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Abstract

This paper presents the first attempt to use

word embeddings to predict the composition-

ality of multiword expressions. We consider

both single- and multi-prototype word em-

beddings. Experimental results show that, in

combination with a back-off method based

on string similarity, word embeddings out-

perform a method using count-based distribu-

tional similarity. Our best results are com-

petitive with, or superior to, state-of-the-art

methods over three standard compositionality

datasets, which include two types of multi-

word expressions and two languages.

1 Introduction

Multiword expressions (MWEs) are word combina-

tions that display some form of idiomaticity (Bald-

win and Kim, 2009), including semantic idiomatic-

ity, wherein the semantics of the MWE (e.g. ivory

tower) cannot be predicted from the semantics of

the component words (e.g. ivory and tower). Re-

cent NLP work on semantic idiomaticity has focused

on the task of “compositionality prediction”, in the

form of a regression task whereby a given MWE is

mapped onto a continuous-valued compositionality

score, either for the MWE as a whole or for each of

its component words (Reddy et al., 2011; Schulte im

Walde et al., 2013; Salehi et al., 2014b).

Separately in NLP, there has been a recent surge

of interest in learning distributed representations

of word meaning, in the form of “word embed-

dings” (Collobert and Weston, 2008; Mikolov et al.,

2013a) and composition over distributed representa-

tions (Socher et al., 2012; Baroni et al., 2014).

This paper is the first attempt to bring together the

work on word embedding-style distributional analy-

sis with compositionality prediction of MWEs. In

the context of compositionality prediction, our pri-

mary research questions here are:

RQ1: Are word embeddings superior to conven-

tional count-based models of distributional

similarity?

RQ2: How sensitive to parameter optimisation are

different word embedding approaches?

RQ3: Are multi-prototype word embeddings empir-

ically superior to single-prototype word em-

beddings?

We explore these questions relative to three compo-

sitionality prediction datasets spanning two MWE

construction types (noun compounds and verb par-

ticle constructions) and two languages (English and

German), and arrive at the following conclusions:

(1) consistent with recent work over other NLP

tasks, word embeddings are superior to count–

based models of distributional similarity (and also

translation-based string similarity); (2) the results

are relatively stable under parameter optimisation

for a given word embedding learning approach; and

(3) based on two simple approaches to composition,

single word embeddings are empirically slightly su-

perior to multi-prototype word embeddings overall.
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2 Related Work

Recent work on distributed approaches to distri-

butional semantics has demonstrated their utility

in a wide range of NLP tasks, including identi-

fying various morphosyntactic and semantic rela-

tions (Mikolov et al., 2013a), dependency parsing

(Bansal et al., 2014), sentiment analysis (Socher et

al., 2013), named-entity recognition (Collobert and

Weston, 2008; Passos et al., 2014), and machine

translation (Zou et al., 2013; Devlin et al., 2014).

Despite the wealth of research applying word em-

beddings within NLP, they have not yet been consid-

ered for predicting the compositionality of MWEs.

Much prior work on MWEs has been tailored

to specific kinds of MWEs in particular languages

(e.g. English verb–noun combinations (Fazly et al.,

2009)). There has however been recent interest in

approaches to MWEs that are more broadly applica-

ble to a wider range of languages and MWE types

(Brooke et al., 2014; Salehi et al., 2014b; Schneider

et al., 2014). Word embeddings could form the basis

for such an approach to predicting MWE composi-

tionality.

3 Methodology

In this work, we estimate the compositionality of

an MWE based on the similarity between the ex-

pression and its component words in vector space.

We use three different vector-space models: (1) a

simple count-based model of distributional similar-

ity; (2) word embeddings based on WORD2VEC; and

(3) a multi-sense skip-gram model that, unlike the

previous two models, is able to learn multiple em-

beddings per target word (or MWE). For all three

models, we first greedily pre-tokenise the corpus to

represent each MWE as a single token, similarly to

Baldwin et al. (2003). In this, we apply the con-

straint that no language-specific pre-processing can

be applied to the training corpus, in order to make

the method maximally language independent. As

such, we cannot perform any form of lemmatisation,

and MWE identification takes the form of simple

string match for concatenated instances of the com-

ponent words, naively assuming that all occurrences

of that word combination are MWEs. We detail each

of the distributional similarity methods below.

3.1 Count-Based Distributional Similarity

Our first method for building vectors is that of Salehi

et al. (2014b): the top 50 most-frequent words in

the training corpus are considered to be stopwords

and discarded, and words with frequency rank 51–

1051 are considered to be the content-bearing words,

which form the dimensions for our vectors, in the

manner of Schütze (1997). To measure the similarity

of the MWE vector and the component word vectors,

we considered two different approaches.

The first approach is based on Reddy et al. (2011)

and Schulte im Walde et al. (2013). The similar-

ity between the MWE and each of its components

is measured, and the overall compositionality of

the MWE is computed by combining the similarity

scores for the two components as follows:

comp
1
(MWE) = αsim(MWE,C1)

+(1 − α)sim(MWE,C2)

where MWE is the vector associated with the

MWE, Ci is the vector associated with the ith com-

ponent word of the MWE, sim is a vector similarity

function, and α ∈ [0, 1] is a weight parameter.

We also experimented with the approach from

Mitchell and Lapata (2010), where MWE is com-

pared directly with a composed vector of the com-

ponent words, based on vector addition:1

comp2(MWE) = sim(MWE,C1 + C2)

For both comp1 and comp2, we used cosine sim-

ilarity as our similarity measure sim .

3.2 WORD2VEC

Our second method is based on the recurrent neu-

ral network language model (RNNLM) approach to

learning word embeddings of Mikolov et al. (2013a)

and Mikolov et al. (2013b), using the WORD2VEC

package.2 WORD2VEC uses a log-linear model in-

spired by the original RNNLM approach of Mikolov

et al. (2010), in two forms: (1) a continuous bag-

of-words (“CBOW”) model, whereby all words in

a context window are averaged in a single projec-

tion layer; and (2) a continuous skip-gram model

1We also experimented with vector multiplication, but found

it to perform poorly compared to the other approaches.
2
https://code.google.com/p/word2vec/
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(“C-SKIP”), whereby a given word in context is pro-

jected onto a projection layer, and used to predict its

immediate context (preceding and following words).

WORD2VEC generates a vector of fixed dimension-

ality d for each pre-tokenised word/MWE type with

frequency above a certain threshold in the training

corpus. We again use comp1 and comp2 to estimate

compositionality from these vectors.

3.3 Multi-Sense Skip-gram Model

One potential shortcoming of WORD2VEC is that it

generates a single word embedding for each word,

irrespective of the relative polysemy of the word.

Neelakantan et al. (2014) proposed a method moti-

vated by WORD2VEC, which efficiently learns mul-

tiple embeddings per word/MWE. We refer to this

approach as the multi-sense skip-gram (MSSG)

model. We once again compose the resultant vec-

tors with comp1 and comp2, but modify the for-

mulation slightly to handle the variable number of

vectors for each word/MWE, by searching over the

cross-product of vectors in each sim calculation and

taking the maximum in each case. We initially set

the number of embeddings to 2 in our MSSG exper-

iments — in keeping with the findings in Neelakan-

tan et al. (2014) — but come back to examine the

impact of the number of embeddings on composi-

tionality prediction in Section 5.

4 Datasets

We evaluate our methods over three datasets:3 (1)

English noun compounds (“ENCs”, e.g. spelling

bee and swimming pool); (2) English verb parti-

cle constructions (“EVPCs”, e.g. stand up and give

away); and (3) German noun compounds (“GNCs”,

e.g. ahornblatt “maple leaf” and eidechse “lizard”).

The ENC dataset consists of 90 binary English

noun compounds, and is annotated on a continu-

ous [0, 5] scale for both overall compositionality and

the component-wise compositionality of each of the

modifier and head noun (Reddy et al., 2011). The

state-of-the-art method for this dataset (Salehi et

al., 2014b) is a supervised support vector regression

3We also considered using the dataset from the DisCo shared

task (Biemann and Giesbrecht, 2011), but ultimately excluded

it because it includes different types of MWEs without indica-

tion of the syntactic type of a given MWE, preventing us from

carrying out construction-specific parameter tuning.

model, trained over the distributional method from

Section 3.1 as applied to both English and 51 target

languages (under word and MWE translation).

The EVPC dataset consists of 160 English verb

particle constructions, and is manually annotated for

compositionality on a binary scale for each of the

head verb and particle (Bannard, 2006). In order to

translate the dataset into a regression task, we cal-

culate the overall compositionality as the number of

annotations of entailment for the verb, divided by

the total number of verb annotations for that VPC.

The state-of-the-art method for this dataset (Salehi

et al., 2014b) is a linear combination of: (1) the dis-

tributional method from Section 3.1; (2) the same

method applied to 10 target languages (under word

and MWE translation, selecting the languages us-

ing supervised learning); and (3) the string similarity

method of Salehi and Cook (2013).

The GNC dataset consists of 246 German noun

compounds, and is annotated on a continuous

[1, 7] scale (von der Heide and Borgwaldt, 2009;

Schulte im Walde et al., 2013). The state-of-the-art

method for this dataset is a distributional similarity

method applied to part-of-speech tagged and lem-

matised data (Schulte im Walde et al., 2013).

5 Experiments

For all experiments, we train our models over raw

text Wikipedia corpora for either English or Ger-

man, depending on the language of the dataset.

The raw English and German corpora were prepro-

cessed using the WP2TXT toolbox4 to eliminate

XML and HTML tags and hyperlinks, and punctu-

ation was removed. Finally, word-tokenisation was

performed based on simple whitespace delimitation,

after which we greedily identified all string occur-

rences of the MWEs in each of our datasets and com-

bined them into a single token.5

The word embedding approaches are unable to

generate vector representations for tokens which oc-

cur with frequency below a fixed cutoff.6 In order to

4
http://wp2txt.rubyforge.org/

5For English, a single model was trained over a corpus con-

taining both ENC and EVPC tokens.
6For a frequency threshold of 15, the total numbers of

ENCs, EVPCs and GNCs for which we were unable to gener-

ate word embeddings were 3, 0 and 25, respectively, in the latter

case, largely as a result of our simple tokenisation strategy and
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Dataset Method comp1 comp1 +SS comp2 comp2 +SS

ENC

WORD2VEC

(d = 500, C-SKIP) .628 .761 .632 .761

(d = 500, CBOW) .696 .786 .710 .791

(d = 1000, C-SKIP) .636 .764 .648 .767

(d = 1000, CBOW) .717 .789 .736 .796

MSSG

(d = 300, w = 5) .640 .764 .624 .759

(d = 600, w = 5) .615 .758 .594 .758

(d = 600, w = 10) .614 .749 .631 .756

Distributional similarity .714

String similarity .644

State-of-the-art .744

EVPC

WORD2VEC

(d = 500, C-SKIP) .289 .496 — —

(d = 500, CBOW) .293 .486 — —

(d = 1000, C-SKIP) .289 .504 — —

(d = 1000, CBOW) .289 .489 — —

MSSG

(d = 300, w = 5) .309 .506 — —

(d = 600, w = 5) .294 .498 — —

(d = 600, w = 10) .273 .494 — —

Distributional similarity .165

String similarity .385

State-of-the-art .417

GNC

WORD2VEC

(d = 500, C-SKIP) .393 .442 .321 .415

(d = 500, CBOW) .400 .439 .361 .423

(d = 1000, C-SKIP) .341 .411 .282 .394

(d = 1000, CBOW) .371 .414 .349 .411

MSSG

(d = 300, w = 5) .181 .320 .122 .295

(d = 600, w = 5) .202 .335 .146 .303

(d = 600, w = 10) .155 .310 .101 .282

Distributional Similarity .140

String Similarity .372

State-of-the-art .450

Table 1: Pearson’s correlation (r) for the different methods over the three datasets; the state-of-the-art for each dataset

is described in Section 4

generate a compositionality prediction back-off for

the small numbers of MWEs in this category, we as-

sign a default value, which is the mean of computed

compositionality scores for other instances.7

As a baseline, we use the translation string simi-

larity approach of Salehi and Cook (2013), including

the cross-validation-based method for selecting the

10 best languages to use for each dataset. We further

include a linear combination of the string similarity

method with each of the various approaches based

on word embeddings.

Table 1 shows the results for the various methods,

lack of lemmatisation.
7We also experimented with using the string similarity ap-

proach as a back-off, which resulted in marginally lower results

than what is reported in Table 1.

over a range of hyper-parameter settings for each

of WORD2VEC (vector dimensionality d; we also

present results for CBOW vs. C-SKIP) and MSSG

(vector dimensionality d and window size w), in-

formed by the experimental results in the respective

publications. Note that for EVPC, we don’t use the

vector for the particle, in keeping with Salehi et al.

(2014b); as such, there are no results for comp2. For

comp1, α is set to 1.0 for EVPC, and 0.7 for both

ENC and GNC, also based on the findings of Salehi

et al. (2014b).

The results indicate that the approaches using

both WORD2VEC and MSSG outperform simple

distributional and string similarity by a substantial

margin. Further, over a variety of parameteriza-
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Figure 1: The effect of the number of prototypes on the

results with MSSG

tions, they surpass the state-of-the-art methods for

ENC and EVPC; in the case of GNC, the best-

performing method (WORD2VEC with d = 500 and

C-SKIP) roughly matches the state-of-the-art. Note

that in each case, the state-of-the-art is achieved

using varying levels of supervision over labelled

data (ENC and EVPC) or language-specific pre-

processing (GNC), whereas the word embedding

methods use no labelled data. As such, the answer

to RQ1 would appear to be a resounding yes.

Looking to RQ2, the models are remarkably

insensitive to hyper-parameter optimisation for

EVPC, but there are slight deviations in the re-

sults for ENC and GNC. Having said that, they

are largely between the different word embedding

approaches, and the results for a given approach

under different parameter settings is relatively sta-

ble. A large part of the cause of the drop in re-

sults and greater parameter sensitivity over GNC

is the lower token frequencies, through a combina-

tion of the Wikipedia corpus being markedly smaller

and our naive tokenisation strategy having low recall

over German due to the richer morphology. As such,

the answer would appear to be a tentative “relatively

insensitive, assuming high token frequencies”.

Finally, looking to RQ3, there was little separat-

ing WORD2VEC and MSSG over ENC, but over the

other two datasets, WORD2VEC had a clear advan-

tage. Given the high levels of polysemy observed

in high frequency English verb particle construc-

tions (Salehi et al., 2014a), this result for EVPC was

particularly surprising, and suggests that, at least

under our two basic forms of composition, multi-

prototype word embeddings are at best equal to, and

in many cases, inferior to, single-prototype word

embeddings.

According to the results, the string similar-

ity approach complements all word-embedding ap-

proaches. We hypothesise that this is because it is

not based on any corpus, and is thus not biased by

the frequency of token instances in the corpus.

In Table 1, the number of embeddings for MSSG

was set to 2 prototypes, based on the default rec-

ommendations of Neelakantan et al. (2014). To in-

vestigate the impact of this parameter on our results,

we retrained MSSG over the range [1, 6] and reran

our experiments for each set of embeddings over the

three datasets (without string similarity, to isolate

the effect of the number of embeddings), as shown

in Figure 1. For both English datasets (ENC and

EVPC), setting the number of prototypes to a value

higher than 2 boosts the results slightly, with 5 pro-

totypes appearing to be the optimal value. For the

German dataset (GNC), on the other hand, the best

results are actually achieved for a single prototype.

Further research is required to better understand this

effect.

6 Conclusions

We presented the first approach to using word em-

beddings to predict the compositionality of MWEs.

We showed that this approach, in combination with

information from string similarity, surpassed, or

was competitive with, the current state-of-the-art on

three compositionality datasets. In future work we

intend to explore the contribution of information

from word embeddings of a target expression and its

component words under translation into many lan-

guages, along the lines of Salehi et al. (2014b).
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