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Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status

of key organelle systems in various pathological processes, including those associated

with neurodegenerative disease. Such EM data often provide important new insights into

the underlying disease mechanisms. The development of more accurate and efficient

methods to quantify changes in subcellular microanatomy has already proven key to

understanding the pathogenesis of Parkinson’s and Alzheimer’s diseases, as well as

glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly,

more advanced analysis tools are needed to assist in measuring precise three-dimensional

morphologies of organelles within data sets that can include hundreds to thousands

of whole cells. Although new imaging instrument throughputs can exceed teravoxels

of data per day, image segmentation and analysis remain significant bottlenecks to

achieving quantitative descriptions of whole cell structural organellomes. Here, we present

a novel method for the automatic segmentation of organelles in 3D EM image stacks.

Segmentations are generated using only 2D image information, making the method

suitable for anisotropic imaging techniques such as serial block-face scanning electron

microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are

made, ensuring the method can be easily expanded to any number of structurally and

functionally diverse organelles. Following the presentation of our algorithm, we validate

its performance by assessing the segmentation accuracy of different organelle targets

in an example SBEM dataset and demonstrate that it can be efficiently parallelized on

supercomputing resources, resulting in a dramatic reduction in runtime.

Keywords: serial block-face scanning electron microscopy, 3D electron microscopy, electron microscopy,

automatic segmentation, image processing, organelle morphology, neuroinformatics

INTRODUCTION

Advances in instrumentation for 3D EM are fueling a renais-

sance in the study of quantitative neuroanatomy (Peddie and

Collinson, 2014). Data obtained from techniques such as SBEM

(Denk and Horstmann, 2004) provide unprecedented volumetric

snapshots of the in situ biological organization of the mammalian

brain across a multitude of scales (Figure 1A). When combined

with breakthroughs in specimen preparation (Deerinck et al.,

2010), such datasets reveal not only a complete view of the mem-

brane topography of cells and organelles, but also the location of

cytoskeletal elements, synaptic vesicles, and certain macromolec-

ular complexes.

Harnessing the power of these emerging 3D techniques to

study the structure of whole cell organellomes is of critical

importance to the field of neuroscience. Abnormal organelle mor-

phologies and distributions within cells of the nervous system are

characteristic phenotypes of a growing number of neurodegener-

ative diseases. Aberrant mitochondrial fragmentation is believed

to be an early and key event in neurodegeneration (Knott et al.,

2008; Campello and Scorrano, 2010), and changes in mitochon-

drial structure have been observed in Alzheimer’s disease (AD)

neurons from human biopsies (Hirai et al., 2001; Zhu et al., 2013).

Additionally, altered nuclear or nucleolar morphologies have been

observed in a host of pathologies, including AD (Mann et al.,

1985; Riudavets et al., 2007), torsion dystonia, (Kim et al., 2010),

and Lewy body dementia (Gagyi et al., 2012).

Our ability to quantify and understand the details of these

subcellular components within the context of large-scale 3D EM

datasets is dependent upon advances in the accuracy, throughput,

and robustness of automatic segmentation routines. Although a

number of studies have extracted organelle morphologies from

SBEM datasets via manual segmentation, (Zhuravleva et al.,

2012; Herms et al., 2013; Holcomb et al., 2013; Wilke et al.,

2013; Bohórquez et al., 2014), their applications are limited to

only small subsets of the full stack due to the notoriously high

labor cost associated with manual segmentation (Figure 1B).
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FIGURE 1 | The manual segmentation of organelles from SBEM image

stacks represents a significant bottleneck to quantitative analyses.

(A) A typical SBEM dataset consists of individual image slices collected in

increments of δ nm, with the values of δ reported in the literature typically

falling in the range of 20–100 nm (Peddie and Collinson, 2014). To cover a

neuroanatomical region of any significance, the size of such datasets

quickly enters the realm of teravoxels and analyses utilizing manual

segmentation become intractable. (B) A scatter plot of the amount of time

required for a highly trained neuroanatomist to segment all instances of a

specific organelle in SBEM tiles of size 2000 × 2000 pixels demonstrates

this impediment. Average values are represented by horizontal bars

(mitochondria = 5.01 min, lysosomes = 3.43 min, nuclei = 0.93 min,

nucleoli = 1.24 min). Since mitochondria are ubiquitously present

throughout most tissues, extrapolation of their average segmentation time

per tile to the size of a full dataset can reliably predict the actual

segmentation time required for such a volume. For a dataset the size of the

one used in this report (stack volume ∼450,000 µm3, tile size ∼60 µm2),

the manual segmentation of all mitochondria would require roughly 2.3

years, placing it well outside the realm of feasibility. This effect is further

exacerbated when experiments requiring segmentations from SBEM

stacks over multiple samples or experimental conditions are desired.

Automatic segmentations generated based on thresholds or

manipulations of the image histogram (Jaume et al., 2012;

Vihinen et al., 2013) may require extensive manual editing of their

results to achieve the accurate quantification of single organelle

morphologies.

The development of computationally advanced methods for

the automatic segmentation of organelles in 3D EM stacks has

led to increasingly accurate results (Vitaladevuni et al., 2008;

Narashima et al., 2009; Smith et al., 2009; Kumar et al., 2010;

Seyedhosseini et al., 2013a). Recently, Giuly and co-workers pro-

posed a method to segment mitochondria utilizing patch classi-

fication followed by isocontour pair classification and level sets

(Giuly et al., 2012). Lucchi et al. (2010, 2012) developed an

approach that trains a classifier to detect supervoxels that are

most likely to belong to the boundary of the desired organelle.

An approach to automatically segment cell nuclei using the soft-

ware package ilastik to train a Random forest voxel classifier

followed by morphological post-processing and object classifica-

tion was proposed by Sommer et al. (2011), Tek et al. (2014).

Though they yield impressive results, many current approaches

utilize assumptions about the 3D morphology of the organelle

target. This is problematic not only because it makes their expan-

sion to the segmentation of other organelles non-trivial, but

also because the typical SBEM dataset contains a heterogeneous

mixture of organelle morphologies across multiple cell types.

Therefore, there is a clear need for a robust method to accurately

segment various organelles in SBEM stacks without any a priori

assumptions about organelle morphology.

In this work, we present a method for the robust and accu-

rate automatic segmentation of morphologically and function-

ally diverse organelles in EM image stacks. Organelle-specific

pixel classifiers are trained using the cascaded hierarchical model

(CHM), a state-of-the-art, supervised, multi-resolution frame-

work for image segmentation that utilizes only 2D image infor-

mation (Seyedhosseini et al., 2013b). A series of tunable 2D filters

are then applied to generate accurate segmentations from the

outputs of pixel classification. In the final processing step, 3D

connected components are meshed together in a manner that

minimizes the deleterious effects of local and global imaging arti-

facts. Finally, we demonstrate that our method can be easily and

efficiently scaled-up to handle the segmentation of all organelles

in teravoxel-sized 3DEM datasets.

MATERIAL AND METHODS

The description and validation of our method are arranged into

three sections. In the first section, the workflow is described in

detail. In the second, the robustness and accuracy of our method

are validated by applying it to four different organelle targets

(mitochondria, lysosomes, nuclei, and nucleoli) from a test SBEM

dataset. In the third section, we describe experiments that demon-

strate how our method can be easily scaled-up to accommodate

the segmentation of teravoxel-sized datasets.

THE PROPOSED METHOD

Image alignment and histogram specification

All individual images of the input SBEM stack are converted to

the MRC format and appended to an 8-bit MRC stack using

the IMOD programs dm2mrc and newstack, respectively (Kremer

et al., 1996). Sequential images within the stack are then trans-

lationally aligned to one another in the XY-plane using the

cross-correlational alignment algorithm of the IMOD program

tiltxcorr. To ensure consistency throughout the stack, the his-

tograms of all images are matched to that of the first image

in the stack using a MATLAB (The MathWorks, Inc., Natick,

MA, U.S.A.) implementation of the exact histogram specification

algorithm (Coltuc et al., 2006).

Generation of training images and labels

Once an organelle target has been selected by the experimenter,

the next step is to generate a set of organelle-specific training

images and labels to subsequently train a CHM pixel classifier.

A set of N seed points, P, are selected throughout the processed

SBEM stack in locations that possess at least one instance of the

desired organelle, such that:
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Pi = (xi, yi, zi)∀i ∈ {1, . . . , N}

These points should be chosen in a manner that yields a wide dis-

tribution throughout the stack. After the selection of seed points,

every instance of the chosen organelle is manually segmented in

a Q × R pixel tile centered at each Pi. Following manual seg-

mentation, all tiles are extracted from the full SBEM stack using

the IMOD program boxstartend. The extracted tiles will serve

as training images, Ti. Binary training labels, Bi, are generated

from each Ti by applying the corresponding manual segmenta-

tion as a mask using the IMOD program imodmop. Thus, the

final outputs from training data generation are (1) a stack of 8-

bit, grayscale training images, Ti, and (2) a stack of corresponding

binary organelle masks, Bi. Both stacks are of size Q × R × N. A

flow chart illustrating this process is shown in Figure 2.

Training organelle pixel classifiers with the cascaded hierarchical

model

The CHM consists of bottom-up and top-down steps cascaded

in multiple stages (Seyedhosseini et al., 2013b). The bottom-up

step occurs in a user-specified number of hierarchical levels, L. At

each level, the input stacks Ti and Bi are sequentially downsam-

pled and a classifier is trained based on features extracted from the

downsampled data as well as information from all lower levels of

the hierarchy. After classifiers have been trained at all levels, the

top-down path combines the coarse contextual information from

higher levels into a single classifier that is applicable to images at

native resolution. This whole process is then cascaded in a num-

ber of stages, S, where the output classifier from the previous stage

serves as the input classifier for the subsequent stage. The final

output is a pixel classifier, CS,L, that is applicable to images at the

native pixel size of Ti and Bi. For optimal results, the number of

stages chosen should be greater than one. The exact number of

stages and levels chosen depends on a host of factors, including

the size of Ti and Bi and the computational resources available to

the experimenter.

Probability map generation

In the next step, a stack of test images, Ij, are selected to apply

the pixel classifier to. Depending on the goals of the experiment,

these images may be full slices of the SBEM volume or extracted

subvolumes. Prior to pixel classification, each Ij is split into an m

× n array of tiles such that the dimensions of each tile are roughly

equivalent to the lateral dimensions of the training stacks, Q ×

R (step 3 of Algorithm 1). Tiling is performed with an overlap

of U pixels between adjacent tiles. The choice of U is dependent

on the size of the training stacks as well as the organelle target; in

general, ideal values of U should fall in the range of 2–10% of Q

and R. The previously generated CHM pixel classifier, CS,L, is then

applied to each tile, yielding m × n probability map tiles (step 5

of Algorithm 1). All processed tiles are then stitched together to

yield a final probability map, Mj (step 7 of Algorithm 1). When

FIGURE 2 | A flow chart of the steps involved in training data generation.

The generation of a set of training data for mitochondrial automatic

segmentation is shown here. First, a set of seed points, Pi, are selected such

that a wide distribution throughout the volume is achieved (bottom left). Tiles

of size Q × R centered at each seed point are extracted to serve as training

images, Ti. All instances of the desired organelle target are manually

segmented by a trained neuroanatomist on each training image. These

manual segmentations are then used as masks to binarize each Ti such that

pixels of value one correspond to pixels of Ti that are positive for the desired

organelle. This process is repeated N times to yield stacks of training images

and their corresponding training labels, Bi. These stacks are then used to train

a CHM classifier, CS,L, with the desired number of stages, S, and levels, L.
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Algorithm 1 | Organelle segmentation using tiled input images.

1: Declare values of m, n, U, G, α, and λ

2: for every test image Ij do

3: Generate k = m × n tiles of Ij with overlap U

4: for every k do

5: Apply the CHM classifier CS,L to the k-th tile

6: end for

7: Stitch all k tiles together to yield the probability map, Mj

8: Normalize Mj

9: Classify Mj using Otsu’s multi-level method with G gray levels,

yielding Oj

10: Threshold Oj at the G-th level, giving the initial position mask Kj

11: Perform morphological shrinking on Kj

12: Segment Mj by evolving active contours at initial positions

specified by each unique 2D connected component of Kj.

Iterate α times with a smoothing factor of λ. The output is

SEGj, the final segmentation of Ij.

13: end for

stitching, the pixels in Mj that correspond to regions of overlap

between adjacent tiles are set to the maximum intensity pixel from

all contributing tiles. Finally, Mj is normalized such that each pixel

ranges from [0, 1], with one representing the highest probability

(step 8 of Algorithm 1). This process is then repeated over each Ij

to yield the final stack of probability maps.

Binarization of probability maps

Each probability map, Mj, is binarized by evolving active contours

(Chan and Vese, 2001) at automatically determined initial posi-

tions. For an unsupervised determination of the initial positions,

the probability map Mj is first thresholded using Otsu’s multi-

level method (Otsu, 1979) with G unique gray levels (step 9 of

Algorithm 1). The output from this operation is Oj, a map in

which each pixel of Mj has been classified into one of G unique

levels, with the zeroth level corresponding to the approximate

background. This map is then binarized by thresholding Oj at a

pixel intensity of G, yielding a mask of initial positions, Kj (step

10 of Algorithm 1). This binary mask is then made smaller by

applying two iterations of morphological shrinking (step 11 of

Algorithm 1) and used to initialize the evolution of active con-

tours with a number of iterations and smoothing factor specified

by α and λ, respectively (step 12 of Algorithm 1). Each 2D con-

nected component of Kj serves as a unique initial position for

contour evolution. For best results, α should be at least 50. The

choice of λ depends largely on the organelle target and pixel size

of the test images, but in general should fall in the range of 0–

8. Larger values of λ can be used when the pixel size is small.

If the pixel size is too large (i.e., above 10 nm/pixel), smoothing

should be turned off by setting λ to zero. The value of G signifi-

cantly alters the results, and its choice is dependent on the goals

of the experimenter. Low values of G tend to emphasize true pos-

itives at the risk of retaining false positives. As G is increased, false

positives are more readily removed, but so are true positives. The

final output from this process is SEGj, the organelle segmentation

of the input grayscale image, Ij. An illustration of this process is

shown for two test images in Figure 3.

Meshing

Each output SEGj is converted to the MRC format and appended

to an MRC stack. Contours are drawn around each 2D connected

component using the IMOD program imodauto. The output con-

tours are then three-dimensionally meshed together using the

program imodmesh, and separate 3D connected components are

sorted into different objects using the program imodsortsurf.

Meshing is performed using the low resolution option to reduce

the effect of translational artifacts between subsequent image

slices.

EXPERIMENTAL VALIDATION

Tissue processing, image acquisition, and preprocessing

The suprachiasmatic nucleus (SCN) of one 3-month-old, male

C57BL/6J mouse was harvested and prepared for SBEM using

a standard protocol (Wilke et al., 2013). The resin-embedded

tissue was mounted on an aluminum specimen pin and pre-

pared for SBEM imaging as previously described (Holcomb et al.,

2013). Imaging was performed by detection of backscattered

electrons (BSE) using a Zeiss Merlin scanning electron micro-

scope equipped with a 3View ultramicrotome (Gatan). The SBEM

image stack was acquired in ultrahigh vacuum mode using an

accelerating voltage of 1.9 kV, a pixel dwell time of 500 ns, and

a spot size of 1.0. Sectioning was performed with a cutting thick-

ness of 30 nm. BSE images were acquired at 800x magnification

with a raster size of 32,000 pixels × 24,000 pixels, yielding a

pixel size of 3.899 nm/pixel. A total of 1283 serial images were

acquired, resulting in an image stack with tissue dimensions of

roughly 124.8 × 93.6 × 38.5 µm (∼450,000 µm3). The specimen

was then removed from the chamber, and an image of a diffrac-

tion grating replica specimen (Ted Pella, Redding, CA, U.S.A.)

was acquired for calibration of the lateral pixel size. Low mag-

nification images of the block-face were acquired before and

after sectioning. Image alignment was performed as described in

Section Image Alignment and Histogram Specification. Following

alignment, the stack was downsampled in the XY-plane by a fac-

tor of two, yielding a final stack with pixel dimensions of 16,000 ×

12,000 × 1283 and pixel sizes of 7.799 nm/pixel and 30 nm/pixel

in the lateral and axial dimensions, respectively. Since prelim-

inary results did not demonstrate noticeable differences in the

output of our method between the native resolution stack and

the downsampled stack, downsampling was performed to reduce

processing time. Exact histogram specification was performed

as previously described. All image alignment and pre-processing

steps were performed on a custom workstation (Advanced HPC,

San Diego, CA, U.S.A.) with the following configuration: Xeon

X5690 3.47 GHZ CPU, 48 GB RAM, 32 TB HDD, NVIDIA

Quadro FX 3800, CentOS release 6.2.

Automatic segmentation

The four types of organelles targeted for automatic segmentation

were mitochondria, lysosomes, nuclei, and nucleoli. These tar-

gets were chosen because they are morphologically and texturally

diverse, and thus pose a significant test of the robustness of our

method.

For each organelle target, 90 seed points were placed through-

out the SBEM stack as described in Section Generation of
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FIGURE 3 | The binarization of probability maps using active

contours initialized by a multi-level Otsu threshold yields accurate

segmentation results. Colorized maps, M, of a nucleus (A) and

lysosomes (D) generated by applying Otsu’s method with multiple

levels to probability maps obtained by CHM pixel classification. Each

color corresponds to a unique level of the threshold. Six gray levels

(G = 6) were used for the nucleus and four (G = 4) were used for

the lysosomes. Initial positions (B,E) were determined by selecting

pixels corresponding to only the highest levels of each threshold

followed by two iterations of morphological shrinking. Output

segmentations (C,F) were obtained by evolving active contours about

each of the initial positions in (B,E) with 100 iterations and a

smoothing factor of 8 (α = 100, λ = 8). In the case of the lysosome

images, note that a myelinated axon that was originally detected by

the classifier as a false positive (D, arrow) has been removed from

the final segmentation by the application of our method (F, arrow).

Training Images and Labels. Training data and labels were cre-

ated using the values shown in Table 1. Of the 90 tiles generated

for each organelle, 50 were randomly selected for use in training

a CHM classifier; the other 40 were set aside to use as test data

for validation. Organelle-specific CHM classifiers were trained

using the values shown in Table 1. The performances of all classi-

fiers were evaluated by preparing receiver operating characteristic

(ROC) curves (Fawcett, 2006). Each classifier was then used to

generate probability maps of the 40 test images corresponding

to its organelle. Segmentation was performed as described in

Section Binarization of Probability Maps using the values shown

in Table 1. All training, pixel classification, and segmentation

steps were performed on the National Biomedical Computation

Resource (NBCR) cluster, rocce.ucsd.edu (http://rocce-mgr.

ucsd.edu/).

Validation of the active contour segmentation of CHM probability

maps

Evaluation metrics were computed for each set of organelle-

specific test images by comparing their segmentations with man-

ually segmented ground truth. For each stack, the confusion

matrix consisting of the number of true positive (TP), false pos-

itive (FP), true negative (TN), and false negative (FN) pixels was

computed and used to calculate the true positive rate (TPR),

false positive rate (FPR), precision, accuracy, and F-value, such

that:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + FN + FP + TN

F − value =
2 × Precision × TPR

Precision + TPR

This analysis was then repeated with segmentations gener-

ated from the same probability maps, but with a number of

different unsupervised binarization algorithms: (1) Minimum

error thresholding (Kittler and Illingworth, 1986), (2) Maximum

entropy thresholding (Kapur et al., 1985), and (3) Otsu’s single-

level method (Otsu, 1979). The performance of each algorithm,

as quantified with the above metrics, was compared against that

of our own method for each organelle target.

Since ground truth was available, the pixel intensity threshold

that maximized the F-value of each probability map with respect

to its corresponding ground truth was determined by computing

the F-value at incrementally increasing thresholds from [0, . . . ,1]

and taking the maximum value.
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Table 1 | Parameter sets used for the validation of specific organelle targets.

Parameter Variable Mitochondria Lysosomes Nuclei Nucleoli

Number of training slices N 50 50 50 50

Lateral dimensions of each training slice Q, R 500, 500 500, 500 500, 500 500, 500

Number of CHM levels L 2 2 2 2

Number of CHM stages S 2 2 2 2

Size of tile array m, n 2, 2 2, 2 2, 2 2, 2

Tiling overlap U 50 50 20 50

Gray levels for multi-level Otsu thresholding G 3 2 2 2

Active contour iterations α 80 200 300 90

Smoothing factor λ 7 4 8 10

FIGURE 4 | ROC curves for CHM classifiers of various organelles. ROC curves for mitochondrial (A), lysosomal (B), nuclear (C), and nucleolar (D) CHM

classifiers generated with two stages and two levels.

SCALE-UP TO TERAVOXEL-SIZED DATASETS

Determination of optimal downsampling levels for different

organelles

Since the segmentation of entire SBEM datasets is compu-

tationally intensive, we first decided to determine to what

degree input images could be downsampled before segmenta-

tion results were adversely affected. Downsampled versions of

each set of training images, training labels, and test images

were prepared for all four organelle targets. Downsampling was

performed by factors of two, three, four, and five, yielding

pixel sizes of roughly 15.59, 23.39, 31.19, and 38.90 nm/pixel,

respectively. CHM classifiers with two stages and two levels

were trained for each set of downsampled, organelle-specific

training images and labels. Probability maps were computed

with m = 2, n = 2, and U = 20. Segmentations were gener-

ated using the active contour method with G = 2, α = 100,

and λ = 0. For each set of output segmentations, evalua-

tion metrics were computed as described in Section Validation

of the Active Contour Segmentation of CHM Probability

Maps.
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Segmentation of organelles from a full SBEM stack

The entire test dataset was laterally downsampled by a factor of

eight, yielding a final stack with dimensions of 4000 × 3000 ×

1283 pixels. The corresponding CHM classifiers generated in

Section Determination of Optimal Downsampling Levels for

Different Organelles were applied to produce stacks of probabil-

ity maps at this pixel size for nuclei, nucleoli, and mitochondria.

Processing was performed using an 8 × 6 tile array with an over-

lap of 20 pixels between adjacent tiles. Tiling, pixel classification,

stitching, and binarization were performed using one CPU for

each input image. One hundred total CPUs were used, such that

100 images were processed in parallel to expedite processing. All

steps were performed on the National Biomedical Computation

Resource (NBCR) cluster, rocce.ucsd.edu. Following probability

map generation, all images were appended to organelle-specific

MRC stacks, and contours and surface renderings were generated

as described in Section Meshing.

COMPARISON TO A PREVIOUSLY PUBLISHED ALGORITHM

The results of our approach to nuclear automatic segmentation

were validated by comparison with the results obtained by the

algorithm of Tek et al. (2014). The full dataset was first downsam-

pled to isotropic voxel dimensions (30 × 30 × 30 nm), resulting

in a stack of size 4029 × 3120 × 1283 voxels. Training data and

images consisted of a 500 × 500 × 50 subvolume of the down-

sampled stack containing two adjacent nuclei. Ground truth data

were generated by manual segmentation of all neuronal, glial, and

endothelial cell nuclei across fifty consecutive slices from the cen-

ter of the dataset. A CHM pixel classifier with two stages and

two levels was trained and applied to all images in the stack.

Similarly, an ilastik voxel classifier was trained using all possible

features with the same training images serving as input (Sommer

et al., 2011). This classifier was subsequently applied to all images

in the downsampled stack. CHM probability maps were bina-

rized using the proposed method. The ilastik probability maps

were binarized by thresholding at the level p = 0.5, followed by

the application of the object detection algorithm of Tek and col-

leagues with Vth1 and Vth2 set to 25 and 10,000, respectively (Tek

et al., 2014).

The source code for CHM and all related scripts are available

to download from http://www.sci.utah.edu/software/chm.html.

The training images, training labels, and test images used in this

study have also been made available to download at this URL.

RESULTS

ROC curves for each organelle-specific CHM classifier are shown

in Figure 4. In comparison to those for the other organelle clas-

sifiers, the ROC curve for the lysosomal classifier (Figure 4B)

demonstrates a sparseness of data points with a low FPR. This

is due to the extreme electron density of the lysosomal compart-

ment and the number of other features in EM images that closely

approximate it. Myelin sheaths (Figure 3D), plasma membranes,

and other organelles cut en face can resemble the lysosomal com-

partment in both pixel intensity and texture and are frequently

detected as false positives. Therefore, intelligent post-processing

routines that utilize size and morphology are needed to separate

lysosomes from such false positives.

FIGURE 5 | Binarization of probability maps using active contours

outperforms other methods. A CHM classifier for mitochondria was

applied to a 500 × 500 pixel test image (A), generating the probability map

shown in (B). Note that regions of pixels corresponding to the Golgi

apparatus (yellow arrows) were detected in the probability map. The Golgi

apparatus can often confuse mitochondrial pixel classifiers because it has a

texture very similar to that of the mitochondrial matrix. The results of

binarization of the probability map using maximum entropy (C) and Otsu’s

single-level method (D) are shown. Using these techniques, regions of the

Golgi are permitted into the final segmentation as false positives. The

resultant segmentation obtained by our method of binarization with active

contours (G = 2, α = 100, λ = 8) is shown in (E). Instances of the Golgi

apparatus were automatically removed during processing. This

segmentation (F = 0.863, accuracy = 0.985) is a highly faithful

representation of the ground truth (F).

A comparison of our proposed active contour binarization

method to the other methods tested is shown in Figure 5 using

mitochondria as an example. Since the Golgi apparatus can some-

times display a texture similar to that of the mitochondrial matrix,

the presence of this organelle can confuse the mitochondrial clas-

sifier (Figures 5A,B, arrows). Segmentations generated with the

maximum entropy algorithm (Figure 5C, recall = 0.992, preci-

sion = 0.498, F = 0.670, accuracy = 0.948) and Otsu’s single-

level method (Figure 5D, recall = 0.958, precision = 0.687, F =

0.812, accuracy = 0.977) retain elements of the Golgi apparatus as

false positives. However, probability map binarization using the
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FIGURE 6 | The results of our method are consistent when applied to

diverse organelle targets. The application of our method to different

organelle targets yields consistent results without the need to significantly

change the input parameters. Shown here are test images, each of size

500 × 500 pixels, and their corresponding probability maps, segmentations,

and manually segmented ground truth images. The final column shows a

transparent overlay of the segmentation onto the test image. The evaluation

metrics for each test image are as follows: Mitochondria, F = 0.844, accuracy

= 0.984; lysosomes, F = 0.872, accuracy = 0.997; nuclei, F = 0.971,

accuracy = 0.971; nucleoli, F = 0.91, accuracy = 0.977.

proposed active contour method eliminates these false positives

(Figure 5D, recall = 0.908, precision = 0.804, F = 0.863, accu-

racy = 0.985) when compared to the ground truth (Figure 5E).

Output probability maps and active contour segmentations from

example test images of each organelle are shown in comparison

to their corresponding ground truth in Figure 6.

The segmentation evaluation metrics for each full stack of

40 organelle-specific test images are shown in Table 2. The pro-

posed active contour segmentation method resulted in a supe-

rior recall for all four organelles and a superior F-value for

mitochondria, lysosomes, and nucleoli when compared to the

other segmentation methods. The F-value for nuclear segmen-

tation is negligibly better using Otsu’s single-level method. The

lack of distinction between these two binarization methods for

nuclei is due largely to the already high quality of nuclear

probability maps. The accuracy values obtained for each stack

using active contour segmentation were 0.985, 0.997, 0.972,

and 0.979 for mitochondria, lysosomes, nuclei, and nucleoli,

respectively.

A histogram of the probability map pixel intensity thresh-

olds that maximize the F-value for each test image are show

in Figure 7. The wide spread of optimal threshold values for

each organelle demonstrates the importance of using an unsuper-

vised algorithm for probability map binarization, such as the one

proposed here. Simply setting a pixel intensity threshold for each

probability map would yield poor segmentations for a number

of test images. This is especially true in very large SBEM images,

where alterations in staining or focus may occur differentially

throughout regions of the image stack.

The results of our downsampling experiment are shown

in Figure 8. The resultant F-value for segmentation of nuclei

and nucleoli remains remarkably consistent across the whole

range of pixel sizes tested. The F-values for mitochondria and

lysosomes exhibit substantial reductions at pixel sizes greater

than ∼15 nm/pixel, corresponding to an overall downsampling

of the original SBEM stack by a factor of four. The persistence of a

high F-value across all scales tested for nuclei and nucleoli is likely

due to their larger size and more regular texture in comparison
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to the other organelles. This is especially true for mitochondria,

whose cristae architectures may differ dramatically from region

to region.

The required wall clock time and random access memory

(RAM) required for CHM classifier training and pixel classifica-

tion for each organelle at each level of downsampling are shown

in Table 3. The time and RAM required for probability map bina-

rization are not shown because they are negligible with respect

to training and classification. These results indicate that, in cases

where segmentation accuracy is not dramatically affected, a vast

amount of time and computational resources can be saved by

downsampling the input image stacks. Simple extrapolation of

pixel classification times shows that the time required by a single

Table 2 | Segmentation evaluation metrics for the tested organelle

targets using various methods of probability map binarization.

F -value Precision Recall Jaccard Index

MITOCHONDRIA

Minimum Error 0.635 0.994 0.466 –

Max. Entropy 0.669 0.991 0.505 –

Otsu Single-level 0.816 0.957 0.712 –

Active Contours 0.877 0.867 0.886 0.780

LYSOSOMES

Minimum Error 0.433 0.985 0.277 –

Max. Entropy 0.492 0.940 0.508 –

Otsu Single-level 0.812 0.899 0.737 –

Active Contours 0.841 0.854 0.828 0.726

NUCLEI

Minimum Error 0.963 0.958 0.968 –

Max. Entropy 0.644 0.603 0.692 –

Otsu Single-level 0.971 0.979 0.963 –

Active Contours 0.970 0.973 0.968 0.942

NUCLEOLI

Minimum Error 0.781 0.998 0.641 –

Max. Entropy 0.811 0.996 0.684 –

Otsu Single-level 0.898 0.973 0.835 –

Active Contours 0.910 0.902 0.918 0.835

CPU to apply a nuclear pixel classifier to our full test dataset

would be reduced from ∼5.9 to ∼0.4 years when the input data

are downsampled by a factor of 10.

These time and memory requirements were dramatically

reduced by implementing tiling and processing over multiple

CPUs. During segmentation of the full, downsampled dataset, the

average processing time per 500 × 500 tile was 3.28 ± 0.39 min

(average and standard deviation, N = 600), with no significant

difference in average time between organelles. By utilizing par-

allel processing with 100 CPUs, probability maps for the entire

stack were generated in roughly 33 h. An example full slice

FIGURE 8 | Input images can be downsampled to various degrees

before the segmentation results are negatively affected. Each

organelle-specific stack was downsampled by factors of two, four, six,

eight, and ten. Separate classifiers were trained at each different pixel size

and segmentations were generated for each stack using our method. Here,

the F -value of each resultant stack is compared across the different pixel

sizes obtained after downsampling. The F -value of nuclei (blue) and nucleoli

(magenta) is remarkably independent of the level of downsampling across

all levels tested. The F -values for mitochondria (red) and lysosomes (green)

significantly decline as the level of downsampling is increased.

FIGURE 7 | The wide distribution of optimum pixel intensity

thresholds demonstrates the usefulness of our method for

probability map binarization. The probability map pixel intensity

threshold that maximized the F -value with respect to ground truth

was determined for all of the 40 test images analyzed for each

organelle. The histogram of optimal thresholds shown here

demonstrates the need for an unsupervised method of binarization.

Simple thresholding of all probability maps at a single user-specified

intensity level would result in poor results for many of these test

images. Binarization using our method circumvents this problem by

adapting the results to the unique histogram of each probability map

in an unsupervised manner.
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Table 3 | Runtime and memory requirements for nuclear CHM classifier training and pixel classification at various levels of downsampling.

nm/pixel Classifier Training Pixel Classification

Dimensions Time (h) RAM (GB) Time (min) RAM (GB)

7.79 500 × 500 × 50 23.98 87.24 12.73 ± 0.90 4.54 ± 0.03

15.59 250 × 250 × 50 20.35 39.38 4.67 ± 0.15 2.08 ± 0.04

23.39 166 × 166 × 50 7.95 18.16 2.03 ± 0.03 1.68 ± 0.05

31.19 125 × 125 × 50 4.71 10.83 1.18 ± 0.02 1.52 ± 0.04

38.90 100 × 100 × 50 3.18 7.38 0.90 ± 0.04 1.41 ± 0.04

The dimensions of the stack of training images and labels used to train the classifier are given. The values for pixel classification correspond to the average values

required to generate a probability map for one tile of roughly 60 µm2 at the tissue level (1000 × 1000 pixels at 2x downsampling). Values are reported as the mean

and standard deviation (N = 40 for each). Time is reported as the wall clock time for the indicated process.

FIGURE 9 | Automatic segmentation can be efficiently scaled to handle

full slices from teravoxel-sized SBEM datasets. Probability maps of full

images from the SCN dataset were generated by downsampling the image,

computing probability maps of individual tiles, and stitching these tiled

maps together. Shown here are probability maps of mitochondria (B), nuclei

(C), and nucleoli (D) computed from the same full slice (A). The full slice

was downsampled by a factor of two prior to mitochondrial pixel

classification and a factor of eight before nuclear and nucleolar pixel

classification. Common residual errors during mitochondrial pixel

classification are the false detection of endothelial cells (arrow) and nucleoli

or clusters of chromatin in the nucleus (asterisk). A common error

encountered during nuclear pixel classification is the false detection or

regions of cytoplasm devoid of membrane-bound organelles (arrowhead).

These residuals are frequently removed by the application of the proposed

probability map segmentation algorithm. Scale bar = 20 µm.

and its corresponding nuclear probability map are shown in

Figures 9A,C. Figures 9B,D depict additional probability maps

of mitochondria and nucleoli, respectively. The full slice proba-

bility maps of these other organelles were computed in a manner

similar to that of the nuclei.

When applied to the segmentation of nuclei from the full SCN

dataset following downsampling to isotropic voxel dimensions,

the proposed method achieved a precision, recall, and F-value of

0.976, 0.977, and 0.977, respectively. Similarly, the method of Tek

et al. (2014) achieved a precision, recall, and F-value of 0.976,

0.542, and 0.697, respectively, when applied to the same dataset

FIGURE 10 | Output surface renderings of manually segmented

organelles within an SCN neuron. The plasma membrane of a neuron

was manually traced in its entirety throughout the dataset. The size of this

neuron with respect to the full dataset (bottom left, scale bar = 20 µm)

demonstrates the scale of the segmentation challenge. An enlarged version

of this neuron with a transparent plasma membrane is shown in the upper

left corner. Surface renderings of the nucleus (yellow), nucleolus (cyan), and

mitochondria (green) were generated from the output of our automatic

segmentation workflow. Two cross-sectional planes through the neuron

reveal the corresponding SBEM slice with transparent overlays of the

probability maps for the three organelles (scale bar = 2 µm). Output

renderings such as these can be used to analyze any number of

parameters, including organelle morphology and clustering throughout the

whole cell.

using the same training data. Due to an already high precision and

low number of false positives, the final object classification step

performed by Tek and coworkers was omitted. Evaluation metrics

were computed using fifty consecutive manually annotated slices

as ground truth.

A surface rendering of a full SCN neuron containing ren-

derings of its nucleus, nucleolus, and mitochondria is shown in

Figure 10. The plasma membrane of the neuron was manually
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segmented by a trained neuroanatomist. The surface renderings

of all organelles were automatically generated, with minor manual

corrections applied.

DISCUSSION

As recently as a few years ago, the notion of reconstructing

and morphologically characterizing the organelle networks of

even a few whole cells was considered a monumental challenge

(Noske et al., 2008). The advent and widespread adoption of

high throughput, volumetric EM techniques has threatened to

change that notion, with the caveat that our ability to segment

and analyze data must first catch up with our ability to collect it.

With that goal in mind, this study aimed to develop a method

for the accurate automatic segmentation of organelles in EM

image stacks that: (1) could be easily adapted to any organelle of

interest, and (2) could be applied to teravoxel-sized datasets in a

computationally efficient manner.

Since it does not make any large-scale, a priori assumptions

about the morphology of the segmentation target, the proposed

method can be applied to segment diverse organelles with ease.

The only geometrical properties assumed throughout the method

are boundary smoothness and a cross-sectional area that is suf-

ficient enough to prevent the removal of true positives following

binary shrinking. Both of these assumptions are valid for virtually

all organelles under practical imaging conditions. CHM classi-

fiers can be trained for any dataset or organelle target if given

the proper training data, and the output segmentations from our

method can be tuned to the demands of unique experiments.

For example, decreasing the number of gray levels, G, used in

the multi-level Otsu thresholding step will emphasize true posi-

tives at the expense of including false positives, which can often

be excluded by post-processing filters. Additionally, it is easier to

remove false positives by manual correction or crowd-sourcing

(Giuly et al., 2013) than it is to add missing true positives.

The proposed method performed favorably when compared

to a recently published algorithm for the automatic segmenta-

tion of cell nuclei (Tek et al., 2014). It is interesting to note that

the performance of our method was very similar when trained

using either images from consecutive slices of the same nuclei

(precision = 0.976, recall = 0.977) or single slice images from a

variety of nuclei (precision = 0.973, recall = 0.968). This sim-

ilarity demonstrates the robustness of the CHM pixel classifier

for this task. It is likely that the segmentation results obtained

by applying the method of Tek and colleagues to the SCN dataset

could be strengthened by training an ilastik voxel classifier against

a greater diversity of nuclei.

Another advantage of the proposed method lies in its scala-

bility to full datasets. The generation of probability maps from

small tiles of the input image minimizes the required RAM.

Additionally, it allows for computation to be easily expedited

by parallelizing the processing of individual tiles across multi-

ple CPUs. Our demonstration that accurate results for certain

organelles can be achieved on downsampled stacks also helps

expedite processing. One can envision an experiment in which

a teravoxel-sized SBEM stack collected at high resolution for

axon tracking can then be downsampled and have its nuclei

or mitochondria automatically segmented at a fraction of the

computational cost that would have been required at its native

resolution. As innovative methods to rapidly acquire even larger

datasets continue to be developed (Mohammadi-Gheidari and

Kruit, 2011; Helmstaedter et al., 2013; Marx, 2013), this reduction

in computational cost will prove critical.

Although it is beyond the scope of this paper, a number of 3D

post-processing steps that would lead to further improvements in

the results of automatic segmentation can be proposed. A simple

size exclusion filter could be applied to 3D connected compo-

nents to remove false positives that do not fall within the possible

size range for the given organelle. A scan over every segmented

slice of each 3D component could be performed to look for aber-

rant spikes or troughs in 2D metrics such as perimeter or area.

The locations of these spikes and troughs would indicate slices

on which a poor segmentation occurred, and these slices could

be correspondingly removed and replaced by interslice interpola-

tions. The application of such processes to the output from our

method will be the subject of future development.

In conclusion, this paper introduces novel methods for the

automatic segmentation of organelles from EM image stacks that

are both robust and able to handle datasets of any size. These

tools fill a critical need by allowing for the quantitative analy-

sis of volumetric EM datasets at a scale between that of current

connectomics approaches (Briggman and Denk, 2006; Anderson

et al., 2011; Bock et al., 2011; Briggman et al., 2011; Kleinfeld et al.,

2011; Varshney et al., 2011; Helmstaedter et al., 2013; Kim et al.,

2014) and that afforded by genetically encoded markers for small

molecule localization (Shu et al., 2011; Martell et al., 2012; Boassa

et al., 2013).
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