
UC Davis
IDAV Publications

Title
A Work-Efficient Step-Efficient Prefix Sum Algorithm

Permalink
https://escholarship.org/uc/item/6j57h5zw

Authors
Sengupta, Shubhabrata
Lefohn, Aaron
Owens, John D.

Publication Date
2006
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6j57h5zw
https://escholarship.org
http://www.cdlib.org/


A Work-Efficient Step-Efficient Prefix-Sum Algorithm

Shubhabrata Sengupta∗ Aaron E. Lefohn† John D. Owens‡

1 Introduction

The Prefix-sum algorithm [Hillis and Steele Jr. 1986] is one of the
most important building blocks for data-parallel computation. Its
applications include parallel implementations of deleting marked
elements from an array (stream-compaction), radix-sort, solving re-
currence equations, solving tri-diagonal linear systems, and quick-
sort. In addition to being a useful building block, the prefix-sum
algorithm is a good example of a computation that seems inherently
sequential, but for which there are efficient data-parallel algorithms.

2 Problem definition

The prefix-sum algorithm computes all the partial sums of an ar-
ray of numbers. It is called prefix-sum because it computes sums
over all prefixes of the array. For example, if one is to put into
an array one’s initial checkbook balance, followed by the amounts
of the check one has written as negative numbers and deposits as
positive numbers, then computing the parital sums produces all the
intermediate and final balances.

2.1 Sequential implementation

It might seem that computing the partial sums is an inherently serial
process, because one must add up the first k elements before adding
in the element k+1. Indeed, with only a single processor, one might
as well do it that way. Algorithm 1 shows the pseudo-code for such
an implementation.

1: s← x[0]
2: for i← 1 to n−1 do
3: s← s+ x[i]
4: x[i]← s

Algorithm 1: Sequential algorithm that computes the prefix-sum
of an array x containing n elements.

However, with many processors at our disposal, one can do better.
Assuming one has n processors, one can do n logn individual addi-
tions in logn time. Serialization is avoided by performing logically
redundant additions.

2.2 Horn’s data-parallel algorithm

Daniel Horn recently presented a GPU implementation for prefix-
sum [Horn 2005]. The pseudo-code for his implementation is
shown in Algorithm 2.

The input array is stored in a two-dimensional texture. Each frag-
ment uses its screen-space position to index into this texture. It
sums the value at its position and 2i−1 position to the left. This is
written to a separate output texture which is used as input to the

∗e-mail: ssengupta@ucdavis.edu
†e-mail: lefohn@cs.ucdavis.edu
‡e-mail: jowens@ece.ucdavis.edu

1: for i← 1 to log2 n do
2: for all k in parallel do
3: if k ≥ 2i then
4: x[k]← x[k−2i]+ x[k]
5: else
6: x[k]← x[k]

Algorithm 2: Horn’s algorithm to compute the prefix-sum of an
array x containing n elements.

next pass. By having only two textures and switching their roles in
each pass, we minimize the memory footprint.

We notice that in any iteration i, only n/2i fragments are doing use-
ful work. However, Horn’s algorithm does more computation in one
pass, enabling it to finish the prefix-sum computation in O(logn)
time, compared to O(n) time taken by the sequential algorithm to
compute the same result.

We also note that the O(logn) computation time is true only when
there are n or more processors which can compute in parallel. How-
ever, the fragment pipeline can only execute a fixed maximum num-
ber of fragments in parallel. We call this limit the degree of paral-
lelism. If we begin with an array which is greater than this limit,
the fragment pipeline would have to break up the fragments into
batches, which it executes sequentially. However, it would be trans-
parent to the programmer since logically the fragment pipeline op-
erates on all fragments in parallel. Thus we expect to see a decrease
in execution time as we decrease the size of the array, until we reach
a size which is less than or equal to the degree of parallelism.

2.3 A work-efficient data-parallel algorithm

To reduce wasteful computation in each pass, we break the algo-
rithm [Blelloch 1990] into two stages. The first stage is called re-
duce and the second stage is called down-sweep.

2.3.1 Reduce

The reduce step reduces an input array to a single element, which
is the sum of all the elements in the input array. At each stage, we
reduce the array size by half by adding together non-overlapping,
adjacent pairs of elements. Algorithm 3 shows the pseudo-code.

1: for d← 1 to log2 n do
2: for i← 1 to n/2d −1 in parallel do
3: ad [i]← ad−1[2i]+ad−1[2i+1]

Algorithm 3: The reduce step for an array containing n elements.

Thus each fragment doubles the value of its position to index into
the two-dimensional texture which holds the input array, and adds
that value to the one to the left of it. We halve the size of the output
texture in each pass by halving the height of the texture, since that
results in an efficient address translation from the one-dimensional
array index to the two-dimensional index into the texture. Due to
this optimization, we never run the reduce step until we get an array



containing a single element. We can still continue with the down-
sweep step by taking a hybrid approach, as we will explain in Sec-
tion 2.4.

We save all the intermediate textures ad containing the partial sums,
since they will be required in the down-sweep step.

2.3.2 Down-sweep

The down-sweep step uses the partial sums ad generated by the
reduce step to generate the final output. Algorithm 4 shows the
pseudo-code.

1: for d← (log2 n)−1 downto 0 do
2: for i← 0 to n/2d −1 in parallel do
3: if i > 0 then
4: if (i mod 2) 6= 0 then
5: ad [i]← ad+1[i/2]
6: else
7: ad [i]← ad [i]+ad+1[(i/2)−1]
8: else
9: ad [i]← ad [i]

Algorithm 4: The down-sweep step for an array containing n ele-
ments.

In contrast to Horn’s algorithm, our method does not do wasteful
computation in each pass. The size of the output texture is halved
in each pass, which means there are fewer fragments to process.
However, the number of passes are doubled. In spite of the increase
in the number of passes, this algorithm would do less computation
for large arrays. It can be easily shown that Horn’s algorithm does
n logn− 2n(1− 2n) more operations than our algorithm, where n
is the size of the input array. Since the difference increases mono-
tonically with n, our algorithm would be faster when the degree of
parallelism is fixed.

2.4 A work-efficient, step-efficient hybrid algorithm

For arrays which have fewer elements than the degree of parallelism
offered by the graphics processor, the algorithm described in Sec-
tion 2.3 is slower since it does not utilize the parallelism in each
pass and executes twice the number of passes as Horn’s algorithm.
Hence we use a hybrid algorithm which combines the best of both
worlds. We execute the reduce step until the size of the array is
less than or equal to the degree of parallelism. We then run Horn’s
algorithm to compute the prefix-sum of this smaller array. Finally,
we run the down-sweep step to update the partial sums generated by
the reduce step. The hybrid algorithm would be the fastest of the
three, since it does not do wasteful computation for large arrays and
it does not do wasteful passes when the array size is smaller than
the degree of parallelism offered by the graphics processor.

3 Implementation

We implemented all three algorithms using Cg and OpenGL on a
NVIDIA 7800 GTX graphics card. Since prefix-sum is a frequently
used operation data-parallel computation, the code is highly opti-
mized. We expect that a typical user would use the prefix-sum al-
gorithm multiple times in his application. Hence Cg programs are

statically allocated, so that they only need to be compiled once and
reused with minimal overhead.

Both the reduce and down-sweep steps need to keep the partial sums
around as textures. We have tried to minimize texture memory us-
age by reusing textures wherever possible. We also statically al-
locate textures to minimize reuse overhead. The hybrid algorithm
has the same memory footprint as the Horn’s stream-compaction
algorithm.

Our implementation also aggressively uses framebuffer objects to
write out the result of each pass to a texture. As per the framebuffer
object specification, all the textures bound to a framebuffer object
need to be of the same size. Thus the output texture for each reduce
pass is bound to a different framebuffer object which implies that
we have to switch framebuffer objects for each reduce pass. Hap-
pily enough, this hasn’t proved to be a bottleneck and we expect the
performance of framebuffer objects to improve as drivers mature.

4 Results

We implement Horn’s stream-compaction algorithm using our hy-
brid prefix-sum algorithm, since we expect stream-compaction to
be the most frequent use of prefix-sum. For a given array size, this
adds a constant cost to the prefix-sum algorithm.

We notice that the time taken to run stream-compaction falls as we
increase the number of reduce passes and it levels off at around 9
reduce steps. For 1,048,576 input elements, the hybrid algorithm is
around 4 times faster (10 reduce steps) and for 262,144 elements,
the hybrid algorithm is around 3 times faster (9 reduce steps). In
neither case are we reading back the final result to the CPU. We
expect the performance to drop as the number of valid (non-null)
elements increase since the readbacks are slow, though large read-
backs would affect both algorithms to the same degree.

We run Horn’s stream-compaction algorithm on streams of increas-
ing length and we notice a sharp rise in execution time when the
input stream contains more than 4096 elements indicating that it is
not beneficial to do wasteful computation on the GPU if the input
stream is larger than 4096 elements.

5 Conclusion

We have implemented a hybrid prefix-scan algorithm which is
faster than Horn’s prefix-scan algorithm by a factor of 4 for array
sizes up to 1,048,576 elements. For a fixed number of elements
in the input array, the algorithm can be tuned to run the optimum
number of reduce passes.

References

BLELLOCH, G. E. 1990. Prefix sums and their applications. Tech.
Rep. CMU-CS-90-190, School of Computer Science, Carnegie
Mellon University, Nov.

HILLIS, W. D., AND STEELE JR., G. L. 1986. Data parallel
algorithms. Communications of the ACM 29, 12 (Dec.), 1170–
1183.

HORN, D. 2005. Stream reduction operations for GPGPU appli-
cations. In GPU Gems 2, M. Pharr, Ed. Addison Wesley, Mar.,
ch. 36, 573–589.


