Ck½�; i : iþ w � 1� is the i-to- (iþ w � 1)-th column of Ck and hA; Bi ¼ TrðABTÞ is the

Frobenius inner product. Finally, we take the max-over-time

yk ¼ max
i

f k½i� (2)

Figure 2. Word–vector generator.



as the feature corresponding to the filter H (when applied to word k). We can extract the most

valuable morphological feature which has the highest score within every filter through this

way. A filter can pick out the essential Chinese character n-gram, whose size corresponds to the

width of the filter.

The proposed word-building method–based model uses multiple filters of various widths to

obtain the feature vector for word k. Suppose that we have a total of h filters H1; :::;Hh and

concatenate them together, we can obtain representation of word k in the form of vector that

contains morphological information like yk ¼ ½yk1; y
k
2; :::; ykh�. Then, it is combined with syntactic

information (syntactic word vector from pre-training process) to generate the final complete vector.

Thus, when a sequence of words w1, w2 and w3 go through the word vector generator, respec-

tively, we could obtain the complete vector representation of each word at last.

Sentence–vector generator

Some researchers have found that the sentence representation can be naturally considered as the

feature to predict the sentiment polarity of the sentence (Graves, 2012; Kim, 2014; Lai et al., 2015;

Sundermeyer et al., 2012; Zhou, Sun, Liu, & Lau, 2015). In Figure 3, the output of word vector

generator is fed into a LSTM which is a variant of RNN, which is capable of mapping vectors of

words with variable length to a fixed-length vector by recursively transforming current word vector

vt with the hidden state vector of the previous step ht�1 where we regard the last hidden vector as

the sentence representation (J. Li et al., 2015; Tang et al., 2015). Finally, an affine transformation

followed by a softmax is applied over the hidden representation of the LSTM to obtain the

distribution of its sentiment polarity. Cross-entropy loss between the predicted sentiment polarity

distribution over the sentence and the actual sentiment polarity distribution is minimised.

Recurrent neural network

As the sentence–vector generator model, LSTM is one variant of RNN, thus we first introduce some

basic notions about RNN.

RNN is a type of neural network model which is more suitable for sequential input data. At each

time step t, an RNN takes the input vector xt 2 R
n and the hidden state vector ht 2 R

m, then

produces the next hidden state ht by applying the following recursive operation:

ht ¼ fðWxt þ Uþ bÞ (3)

Here, W 2 R
m�n

;U 2 R
m�m

; b 2 Rm are parameters of an affine transformation and f is an element-

wise non-linearity. However, it is difficult for RNN to learn long-range dependencies due to

vanishing/exploding gradients (Bengio, Simard, & Frasconi, 1994). So it can not summarise all the

sequence of input and the longer the input sequence is, the more information it will lost.

Figure 3. Sentence–vector generator.



Long-short term memory

As RNN suffers from some drawbacks when faced with long sequence input, the internal structure

of RNN has to be changed (just has a single memory cell) to solve this problem. One feasible

method is adding more memory cells to the model and under the guidance of such a method, the

LSTM model was proposed (Hochreiter & Schmidhuber, 1997).

The additive memory cells in LSTM are called forget gate ft, the input gate ii and the output gate

ot . These gates collectively determine the transitions of the current memory cell zt and the current

hidden state ht . Given an input sequence X ¼ ðx1; x2; :::; xnÞ, LSTM computes the hidden vector

sequence h ¼ ðh1; h2; :::; hnÞ and output vector sequence Y ¼ ðy1; y2; :::; ynÞ. Concretely, one step of

a LSTM takes x; h; z as input and produces ht; zt via the following intermediate calculations:

it ¼ σðWi � ht�1; xt½ � þ biÞ (4)

ft ¼ σðWf � ht�1; xt½ � þ bf Þ (5)

ot ¼ σðWo � ht�1; xt½ � þ boÞ (6)

gt ¼ tan hðWr � ½ht�1; xt� þ brÞ (7)

zt ¼ it � gt þ ft � zt�1 (8)

ht ¼ ot � tan hðztÞ (9)

Here, σ is the sigmoid function that has an output in [0, 1], tan h denotes the hyperbolic tangent

function that has an output in [−1, 1] and � denotes the component-wise multiplication. The

extent to which the information in the old memory cell is controlled by ft, while it controls the

extent to which new information is stored in the current memory cell, and ot is the output based

on the memory cell zt. These memory cells in LSTM help it avoid or alleviate the gradient vanishing

problem and suit to learn long-term dependencies. After calculating the hidden vector of each

position, we regard the last hidden vector as the sentence representation (J. Li et al., 2015; Tang

et al., 2015). We feed it to a linear layer whose dimension of output vector represents class number,

and add a softmax layer to output the probability of classifying the sentence as positive or

negative. Softmax function is calculated as follows, where E is the number of sentiment categories.

softmaxi ¼
expðxiÞ

PE

j¼1

expðxjÞ

(10)

Performance evaluations

First, we implement the neural network models and learning algorithms using the Keras package1

and scikit-learn package,2 including the WMBNN, CNN (Kalchbrenner et al., 2014; Kim, 2014), LSTM

(J. Li et al., 2015; Tang et al., 2015), Shi et al., 2015), IMBNN (Rossi, Faleiros, Lopes, & Rezende, 2014)

and some other traditional learning algorithms to demonstrate that WMBNN model can extract

morphological information more effectively from radical sequence which is proved to be helpful to

text classification. Second, the rest of the experiments explore the influence of experimental

settings in WMBNN model, consisting of the modifications in pre-trained word vectors, the width

settings of convolution windows and the number of hidden units. Finally, the same experiments

are conducted on English dataset to prove the generalisation ability of WMBNN model.



Performance of WMBNN on Chinese text

To offer a convincing comparison with other models, we conducted a series of experiments with

both WMBNN and other models. The source code of our proposed model is available.3 We will not

only prove the effectiveness of WMBNN model but also explore the influence of parameters on

WMBNN model in the following experiments.

Chinese dataset

To demonstrate the effectiveness of WMBNN model, we perform the experiments using the

following Five datasets in Chinese: Microblog records, Taobao reviews, Fudan Set, Dazhong dataset

and Sogou News.

Microblog records. We have crawled them from Sina website4 and labelled them in two classes

that are positive and negative. The total number of microblog records we have crawled is about

1,500,000. Because the records in each class are quite unbalanced, the data prepressing steps are

performed by randomly selecting data from the class that contains more records. After the data

prepressing steps, we finally get 750,000 records for microblog (380,000 in positive and 370,000 in

negative). Here, we call the whole microblog data as Large microblog dataset. Then, we randomly

select a subset with about 50,000 records from the Larger microblog dataset as Small microblog

dataset for the purpose of analysing the influence of the dataset’s size on different models.

Taobao reviews. We have crawled them from Taobao5 website and labelled them in three classes

that are positive, negative and neutral, respectively. The total number of Taobao reviews we have

crawled is about 150,000. Similar to the processing methods of Microblog records, we get 100,000

records for Taobao reviews (32,000 in positive, 35,000 in negative and 33,000 in neural).

Fudan set. The Fudan University document classification set is adapted from Lai et al. (2015),

which is a Chinese document classification set that consists of 20 classes, including art, education,

energy and so on.

Dazhong dataset. We have crawled them from Dazhongdianping6 website and labelled them in

two classes that are positive and negative, respectively. The total number of Taobao reviews we

have crawled is about 50,000. Similar to the processing methods of Microblog records, we

eventually get 40,000 records for Dazhongdianping dataset (20,000 in positive and 20,000 in

negative).

Sogou news. This dataset is constructed according to previews work in Zhang et al. (2015), which

contains news articles of five categories – ‘sport’, ‘financeA’, ‘entertainment’, ‘automobile’ and

‘technology’. The number of training samples selected for each class is 90,000 and testing 12,000.

Experimental settings

Word is the most suitable unit in processing Chinese language which we will prove in the following

experiments. A Chinese word can be decomposed into one to four Chinese characters and one

Chinese character can be decomposed into one to four Chinese radicals which can be regarded as

the basic element in the Chinese language. We assign each radical which is generated by the

model proposed Shi et al. (2015) with a dimension of 15. In order to identify the boundary of each

word, we generate a random vector with a dimension of 15 to represent start-of-word and end-of-

word character for that word.

To make the following comparison experiments more convinced and each neural network–

based models have the similar model complexity, the hyper-parameters of these neural network–

based models are set as follows. The total number of filters in word–vector generator of WMBNN



models are all set as 150 which indicates the dimension of generated morphological word vectors

are all 150 (this can make the comparison experiments more reasonable, which will be discussed in

next section). We use zero padding to make sure each word embedding matrix has the same

length of columns (18 in the experiment) and each sentence has the same words (all have the same

length as the longest sentence). The neural network–based models are trained by min-batch

backpropagation using optimiser Morop (Tieleman & Hinton, 2012). The learning rate is set 0.001

at the beginning and reduce by half after each two epoch. The training process is stopped when

model validation loss does not decrease anymore. The dimensions of LSTM in the following

experiments are all set as 150 (This can make the comparison experiments more reasonable

which will be described in following part). As for CNN, there are three kinds of filters and the

number of them are all 100 with width 2, 3, 4, respectively. The dimension of words is set as 150 in

WMBNN models while the rest neural network–based models are set as 300 which are all initialised

with Glove or word2vec methods. The radical vectors mentioned above in WMBNN are fine-tuned

during the whole training process. The batch size we choose in the experiment is 128 and

gradients are averaged over each batch. Parameters of the model are randomly initialised over

a uniform distribution with [−0.5, 0.5]. For regularisation, we use dropout (Hinton, Srivastava,

Krizhevsky, Sutskever, & Salakhutdinov, 2012) with probability 0.5 on the last softmax layer within

all neural network–based models.

In order to find the best hyperparameters for other kinds of comparison model, we apply grid-

search approach with 10-fold cross-validation. Finally, the most suitable hyperparameter settings

for each model are listed as followsbelow.

For k-earest Neighbor model, k is set as 12 and cosine similarity is used to measure the similarity

in k-Nearest Neighbor model. For Random Forest model, number of trees and max-depth are,

respectively, set as 500, 6 and Gini impurity is used as the split strategy. For IMBNN model, the error

correction rate is set as 0.2 and least mean square is used as the loss function. The smoothing

parameter α is set as 1 in Multinomial Naive Bayes. All the above hyperparameters in the

comparison models are chosen by grid searching approach.

Comparison models and results

Table 1 shows the accuracy of in different models on five different Chinese datasets. W2V stands for

word2vec (Mikolov et al., 2013) and Glove stands for global vector (Pennington et al., 2014) which are

two common word embedding generation strategies aiming at transforming each word into vector

space (if the syntactic of two words are similar, the Euclidean distance between them is closer in that

space). CNN refers to the model that Yoon Kim has proposed in Kim (2014) and LSTM refers to the

model in J. Li et al. (2015) and Tang et al. (2015). WMBNN-without-syntactic-vectors refers to the

Table 1. Accuracy on different Chinese datasets.

Model Large microblog Taobao review Fudan set Dazhong dataset Sogou news

WMBNN-W2V 83.23% 72.37% 96.70% 90.23% 92.22%
WMBNN-Glove 83.14% 72.15% 96.92% 90.33% 92.41%
LSTM-W2V 82.43% 70.92% 94.23% 89.37% 91.88%
LSTM-Glove 82.45% 70.99% 94.34% 89.34% 91.98%
CNN-W2V 82.47% 71.13% 94.74% 89.34% 91.45%
CNN-Glove 82.42% 71.20% 94.97% 89.12% 91.71%
WMBNN-without-syntactic-vectors 82.32% 71.10% 95.08% 89.19% 91.33%
STC 79.73% 68.03% 92.10% 77.19% 88.87%
IMBNN 78.87% 67.01% 92.07% 78.93% 89.37%
Bayes 78.11% 66.32% 90.10% 76.53% 84.54%
Wordterm-Randomforest 76.23% 67.33% 92.41% 76.48% 84.54%
Wordvec-LR 75.17% 65.17% 92.58% 73.12% 81.93%
Radicalvec-LR 66.18% 41.46% 91.97% 72.85% 82.83%
Radicalterm-Randomforest 62.23% 40.65% 91.47% 69.09% 77.03%
KNN 63.12% 52.49% 84.95% 66.18% 78.76%



WMBNN model that gives up the syntactic information. WMBNN-W2V refers to the WMBNN model

whose syntactic matrix is generated by Word2vec strategy while WMBNN-Glove refers to the one

whose syntactic matrix is generated by Glove strategy. STC refers to the model in Shi et al. (2015).

IMBNN refers to themodel in Rossi et al. (2014). KNN and Bayes refer to the traditionalmachine learning

approaches in Sebastiani (2002) and Aggarwal and Zhai (2012) that only use word frequency informa-

tion to represent the aim sentence. Radicalvec-LR refers to the Logistic Regression in Sebastiani (2002)

and Aggarwal and Zhai (2012), which regards the average of the radical vectors from one sentence as

input. Wordvec-LR refers to the Logistic Regressionmodel that regards the average of the word vectors

from one sentence as input. Radicalterm-Randomforest refers to the Random Forest model that use

bag-of-wordmethod to represent thewhole sentence (the elements in the bag are radical from the aim

sentence) while the weights of vector are generated by TF-IDF. Wordtem-Randomforest refers to the

Random Forest model that uses the bag-of-word method to represent the whole sentence (the

elements in the bag are word from the target sentence) while the weights of vector are also generated

by TF-IDF. The convolutionwidths of all filters fromword vector generator inWMBNN are set as 8 which

will be discussed in next section..

From Table 1, we can see that the accuracies of different models on five datasets have the same

tendency. The accuracy of WMBNN-without-syntactic-vectors (82.32% on large microblog, 71.10%

on Taobao review, 95.08% on Fudan, 89.19% on Dazhong dataset and 91.33% on Sogou News) is

on par with the models with pre-training process, such as CNN (82.47% on Large microblog,

71.13% on Taobao review, 94.74% on Fudan set, 89.12% on Dazhong dataset and 91.45% on

Sogou News) and LSTM (82.43% on Large microblog, 70.92% on Taobao review, 94.23% on Fudan

set, 89.34% Dazhong dataset and 91.88% on Sogou News). This demonstrates that the WMBNN can

effectively extract morphological information from a sequence of radicals which is as important as

syntactic information for text classification.

Both WMBNN-W2V (83.23% on Large microblog, 73.37% on Taobao review, 96.70% on Fudan set,

90.23% on Dazhong dataset and 92.22% on Sogou News) and WMBNN-Glove (83.14% on Large

microblog, 72.15% on Taobao review, 96.92% on Fudan set, 90.33% on Dazhong dataset and 92.41%

on Sogou News) outperform the other models which demonstrates that combining morphological

information and syntactic information can further improve the accuracy of classification compared to

the traditional CNN and LSTM models using only syntactic information. The STC directly applies

convolution layer to extract information from a raw radical sequence, leading the radicals from

different characters mixed together, which will bring in much noise for classifcation. The Bayes and

IMBNN just consider the co-occurrence between independent words and sentences, but when

encountering the sentence containing some negation words or intensity words which can directly

change the polarity of the sentence (pretty common in our two datasets) they behave badly. Both

Radicalvec-LR and Radicalterm-Randomforest behave terribly compared to other models, because only

the composition of all radicals from the sameword can hold completemeanings (word is the basic and

indivisible in a language) while mixing the radicals in a sentence together would make no sense. As for

Wordvec-LR and Wordterm-Randomforest, they all mix the words from one sentence together, so they

will lose word sequence information that can influence the accuracy of classification.

Table 2 shows the classification accuracies of WMBNN with different convolution filter width

settings on Large microblog dataset and Taobao review dataset. The total number of filters in each

model is set as 150 which represents the dimension of morphological word vectors. 3–4–5 means

that there are three kinds of filters with the width of 3, 4, 5 respectively and each kind of filter has

50 filters. 8 means that there is only one kind filter with the width of 8. Each model employs Glove

strategy to generate syntactic word vectors that are combined with morphological word vectors to

generate the complete word vectors.

From Table 2, we can see that different settings of convolution filter width exactly have different

effects on the accuracy of WMBNN model. Experiment with 8-width filter achieves the highest

accuracy among all settings on all datasets. The width 8 is exactly equal to the summation of the

radical embedding number of two Chinese characters (each Chinese character can be decomposed



into four radical embeddings with zero padding). This result may be relevant to the characteristics

of the Chinese language. In most cases, two adjacent characters can always convey integrate

meanings which are related to this word. When a sequence of adjacent characters in a word are

conducted convolutional operations and go through a max-pooling layer, the essential morpholo-

gical feature of the word would be extracted.

Figure 4 shows the classification accuracy of WMBNN model with different dimensions of the

hidden state vector in LSTM. In this experiment, we set the width of all filters as 8 which has

been proven to be the optimum choice among many candidates. The axis X represents the

dimension of the hidden state vector in LSTM. The convex curve in Figure 4 presents the

variation of the classification accuracy with the growth of the dimension of the hidden state

vector. The accuracy goes up monotonously at first, because the hidden state vector encodes

the whole sentence and longer sentence vector can contain more information of the sentence

which can help improve the prediction accuracy. When the dimension of the hidden state

vector continues going up and exceeds 200, the accuracy begins to decline. Because when the

dimension of the hidden state vector exceeds a critical value (200 in this experiment, which is

closely relevant to the data size), the benefit of prediction accuracy from the longer dimension

of the hidden state vector is outweighed by the loss produced from the more complexity of

this model. It is clear that there is a trade-off between the dimension of the hidden state vector

Table 2. Accuracy of different width settings.

Width settings Large microblog Taobao review Fudan set Dazhong dataset Sogou news

8 83.23% 72.37% 96.70% 90.23% 92.22%
7–8-9 83.11% 72.14% 96.34% 90.10% 92.13%
6–7-8 82.95% 71.91% 96.24% 90.10% 92.09%
7 82.92% 72.12% 95.24% 89.98% 91.07%
4–5–6 82.91% 72.02% 95.25% 89.64% 91.46%
3–4-5 82.83% 71.99% 95.17% 89.34% 92.07%
9 82.78% 72.15% 95.23% 89.39% 92.05%
4 82.88% 72.34% 95.31% 89.72% 91.78%
5-6-7 82.72% 71.81% 95.11% 89.19% 91.24%
10 82.72% 72.03% 95.03% 88.59% 91.98%
6 82.70% 72.09% 94.78% 88.77% 90.36%
5 82.65% 71.88% 94.56% 88.42% 90.17%

Figure 4. Accuracy of different dimensions of hidden state.



(dimension of sentence vector) and model complexity, and the choice 200 exactly stands at the

balance point in experiments.

Table 3 shows the classification accuracy of different models on small microblog dataset and the

decline rates compared those in large microblog dataset are also listed above. The terms in Table 3

have the same meaning as those in Table 1.

From Table 3, we can see that the results on small microblog dataset have the same tendency

with those in Table 1. However, there are still some important details that we should pay attention

to. Firstly, the accuracy of a model declines from large microblog dataset to small microblog

dataset in every model. This is because larger dataset contains more information which is helpful

for training a complex model. Secondly, when size of the dataset changes, WMBNN (WMBNN-

without-syntactic-vectors, WMBNN-W2V, WMBNN-Glove) all have less decline rates of accuracy than

the other models. The difference shows that WMBNN are less sensitive to the data size than the

other ones.This is because WMBNN model can decompose each word to a number of radicals, and

the morphological information it extracts is based on statistics of radicals (one radical can be

shared by many different words, so radicals vectors are less sensitive to the data size), which makes

the WMBNN model preform more stability facing the changes of data size. As for IMBNN and Bayes

model, both of them are based on the co-occurrence between words and different classes of

sentences that makes them decline much more when the data size shrinks (the larger dataset is,

the more closer the count of co-occurrence is to the true probability distribution).

Performance of WMBNN on English text

Figure 5 presents the overall logic architecture diagram of WMBNN model for English text. We

present that only the word decomposer block is different from that in Figure 1 throughout the

whole process. In Figure 5 the word decomposer block aims to decompose each English word to

a sequence of characters according to the characteristics of English. It can be inferred that the

WMBNN model we propose is a universal logic architecture and the word decomposer block acts

just like a plug-in which is used to adapted to different kinds of languages.

The experiments in this section will show that WMBNN can also work well for English and we

will present the experiment results with optimal parameter settings directly.

English dataset

Amazon reviews. We download some reviews of Amazon about daily necessities (Zhang et al.,

2015). These reviews are divided into five categories according to the overall evaluation of the

customer and the total number of Amazon reviews we got is about 2,000,000. Then, we randomly

Table 3. Accuracy on small microblog dataset.

Model Small microblog Decline rate

WMBNN-W2V 83.14% 0.09%
WMBNN-Glove 83.05% 0.09%
LSTM-W2V 82.21% 0.22%
LSTM-Glove 82.16% 0.29%
CNN-W2V 82.23% 0.24%
CNN-Glove 82.13% 0.29%
WMBNN-without-syntactic-vectors 82.21% 0.11%
STC 79.40% 0.33%
IMBNN 78.15% 0.72%
Bayes 77.26% 0.85%
Wordterm-Randomforest 75.91% 0.32%
Wordvec-LR 74.84% 0.34%
Radicalvec-LR 65.44% 0.74%
Radicalterm-Randomforest 61.35% 0.88%
KNN 62.46% 0.66%



select some reviews from each class to generate two kinds of dataset, respectively, named

Amazon2 dataset and Amazon5 dataset. Amazon2 dataset has two sentiment polarities (100,000

in positive and 100,000 in negative) and Amazon5 dataset has five sentiment polarities (34,000 in

very positive, 36,000 in positive, 35,000 in neutral, 37,000 in negative and 37,000 in very negative).

AG news. This dataset is adopted from Zhang et al. (2015). The dataset consists of both articles

and descriptions of AG’s corpus of news. We choose the 4 largest classes from this corpus to

construct our dataset, using only the title and description fields. The number of training samples

for each class is 30,000 and testing is 1900.

Movie review. This dataset consists of one sentence per comment on movies. Classification

involves detecting positive/negative reviews (Kim, 2014). For this dataset, we randomly split 90%

as the training set and the remaining 10% as test set. In this process, we keep a balanced number

of items with each label in the training set.

Method of generating complete word vectors for English text

For English text, the Syntactic Matrix is obtained in the same way in Chinese part. As for decom-

posing English words, Yoon Kim et al. (2016) has proposed one way to decompose English words

which is used in our model. As English is a kind of alphabetic language, it is natural to put forward

the idea to decompose an English word to a sequence of characters. As there is a blank between

every two English words in one sentence, we can generate the matrix Ck directly by stacking every

character vector in a word. To guarantee the number of columns is identical in the matrix Ck , we

take the length of the longest word throughout the whole corpus as standard to conduct

zero paddings which could make sure every word has the same length. Then, CNN operations

are employed on the matrix Ck to extract the morphological information of words similar to the

way in the Chinese part. Finally, the syntactic word vectors and morphological word vectors are

concatenated together to generate the complete word vectors.

Figure 5. Logic architecture diagram of WMBNN for English.



Experimental settings

The details of word-building method vary when faced with different languages. An English word

can be decomposed into a sequence of characters and the character is the basic element of

English. There are total 26 letters in English, so we assign each letter a random vector generated by

the distribution of uniform [−0.5, 0.5] with dimension 15. In order to identify the boundary of the

words, we generate a random vector with dimension 15 to represent start-of-word and end-of-

word character for each word. We also use zero padding to make sure every word embedding

matrix has the same length of columns (the same as the longest word on English dataset) and each

sentence has the same words (all have the same length as the longest sentence). For alphabets in

English, one important option is whether to distinguish upper-case letters from lower-case letters.

According to Zhang et al. (2015), it usually (but not always) gives worse results when such

a distinction is made. Thus, in our experiment, we convert all upper-case letters to lower-case

letters before training the model.

For neural network–based models, the settings in training process (such as regularisation and

initialisation) of English text experiment are almost the same as those in Chinese text experiment

except for a smaller batch size and different filter widths (3, 4, 5 in English as most root words in

English have 3, 4, 5 characters). For the model in Zhang et al. (2015), which also decomposes

English words into characters and builds the network upon character sequence, has 6 convolu-

tional layers and 3 fully connected layers. (As this model are proposed for English, so it only

appears in comparison experiments for English in this paper and the corresponding Chinese model

is called STC that is shown in Table 1) The neural network–based models are all trained by min-

batch backpropagation using optimiser RMSprop (Tieleman & Hinton, 2012).The learning rate is set

0.001 at the beginning and reduce by half after each two epoch. The training process is stopped

when model validation loss does not decrease anymore.

As for other kinds of comparison models, similar to that in the Chinese experiment part, grid-

search approach with 10-fold cross validation are applied to find the best hyper parameters settings.

k is set as 10 and cosine similarity is used to measure the similarity in the k-Nearest Neighbor model.

For Random Forest model, the number of trees and max-depth are set as 400, 5, respectively, and

Gini impurity is used as the split strategy. For IMBNN model, the error correction rate is set as 0.15

and least mean square is used as loss function. For Multinomial Native Bayes, the smoothing

parameter is set as 1. The parameter settings of IMBNN and Multinomial Naive Bayes are the same

as that in Chinese part. Similar to Chinese part, the above hyperparameters in the comparison models

are chosen by grid searching approach. Ten-fold cross-validation strategy is applied in our experi-

ments and the whole dataset is equally divided into 10 parts. We train our model on the training set

with enough epochs to obtain the best performance of accuracy on the validation set.

Comparison models and results

Table 4 shows the accuracy of class classification in differentmodels on English dataset. The terms in Table

4 have the same meaning as those in Table 1. CCN refers to the model proposed by Zhang et al. (2015).

From Table 4, we can draw the same conclusion as that in Chinese dataset. Both WMBNN-Glove

(94.55% on Amazon2, 55.65% on Amazon5, 89.79% on AG news and 84.15% on Movie review) and

WMBNN-W2V (94.32% on Amazon2, 55.77% on Amazon5, 89.93% on AG news and 84.24% on

Movie review) outperform the traditional CNN (CNN-Glove and CNN-W2V) and LSTM (LSTM-Glove

and LSTM-W2V) model with only syntactic information. At the same time, they both outperform the

CCN (92.05% on Amazon2, 53.05% on Amazon5, 86.01% on AG news and 81.26% on Movie review),

that is because when doing convolutional operations, characters in two adjacent words will be

mixed together which will add noise into the model. It can also demonstrate that the word-vector

generated layer in WMBNN (WMBNN-without-syntactic-vectors, WMBNN-W2V, WMBNN-Glove) can

effectively extract morphological information from a sequence of characters to represent an

English word which is as important as syntactic information for the text classification task. On

the other hand, it indicates that our word-building method is suitable for different kinds of



language (Chinese represents one kind of language whose words are a combination of meaning

and shape and English is another kind representing the alphabet language which is composed of

fixed letters). As for other models, like those in Table 1, Wordvec-LR and Wordterm-Randomforest

lose the words sequence information and Bayes as well as IMBNN will behave badly when

encountering the sentence containing some negation words or intensity words.

It can be inferred that the WMBNN model we propose is a universal logic architecture and the

word decomposer block acts just like a plug-in which is used to adapt to different kinds of

languages. So when faced with different kinds of languages, we only need to change the strategy

that word decomposer refers to.

Model computational complexity analysis

In this part, we will ananlyse the model computational complexity by dividing it into two stages:

training stage and inferring stage. From above experiments, we can see the neural network–based

models (including CNNs, LSTMs, WMBNN and CCN) perform much better than other traditional

machine learning models on both Chinese and English datasets. Thus, in this part, we only consider

neural network–based models.

Training-stage computational complexity analysis

In the training stage, the complexity of the model is proportional to the number of parameters of the

model which means that more parameters will lead to more complexity of the model. (X. Li, Qin,

Yang, Hu, & Liu, 2016) We then conduct the analysis based on this. In order to simplify the process of

calculating the number of parameters in models, the bias parameters in each model are ignored.

Let dr denote dimension of radicals, cr denote the number of common radicals in Chinese which

is about 400, dc denote the dimension of characters, cc denote the number of character which is

a fixed number 26. The number of parameters in CNN-W2V/CNN-Glove can be calculated by

Eequation (11) in which f1, f2, f3 are the width of filters in CNN, respectively, and nCNN denotes

the number of filters. The number of parameters in LSTM-W2V/LSTM-Glove can be calculated by

equation (12) in which hlstm denotes the dimension of the hidden state in LSTM. The number of

parameters in WMBNN-W2V/WMBNN-Glove can be calculated by Equation (13) in which f4 and n3
denote the filter width and filter number in word vector generator, respectively. The number of

parameters in WMBNN-without-syntactic-vectors can be calculated by Eequation (14) in which f5
and f4 denote the filter width and filter number in word vector generator, respectively. The number

of parameters in CCN which consists of six convolutional layers and three fully connected layers

can be calculated by Eequation (15) in which n5, n6 denote the width of convolution filters and f5,

f6 denote the number of filters in convolution.

Table 4. Accuracy on different English datasets.

model Amazon 2 Amazon 5 AG news Movie review

WMBNN-Glove 94.55% 55.65% 89.79% 84.15%
WMBNN-W2V 94.32% 55.77% 89.93% 84.24%
LSTM-Glove 93.77% 54.56% 87.53% 82.98%
LSTM-W2V 93.61% 54.45% 87.64% 82.73%
CNN-Glove 93.53% 54.26% 86.11% 81.52%
WMBNN-without-syntactic-vectors 93.45% 54.31% 87.53% 82.15%
CNN-W2V 93.47% 54.12% 86.34% 81.71%
CCN 92.05% 53.05% 86.01% 81.26%
IMBNN 91.33% 52.21% 85.44% 80.66%
Bayes 90.84% 51.10% 85.68% 80.15%
Wordterm-Randomforest 77.75% 52.24% 72.95% 77.23%
Wordvec-LR 85.68% 51.24% 61.93% 60.45%
KNN 73.34% 43.37% 64.98% 65.11%



nCNN � ðf1 � dw1 þ f2 � dw1 þ f3 � dw1Þ þ 3nCNN � 2 ¼ 264:2K (11)

4 � hlstm � ðhlstm þ dw1Þ þ 2 � hlstm ¼ 261:1K (12)

dr � cr þ n3 � ð8 � drÞ þ 4 � ðn3 þ dw2Þ � ðn3 þ dw2 þ hlstmÞ ¼ 266:2K (13)

dr � cr þ n4 � ðf4 � drÞ þ 4 � ðn4 þ hlstmÞ � n4 þ 2 � hlstm ¼ 264:2K (14)

2�n5 � ðf5 � dcÞ þ 4 � n5 � ðf6 � dcÞ þ n5 � n6 þ n6 � n6 þ n6 � n2 ¼ 322:56K (15)

In above formulas, f1, f2, f3, f4, f5, f6 are set as 2, 3, 4, 8, 7, 3, respectively, n3, n4, n5, n6 are set as 150,

300, 300, 1024, respectively, nCNN, dw1 are set as 300, and dw2, hlstm are set as 150 which are the

same as those in our above experiments. We can see that these neural network–based models

have a similar number of parameters so as to the computational complexity in the training stage.

Inferring stage computational complexity analysis

In inferring stage, the model structure of these neural network models is similar which demon-

strates that these neural network models should have the similar inferring stage computational

complexity. Then, we conduct some tests to prove it and the results are listed in Table 5.

We conduct tests on Inspur P-8000 with GPU Tesla-k40c and use deep learning framework Keras

to implement the models. From Table 5, we can see that the speed of each model are similar

indicating that they have similar computational complexity in inferring stage.

Conclusion and future work

In this paper, we introducedWMBNNmodel for text classification in both Chinese and English datasets.

It can extract useful morphological information from a sequence of radicals in Chinese or characters in

English. The performance evaluations and model computational complexity analysis show that the

proposed WMBNN model with the combination of morphological and syntactic information outper-

forms the traditional CNN and LSTM models without adding model computational complexity.

The significant contribution in this work is the way of thinking, which presents a new perspec-

tive to deal with natural language problems. From the word-building point of view, there are

different word building methods in different languages which may contain meaningful structure

information. The proposed WMBNN model is a universal architecture to extract structure informa-

tion from words. Besides, the proposed word decomposer block in the architecture can act as

a plug-in module which is adaptable to a different language whose specific decomposing strategy

is based on the characteristics of a target language. The conducted experiments have shown that

the proposed WMBNN model is effective on both Chinese and English datasets. The model is

considered universal since Chinese and English are the most representative language from the

word-building point of view, in that, Chinese is a kind of language whose characters are the

combination of shape and meaning, and English is an alphabetical language.

Table 5. Inferring speed of different models.

ƼModel Large microblog Amazon2

WMBNN-W2V/WMBNN-glove 260 records per second 210 records per second
WMBNN-without-syntactic-vectors 258 records per second 209 records per second
CNN 310 records per second 286 records per second
LSTM 262 records per second 211 records per second
CCN None 122 records per second



As most NLP models use sequence of words as inputs, it would be interesting to further explore

how effective the idea of extracting essential morphological information through the radicals in

Chinese or the characters in English proposed herein, in other NLP tasks. Furthermore, from the

syntax point of view, if more useful information can be extracted from the structure of the whole

sentence, not just the sentence as a sequence of the words, it will be a problem worth exploring in

the future.

Notes

1. https://keras.io/.

2. http://scikit-learn.org/stable/.

3. https://github.com/guoyuhaoaaa/word-building-method-for-text-classification/.

4. http://www.sina.com.cn/.

5. https://www.taobao.com/.

6. https://www.dianping.com/.

References

Aggarwal, C. C., & Zhai, C. (2012). Mining text data. New York, NY: Springer Science & Business Media.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine

Learning Research, 3(2), 1137–1155.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE

Transactions on Neural Networks, 5(2), 157–166.

Chen, B.-C., Chen, -Y.-Y., Chen, F., & Joshi, D. (2016, February). Business-aware visual concept discovery from social

media for multimodal business venue recognition. In Proceedings of the 30th AAAI conference on artificial intelli-

gence, (pp. 101–107). Phoenix, Arizona, USA.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing

(almost) from scratch. Journal of Machine Learning Research, 12(8), 2493–2537.

Dos Santos, C. N., & Guimarães, V. (2015, July). Boosting named entity recognition with neural character embeddings.

In Proceedings of the fifth named entities workshop, (pp. 25–33). Beijing China.

Dos Santos, C. N., & Zadrozny, B. (2014, June). Learning character-level representations for part-of-speech tagging. In

Proceedings of the 31st international conference on machine learning, (pp. 1818–1826). Beijing China.

Graves A. (2012). Neural networks. In Supervised sequence labelling with recurrent neural networks (pp. 15–35). Berlin,

Heidelberg: Springer.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by

preventing co-adaptation of feature detectors. Computer Science, 3(4), 212–223.

https://keras.io/
http://scikit-learn.org/stable/
https://github.com/guoyuhaoaaa/word-building-method-for-text-classification/
http://www.sina.com.cn/
https://www.taobao.com/
https://www.dianping.com/


Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014, June). A convolutional neural network for modelling sentences.

In Proceedings of the 52nd annual meeting of the association for computational linguistics, (pp. 655–665). Baltimore,

MD, USA.

Kim, Y. (2014, October). Convolutional neural networks for sentence classification. In Proceedings of the 2014

conference on empirical methods in natural language processing, (pp. 1746–1751). Doha, Qatar.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016, February). Character-aware neural language models. In Proceedings

of the 30th AAAI conference on artificial intelligence, (pp. 2741–2749). Phoenix, Arizona, USA.

Lai, S., Xu, L., Liu, K., & Zhao, J. (2015, January). Recurrent convolutional neural networks for text classification. In

Proceedings of the 29th AAAI conference on artificial intelligence, (pp. 2267–2273). Austin, Texas, USA.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation

applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11), 2278–2324.

Li, J., Luong, M.-T., Jurafsky, D., & Hovy, E. (2015, September). When are tree structures necessary for deep learning of

representations? In Proceedings of the 2015 conference on empirical methods in natural language processing (pp.

2304–2314). Lisbon, Portugal.

Li, X., Qin, T., Yang, J., Hu, X., & Liu, T. (2016, December). Lightrnn: Memory and computation- efficient recurrent neural

networks. In Proceedings of Advances in Neural Information Processing Systems 29: Annual Conference on Neural

Information Processing Systems, Barcelona, Spain (pp. 4385–4393).

Liang, C., Paritosh, P., Rajendran, V., & Forbus, K. D. (2016, July). Learning paraphrase identification with structural

alignment. In Proceedings of the 25th international joint conference on artificial intelligence, (pp. 2859–2865). New

York, NY, USA.

Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167.

Masdeval, C., & Veloso, A. (2015). Mining citizen emotions to estimate the urgency of urban issues. Information

Systems, 54, 147–155.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013, December). Distributed representations of words

and phrases and their compositionality. In Proceedings of Advances in neural information processing systems, (pp.

3111–3119). Lake Tahoe, Nevada, USA.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2

(1–2), 1–135.

Peng, H., Cambria, E., & Zou, X. (2017, May). Radical-based hierarchical embeddings for chinese sentiment analysis at

sentence level. In Proceedings of the 30th international FLAIRS conference, (pp. 347–352). Marco Island, Florida, USA.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In

Proceedings of the 2014 conference on empirical methods in natural language processing, (pp. 1532–1543). Doha,

Qatar

Rossi, R. G., Faleiros, T. D. P., Lopes, A. D. A., & Rezende, S. O. (2014). Inductive model generation for text categorization

using a bipartite heterogeneous network. Journal of Computer Science and Technology, 29(3), 361–375.

Schulz, A., Mencía, E. L., & Schmidt, B. (2016). A rapid-prototyping framework for extracting small-scale incident-related

information in microblogs: Application of multi-label classification on tweets. Information Systems, 57, 88–110.

Sebastiani, F. (2002). Machine learning in automated text categorization. Acm Computing Surveys, 34(1), 1–47.

Shi, X., Zhai, J., Yang, X., Xie, Z., & Liu, C. (2015, July). Radical embedding: Delving deeper to chinese radicals. In

Proceedings of the 53rd annual meeting of the association for computational linguistics (pp. 594–598). Beijing, China

Sun, J. (2012). Jieba’ Chinese word segmentation tool. Retrieved from https://github.com/fxsjy/jieba

Sun, Y., Lin, L., Yang, N., Ji, Z., & Wang, X. (2014, November). Radical-enhanced chinese character embedding. In Neural

information processing, (pp. 279–286). Kuching, Malaysia

Sundermeyer, M., Schlüter, R., & Ney, H. (2012, September). Lstm neural networks for language modeling. In

INTERSPEECH 2012, 13th annual conference of the international speech communication association (pp. 194–197).

Portland, Oregon, USA.

Tang, D., Qin, B., & Liu, T. (2015, September). Document modeling with gated recurrent neural network for sentiment

classification. In Proceedings of the 2014 conference on empirical methods in natural language processing, (pp.

1422–1432). Lisbon, Portugal

Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014, June). Learning sentiment- specific word embedding for

twitter sentiment classification. In Proceedings of the 52nd annual meeting of the association for computational

linguistics, (pp. 1555–1565). Baltimore, MD, USA.

Tieleman, T., & Hinton, G. (2012). Lecture 6.6-rmsprop: Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2.

Wang, Y., Ma, H., Lowe, N., Feldman, M., & Schmitt, C. (2016, February). Business event curation: Merging human and

automated approaches. In Proceedings of the 30th AAAI conference on artificial intelligence, (pp. 4272–4273).

Phoenix, Arizona, USA.

Zhang, J., & Deng, X. (2012, September). Wubi input system and method. US Patent App. 13/480,323. Google Patents.



Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. In Advances in

neural information processing systems, (pp. 649–657). Montreal, Quebec, Canada: Curran Associates, Inc.

Zhou, C., Sun, C., Liu, Z., & Lau, F. C. M. (2015). A C-LSTM neural network for text classification. Computing Research

Repository, abs/1511.08630. Retrieved from http://arxiv.org/abs/1511.08630

Zhu, X., Sobhani, P., & Guo, H. (2015, July). Long short-term memory over recursive structures. In Proceedings of the

32nd international conference on machine learning, (pp. 1604–1612). Lille, France.

http://arxiv.org/abs/1511.08630

	Abstract
	Introduction
	Related work
	WMBNN model
	Word–vector generator
	Preprocessing for Chinese text
	Method of decomposing Chinese words
	Method of generating complete word vectors

	Sentence–vector generator
	Recurrent neural network
	Long-short term memory


	Performance evaluations
	Performance of WMBNN on Chinese text
	Chinese dataset
	Microblog records
	Taobao reviews
	Fudan set
	Dazhong dataset
	Sogou news

	Experimental settings
	Comparison models and results

	Performance of WMBNN on English text
	English dataset
	Amazon reviews
	AG news
	Movie review

	Method of generating complete word vectors for English text
	Experimental settings
	Comparison models and results

	Model computational complexity analysis
	Training-stage computational complexity analysis
	Inferring stage computational complexity analysis


	Conclusion and future work
	Notes
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

