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ABSTRACT

In this paper, we introduce an efficient algorithm for the
exhaustive search of N best sentence hypotheses in a word
graph. The search procedure is based on a two-pass algo-
rithm. In the first pass, a word graph is constructed with
standard time-synchronous beam search. The actual extrac-
tion of N best word sequences from the word graph takes
place during the second pass.

With our implementation of a tree-organized N-Best list, the
search i1s performed directly on the resulting word graph.
Therefore, the parallel bookkeeping of N hypotheses at each
processing step during the search is not necessary. It is im-
portant to point out that the proposed N-Best search algo-
rithm produces an exact N-Best list as defined by the word
graph structure. Possible errors can only result from pruning
during the construction of the word graph.

In a postprocessing step, the N candidates can be rescored
with a more complex language model with highly reduced
computational cost. This algorithm is also applied in speech
understanding to select the most likely sentence hypothesis
that satisfies some additional constraints.

1. Introduction

Several previous algorithms on search strategy for finding N
best sentence hypotheses can be found in [2], [10], [9], [8],
[3].

Recently, the two-pass word graph algorithm [7], [6] has been
sucessfully applied in continuous speech recognition for large
vocabulary. By decoupling the acoustic search from the ap-
plication of language knowledge sources, it is possible to sub-
sequently use the constructed word graph at phrase level
with high efficiency.

The purpose of this paper is to propose an algorithm, which
is based on the resulting word graph, for finding top N
sentence candidates with a simple language model. Subse-
quently the top N word sequences obtained can be rescored
using a more complex language model.

Another application of this algorithm is found in speech un-
derstanding. In dialogue systems, N is not determined in
advance. The alternate sentence hypotheses are generated
automatically and are checked one after the other whether

they satisfy certain consistency constraints according to data
base entries. The first hypothesis satisfying the constraints
is chosen.

2. Basic Principle

PERCENTAGE CHANGES

Silence

PERCENTAGE CHANGE

PERCENTAGE BuScor e

FuScore

Silence

Lbest @

CHANGES

THE

PERCENTAGE

Figure 1: Possible candidates for the second best path.

The principle of the approach presented is based on the fol-
lowing consideration:

When several paths lead to the same node in the word graph,
according to the Viterbi criterion, only the best scored path
is expanded. The remaining paths, by reason of this recom-
bination, are not considered any further.

Assuming that the first best sentence hypothesis was found
by Viterbi decoding through a given word graph, the second
best path is the path which competed with the best one but
was recombined at some node of the best path. Thus, in or-
der to find the second best sentence hypothesis, we have to
consider all possible partial paths in the word graph which



reach some node (including the terminal node) of the best
path and might share the remaining section with the best
path.

By applying this procedure repeatedly, N best sentence hy-
potheses can be successively extracted from the given word
graph. Figure 1 illustrates this principle.

3. N-Best Search Algorithm

The search procedure consists of two consecutive levels.
First, a word graph is generated with standard time-
synchronous beam search ([4], [5], [11]).

Second, the N-Best algorithm is applied at the phrase level.
In the first pass, we calculate (see [6], [7]), for each node
in the word graph, the best way of arriving at that node.
This yields cumulative scores' and backpointers for each
word hypothesis which are stored for later processing. The
second pass uses the output of this first step to find the N
best sentence hypotheses sequentially.

The best path can be determined simply by comparing
the cumulative scores of all possible paths leading to the
terminal node of the word graph.

In order to ensure that this best word sequence is not taken
into account while searching for the second best path, the
complete best path is copied into a so-called N-Best tree.
Using this structure, a backward cumulative score for each
word copy is computed and stored at the corresponding tree
node. This allows for fast and efficient computation of the
complete path scores required to determine the next best
sentence hypotheses.

The second best sentence hypothesis can be found by taking
the path with the best score among the candidate paths
which might share a remaining section of the best path.
The partial path of this sentence hypothesis is then copied
into the N-Best tree.

Based on these two separate structures, it is guaranteed
that no sentence hypothesis
complete path scores are simply computed by combining
the cumulative forward scores in the word graph with the
corresponding cumulative backward scores in the N-Best
tree.

Assuming that N best paths have been found, the (N+1)-th
best path can be determined by examining all existing
nodes in the N-Best tree, because it can share the last part
of some path among the top N paths. Thus, this algorithm
performs a full search within the word graph and delivers
exact results as defined by the word graph structure.
Figure 2 shows a word graph and the expanded N-Best tree
for four best sentence hypotheses.

The complete algorithm of the N-Best search procedure
with bigram is shown in Table 1. This algorithm can be
extended to M-gram with M > 3.

is considered twice, and

Iscores: negative log probabilities

The variables used in Table 1 have the following meaning:

Arc': outgoing arc at node i in the N-Best tree.

Arc; : incoming arcs at node 1 in the N-Best tree.

Edge;;: incoming edges at node j in the word graph.
FwSco(Edge;;): cumulative forward score of the best
partial path leading to the Edge Edge;; in the word graph.
BwSco(Node,'): cumulative backward score from sentence
ending to node i1 in the N-Best tree.

LM Factor: scaling factor for bigram score.

PREPROCESSING STEP:

e rescore the word graph with bigram in forward
direction using the Viterbi algorithm at phrase
level

e store cumulative path score FwSco and back-
pointer for each edge

INITIALIZE:
o create root for N-Best tree

e assign root to the terminal node in the word
graph

For n=1 to N do

For each node ¢ of N-Best tree do

Consider the corresponding node j in the word
graph

For each edge Edge;; at node j in the word
graph do

IF Edge;; # Arci i for all kK THEN

e compute complete path score
Score;; = FwSco(Edge;j;)
+ BwSco(Node;)
—LM Factor xIn(P(Arc'|Edge;,))

e remember the edge with the best score

Jopt, lopt = argmin[Score; ]
gl

END IF
EXPAND N-BEST TREE:

e trace back from Edge;g,,,
start in the word graph

1opt to sentence

e copy this partial path to the N-Best tree
(Arc; ) to get complete path

e compute  backward

BwSco(Node;) for

node

cumulative score

each newly created

e output word sequence

Table 1: N-Best Search Algorithm.
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Figure 2: A word graph and the expanded N-Best tree.

4. Complexity

As explained in the preceding section, the tree-organized N-
Best list (N-Best tree) must be updated, after the N-th best
path was found to avoid extracting the same sentence hy-
pothesis twice. Thus, the search effort depends on the cur-
rent size of the N-Best list. Assuming a sentence with M
words and a very large N, the expected cost of computation

182

S Y1) = YN(N +3) % O(N?)

n=1

To give an example, we need approximately 0.3 seconds to
find the first 10 alternative word sequences for a spoken sen-
tence with 23 words (DEC station 5000-240/30 MIPS).

5. Experimental Results

The algorithm has been evaluated on the WSJ test set of
Nov. 92 (5k closed vocabulary) for four male speakers using
bigram and trigram language models with perplexities of 111
and 57 respectively. The N-Best error rate is calculated by
choosing the sentence with minimal number of errors among
the top N sentence hypotheses. The error rate for N=oo is
interpreted as the lower limit (i.e. the minimum word er-
ror rate achievable when exploiting the word graph) and is
calculated by searching the sentence hypothesis in the word
graph which best matches the spoken sentence. In order to
avoid search errors, the word graphs have been constructed
with a relatively high graph-density, namely 600 (the graph-
density is defined as average number of word hypotheses per
spoken word).

It is important to realize that in general the N-Best error
rate depends on the sentence length and is the optimistic
estimation for potential improvement. In our test set the
average sentence length amounts to 16. The results given in
Tables 2 and 3 show that with the top 10 sentence candi-
dates, the error rate is decreased by approximately 50%. By
considering the top 50 choices, the error rate is reduced to
one third of the first best word error rate.

| N | Spk. 1 | Spk. 2 | Spk. 3 | Spk. 4 | Aver. |
1 7.07% 4.71% 5.53% 7.76% 6.27%
10 4.15% 2.74% 2.47% 3.04% 3.10%
20 3.69% 1.98% 1.46% 2.44% 2.40%
50 2.92% 1.82% 0.87% 1.83% 1.86%
100 2.15% 1.82% 0.87% 1.37% 1.55%
200 1.84% 1.52% 0.87% 1.22% 1.36%
0 0.46% 0.61% 0.44% 0.15% 0.42%

Table 2: N-Best error rate using bigram (perplexity=111).

| N | Spk. 1 | Spk. 2 | Spk. 3 | Spk. 4 | Aver. |
1 5.68% 3.04% 3.06% 5.48% 4.32%
10 3.84% 1.52% 1.16% 2.13% 2.07%
20 3.07% 1.37% 1.16% 1.98% 1.90%
50 2.30% 1.22% 0.87% 1.52% 1.48%
100 2.15% 1.22% 0.87% 1.37% 1.40%
200 1.84% 1.22% 0.73% 0.91% 1.18%
0 0.46% 0.61% 0.44% 0.15% 0.42%

Table 3: N-Best error rate using trigram (perplexity=57).

6. Application of N-Best

We present below results of applying the N-Best search al-
gorithm to improve speech understanding and to evaluate
subsequently long-span language models with reduced com-
putational cost.

6.1. Speech Understanding

This approach has been successfully applied in our automatic
directory assistance demonstrator (for detailed description
see [1]). In the course of a dialogue, the alternate sentence
hypotheses for a spoken sentence are generated one after
the other. By incorporating data base constraints, these
hypotheses can be checked one after the other whether
they satisfy certain consistency constraints with regard to
this data base. The first sentence hypothesis satisfying the
constraints is chosen. In comparison with first best, this
technique reduced the word error rate from 28.9% to 24.4%.



6.2. Subsequent Employment of More

Complex Language Models

Using the N best sentence hypotheses generated with bigram
and trigram, we can evaluate a long-span language model,
e. g. a quadrogram, by subsequently rescoring alternate hy-
potheses with this language model. The sentence hypothesis
with the best score (acoustic score and new language model
score) is chosen. Tables 4 and 5 present the results from
rescoring with a quadrogram (perplexity=38).

| N | Spk. 1 | Spk. 2 | Spk. 3 | Spk. 4 | Aver. |
1 7.07% 4.711% 5.53% 7.76% 6.27%
10 5.83% 3.34% 3.20% 4.57% 4.24%
20 5.99% 3.19% 3.06% 4.41% 4.16%
50 5.53% 3.19% 2.77% 4.41% 3.98%
100 4.76% 3.19% 2.77% 4.57% 3.82%
200 4.61% 3.19% 2.77% 4.57% 3.79%

Table 4: Error rate of sentences with best scores obtained
by rescoring N-Best hypotheses with quadrogram using N-
Best list generated with bigram.

| N | Spk. 1 | Spk. 2 | Spk. 3 | Spk. 4 | Aver. |
1 5.68% 3.04% 3.06% 5.48% 4.32%
10 5.99% 2.89% 2.77% 4.26% 3.98%
20 5.53% 2.58% 2.77% 4.41% 3.82%
50 5.38% 2.58% 2.77% 4.57% 3.82%
100 5.83% 2.58% 2.77% 4.57% 3.94%
200 5.38% 2.58% 2.77% 4.57% 3.82%

Table 5: Error rate of sentences with best scores obtained
by rescoring N-Best hypotheses with quadrogram using N-
Best list generated with trigram.

As shown in Tables 4 and 5, the quadrogram language model
applied is able to compensate some uncertainty introduced
by parameter estimation in the acoustic models. A one pass
search using a quadrogram language model is estimated to
reach about the same recognition performance (3.8%). How-
ever, in comparison with the error rate given in Tables 2 and
3, a significant potential improvement for even more com-
plex language models is still likely. Please also note that
rescoring sentence hypotheses generated by bigram using a
quadrogram yields about the same results as rescoring sen-
tence hypotheses generated by trigram. In the latter case
saturation i1s observed at lower values of N. In either case,
most of the recognition errors which can be removed using
the quadrogram language model are among the top 10 best
sentence hypotheses.

7. Conclusion

In this paper we have presented a straight-forward algorithm
to successively extract N best sentence hypotheses from a
given word graph. By splitting the acoustic search into two
passes, it is inexpensive to create the top N sentence hy-
potheses even for medium-sized language models, e.g tri-
gram because the search is performed at the phrase level.
Furthermore, the proposed algorithm delivers exact results
as defined by the underlying word graph. This algorithm is
successfully applied in evaluation of WSJ test set, as well as
in our telephone inquiry system.
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