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ABSTRACT Aiming at the problem that the robot de-palletizing task is difficult to accomplish under unstable

ambient light, a two-step method is proposed to realize the localization of workpieces, which in this work are

woven bags. To begin with, Region Growing method is used to extract the whole target region in the original

image, and the relationship model between image intensity and the optimal Region Growing threshold is

established. Then, Progressive Probabilistic Hough Transform(PPHT) is used to locate each woven bag.

To improve the system performance, the optimal parameters of the PPHT function in different illumination

intervals are determined. Finally, experiments are conducted to verify the effectiveness of the proposed

method. Experiment results demonstrate this method is robust and feasible.

INDEX TERMS Image segmentation, workpiece localization, region growing, PPHT.

I. INTRODUCTION

On automated production lines, palletizing and de-palletizing

job is an important link connecting production and transporta-

tion [1]–[3]. In order to improve the production efficiency of

this link, de-palletizing robots came into being, which can

firmly grasp and deliver goods with a special customized

multi-functional grasper. With the development of indus-

trial robots and industrial control technology, de-palletizing

robots are gaining prevalence in diverse industries [4]–[6].

However, traditional industrial robots can hardly handle the

grasping tasks at complex scenes when the objects are not

fixed accurately, because offline programming or ‘‘teaching

and playback mode’’ are heavily relied on [7]. To improve the

generalization ability of industrial robots, aiding robots with

machine vision is becoming increasingly prevalent [8]–[11].

At present, machine vision technology is widely used to

detect the appearance and quality of products and pack-

ages [12]. Recently, several studies on machine vision-based

product positioning and packaging in robotic de-palletizing

operations are reported. Rahardja’s research used stereo

cameras [13] to calculate the location of random stacked

components. However, the system requires unique landmark

features to identify the target object and estimate the pose of
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the object. Guo Jin [14] proposed a fast part hole distance

detection technique based on a binocular vision sensor, which

can accurately locate the three-dimensional pose of the part.

However, the binocular vision system needs to decode and

match the images taken by both cameras, so the matching

error will affect the accuracy of recognition and positioning.

Xinjian Fan [15]developed a prototype automatic palletiz-

ing system that combines industrial robots with binocular

stereo vision. The shape-based matching(SBM) method was

used instead of traditional stereo matching in this method to

improve the performance of three-dimensional pose estima-

tion of a workpiece with high robustness. However, the sys-

tem needs to pre-register the pattern of the tested object, and

then train the model according to the key features of the

object. The final recognition accuracy is greatly affected by

the model. Recently, there have also been studies focusing

on the introduction of structured light sensors [16].In these

methods, the attitude estimation is achieved by comparing the

three-dimensional model of the workpiece with the distance

image [17]or the three-dimensional point cloud [18]captured

by the structured light sensor. However, the above methods

are not suitable for the bad conditions of surface reflec-

tion or light interference. Zhang Biao [19]proposed a new

method of non-calibrated vision based on space operation

and three-dimensional laser-assisted detection for locating

targets. The system uses laser spot recognition to detect

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 166365

https://orcid.org/0000-0002-4915-3222
https://orcid.org/0000-0002-5280-0726
https://orcid.org/0000-0002-3153-4502
https://orcid.org/0000-0002-3572-2826
https://orcid.org/0000-0001-6293-3808
https://orcid.org/0000-0003-4642-7133


J. Li et al.: Workpiece Localization Method for Robotic De-Palletizing Based on Region Growing and PPHT

objects, which can avoid the influence of the illumination

environment. However, the system is complex and the num-

ber of projected laser points needs to vary according to the

size of the workpiece. And we find many interference fac-

tors exist under practical complicated working environment,

which complicates the identification and localization of sin-

gle woven bag: 1) the ambient light varies with the weather,

time, human-induced disturbance among others, which may

cause image intensity varying intensely; 2) background inter-

ference, which includes but is not limited to shelves, conveyor

belts and robot body, blends target with inseparable noises;

3) with diverse palletizing types and deformable objects,

the flexible edges of adjacent woven bags overlap with each

other. With all these obstacles under consideration, we selec-

tively ascertain the superior existing method and finely tune

the optimal parameters with our own adaptive model. Our

algorithm is designed explicitly to tackle the demanding prac-

tical environment, and more importantly to achieve superior

identification results.

In this paper, a two-step recognition method is proposed.

The Region Growing method is selected to extract the whole

stack, by considering the adhesive characteristics of the edge

of the woven bag. Then a linear model between the optimal

threshold of regional growth and the difference between seed

point and average brightness is established, throughwhich the

edges of each woven bag are obtained by combining the adap-

tive threshold segmentation and PPHT. Contrary to the tradi-

tional edge detection method, the proposed one can obtain

more detailed contour information. The corresponding rela-

tionship between the three parameters combinations of PPHT

and the illumination interval is also analyzed to enhance the

robustness of the system to illumination variation. Finally,

the pose information of a single workpiece is calculated to

guide the robot to de-palletize. With the proposed algorithm,

we have addressed the actual industrial problem that may

strike us all, with low cost and high applicability, and cast

light for generalizing our methodology to other conventional

algorithms.

The remaining of this paper is organized as follows:

In Section II, the composition of the visual acquisition sys-

tem is described. In Section III, several image segmentation

algorithms are compared for the whole stack extracting task,

fromwhich Region Growing is chosen for its superior results.

After that, under image average intensity, a model between

image average brightness and the optimal growing threshold

is established. In Section IV, the optimal parameters of the

PPHT function for different image intensity intervals are

determined to locate a single woven bag. In Section V, exper-

iments are conducted to verify the feasibility of the proposed

method, and detailed discussion on the results is presented.

In Section V, conclusions are drawn.

II. VISION SYSTEM DESIGN

In this work, an image acquisition system for real indus-

trial application is established. It mainly includes a Basler

Gigabit Ethernet industrial camera acA3800-10gm, a laser

FIGURE 1. Image acquisition system.

range sensor DMG-30, and illumination devices, in which the

camera and the range sensor are fixed, and the range sensor is

perpendicular to the ground to obtain the depth information

of the workpiece. The camera has a resolution of 3856×2764

pixels. The visual acquisition system is shown in Fig. 1.

Considering that the woven bags are prone to deform, this

paper introduces a general method, taking the stack of single

or multi-layer woven bags as the research object. The main

palletizing types used in this experiment are criss-crossing

type and forward-reverse type, rather than overlap type and

rotating crisscross type. Since the overlap type features insta-

bility between layers, and rotating crisscross type forms holes

in the middle of the stack, which reduces the utilization rate

of the pallet.

FIGURE 2. Sample image under different illumination. (a) Criss-crossing
type, m=59.92. (b) Criss-crossing type, m=90.31. (c) Criss-crossing type,
m=128.78. (d) Forward-reverse type, m=90.89.

As shown in Fig. 2, the sample images with different

de-palletizing types are acquired by the above-mentioned

visual acquisition system under different illumination cir-

cumstances, where m is the average intensity of the sample

image. When the ambient illumination changes, the average

intensity of the sample image collected varies accordingly,

and its variation range is approximately 30-130 in this paper.

In this paper, we aim to identify and locate a single

woven bag in the de-palletizing environment with unstable

natural light. The edges of adjacent woven bags are generally
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FIGURE 3. The system workflow.

obscure in collected images because of their highly deforma-

tive property. Therefore, it is hardly probable to recognize and

locate a single woven bag directly. Furthermore, the origi-

nal images need to be preprocessed due to the existence of

interference in the actual de-palletizing environment such as

shelves, conveyor belts and machines. To this end, a two-step

recognition method is proposed in this paper. In the first

step, the Region Growing method with the aid of an adaptive

model is used to extract the whole stack. In the second step,

the PPHT algorithm based on the optimal parameters model

is used to extract a single woven bag. After that, the position

and orientation of each woven bag are obtained. Finally,

combined with the height information from the range sensor,

the 3d coordinates of each workpiece are calculated to guide

the robot to de-palletize. The architecture of the proposed

system is shown in Fig. 2.

III. WHOLE STACK EXTRACTION

In this section, the adaptive threshold, local threshold and

Region Growing are compared for the whole stack extraction

task, and the Region Growing method is selected for its supe-

rior performance. At the same time, considering the results of

image segmentation will be influenced by natural light varia-

tion in the real environment, a relationship model between

the average image intensity and the optimal threshold for

Region Growing is established based on a large number

of experiments. Based on this model, the optimal threshold

can be ascertained to improve the accuracy of segmentation

and relieve the impact of natural light instability on image

segmentation.

A. IMAGE PREPROCESSING

The adaptive threshold, local threshold and Region Growing

methods are performed for the whole stack extraction task.

The results of Fig. 2b are shown in Fig. 4.

FIGURE 4. Results of (a) Adaptive threshold, (b) Local threshold, and
(c) Region Growing.

As shown in Fig. 4a, the adaptive threshold method is not

ideal for image segmentation with low contrast, and the right

side of the woven bags is integrated with the background,

leading subsequent processing impossible. In Fig. 4b, useful

edges are submerged by noise, and the edge of the woven

bag is not obvious. Therefore, the segmentation of woven

bags cannot be achieved through the local threshold method

because the image intensities of foreground and background

don’t necessarily differ a lot. In Fig. 4c, the ideal segmen-

tation effect can be obtained through the Region Growing

method with an appropriate threshold. Therefore, the Region

Growing method is chosen to extract the whole stack for its

superior results.

Region Growing method [20], [21] starts with initializing

seeds and links the neighboring pixels according to growing

formula until all pixels being labeled. The growing formula

based on the gray difference between neighboring pixels and

seeds can be expressed as:

|f (x, y) − S|(x,y)∈P < K (1)

In (1), S is the gray value of seed point, f (x, y)is the gray

value of the neighboring pixels of seed point. Considering that

different stacks are always located in an approximately fixed

area in the images, the fixed target seed point can be chosen

for Region Growing.

FIGURE 5. Segmentation results using fixed threshold-based Region
Growing. (a) The segmentation result of Fig.2a. (b) The segmentation
result of Fig.2b. (c) The segmentation result of Fig.2c.

B. DYNAMIC THRESHOLD

Although the Region Growing method performs excellently

in extracting whole stack, the image growing method with

the same threshold value cannot achieve desirable results.

The segmentation results of Fig. 2a,b,c by using the Region

Growing method with a fixed threshold (K=70) are shown

in Fig. 5a,b,c. In Fig. 5a, a part of the background is mistak-

enly segmented into the target pile, indicating that the thresh-

old is too large for 2a with darker light intensity. In Fig. 5b,
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the target piles are completely identified and segmented, indi-

cating that the threshold is appropriate for 2b with moderate

light intensity. In Fig. 5c, some areas of the target pile are

not completely extracted, indicating that the threshold is too

small for 2c with strong light intensity. Therefore, the Region

Growing based on a fixed threshold cannot extract desired

stacks effectively under different illuminations.

Considering ambient illumination is mainly reflected in the

average brightness of the image, we select the images under

different illuminations for segmentation experiments, to find

the relationship between the average brightness of each image

and the optimal threshold for the Region Growing method.

TABLE 1. Region Growing parameter table of images under different
illuminations.

Table 1 gives some results under different illuminations,

in which M is the average brightness, S is the gray value of

seed point, D is the absolute value of the difference between

S andM , and T is the optimal growing threshold. The corre-

sponding (D,T ) values of 21 images under different illumi-

nations are calculated and drawn with the red discrete points

in Fig. 6. A least-square algorithm fitting line demonstrates

the linear relationship between D and T , which is shown by

a blue line in Fig. 6.

FIGURE 6. (D, T) least squares fitting results.

The equation for the fitted line is:

T = 0.8593 ∗ D− 13.4723 (2)

Therefore, the relationship between T , M and S is:

T = 0.8593 ∗ (|M − S|) − 13.4723 35 6 M 6 150 (3)

When M < 35, it indicates that the environment is too

gloomy, so the light needs to be turned on; when M > 150,

the ambient light is too intense, which rarely occurs in the

general workshop. Equation (2) is the relationship model

between image average intensity and optimal growing thresh-

old. According to the model above, the optimal threshold for

FIGURE 7. Segmentation results using dynamic growing threshold.
(a) The segmentation result of Fig.2a. (b) The segmentation result of
Fig.2b. (c) The segmentation result of Fig.2c.

Region Growing of Fig. 2a,b,c can be determined as 50, 70,

94, respectively. And the results are shown in 7a,b,c. It can be

seen that the target stack is completely segmented. Compared

with Fig. 5, the effects of illumination are almost eliminated

by using dynamic thresholds in Fig. 7. And the whole stack

can be completely detected, while the single woven bag is

hardly identified due to obscure edges of braided bags.

Considering that there may be some boundary points

between adjacent woven bags and points between the stack

and the background in Fig. 7a, a morphological expansion

operation is performed on Fig. 7a to expand the growing area,

leading to a more complete stacking area with reduced errors,

as shown in Fig. 8a. And then an AND operation between

the original image Fig. 2a and Fig. 8a is performed to get

the stacking area on the original image, with the result shown

in Fig. 8b. Apparently, through above image processing steps,

the whole stack can be extracted accurately from background

and influence of noise is greatly reduced, which lays the foun-

dation for the accurate identification of subsequent single

woven bag.

FIGURE 8. (a) Mask of extracted stacking area. (b) The stacking area
presented on the original image.

IV. SINGLE WORKPIECE LOCATION

The purpose of this paper is to identify each woven bag in

an actual de-palletizing environment under unstable natural

light. In Section III, the whole stack has been extracted,

removing most of the interference outside the target pile area.

In this section, we will identify and locate the central position

and orientation of each woven bag. Contour extraction result

of a single woven bag is not satisfying and numerous infor-

mative boundaries are lost when applying traditional edge

extraction algorithm, while adaptive threshold segmentation

is capable of extractingmore contour information and reduces

the influence of intensity variation. Therefore, the adaptive

threshold segmentation is used for edge points detection,
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FIGURE 9. Edge extraction image.

as shown in Fig. 9, and then the optimal parameter adjust-

ment is performed on the PPHT function. Finally, the pose

information of each woven bag is obtained.

In the PPHT function, the main parameters encompass-

ing Th(int threshold), Min(double min Line Length), and

Max(double max Line Gap) primarily affect the line extrac-

tion effect, in which Th is the threshold of the number of

points determining whether a line exists or not; Min is the

threshold of the minimum length of a line; and Max is

the threshold of the maximum gap between points on the

same line to link them. From the analysis of the definition,

the details detected will increase with these three parameters

decrease, while excessive restoration of unnecessary details

may lead to recognition failure. Therefore, this paper will

analyze the appropriate PPHT parameters according to dif-

ferent light intensity values, to better segment and identify

the contour of a single bag.

After roughly summarizing the test results of several pic-

tures, it is found that the suitable parameters of PPHT did not

change much for images when illumination intensity changed

slightly, so the appropriate interval of image intensity is set

as 10. Since the effective light intensity interval is (55, 125),

we take those pictures with the brightness values close to 60,

70, 80, 90, 100, 110 and 120 as the representative sample

images in each illumination interval. However, when Th,Min

and Max are greater than 400, the image cannot be effec-

tively recognized, and slight variation in these parameters can

hardly produce significant changes, so the three parameters

are adjusted at intervals of 50, with values ranging from

50 to 350. As shown in Fig. 11(a-n), a total of 7 images are

counted, and a total of 343 sets of data are counted for each

image. The statistically preferable parameter results of each

image are composed of two statistical charts: fix Th and Min

respectively, and then count and analyze the remaining two

parameters to find the optimal parameter combination.

The optimal parameter combination is determined by fol-

lowing steps. Take Fig. 11e and f as an example, which is a

complete analysis for the average intensity being around 80.

First, the parameter Max is set as 50, then all combinations

of the other parameters are tested, and those efficient ones

are recorded a dark blue point in the chart Fig. 11e. Then,

the parameter Max is set as 100, · · · , 350, respectively,

and corresponding combinations of the other parameters are

recorded in the same chart with points of different colors.

After that, those combinations with the maximal times of

FIGURE 10. The most universal combinations when (a) fixing Max , and
(b) fixing Th in one particular example. (c) Intersection of (a) and (b).

successful recognition are located and labeled with yellow

square. In Fig. 11e, the maximal times of successful recog-

nition is 7, which means no matter what Max is, these com-

binations of the other two parameters can suit our needs.

In addition, in order to find the most universal combination of

all the three parameters, the second parameter Th is set from

50 to 300, with the interval being 50. Then, as in the former

step, those combinations of Max and Min with the maximal

times of successful recognition are located and labeled with

a yellow square in Fig. 11f. The successful combinations at

chart Fig. 11e are shown in Fig. 10a, and successful combi-

nations at Fig. 11f can be seen in Fig. 10b. By combining the

former two figures, we can obtain Fig. 10c. Combination with

(Th,Min,Max) being (150, 250, 200) is the most universal

one because parameters with red block have more branches,

which proves it to be the most robust one for generalizing

other images.

After a series of experiments, analyses and further tests on

other images, the optimal parameters corresponding to each

illumination interval are obtained, as shown in Table 2.

In Fig. 12a, the contour of each woven bag in Fig. 9 is

detected by using the optimal parameters given in Table 2.

Due to the existence of pores between the extracted lines,

we connect them by proper morphological closure opera-

tion to obtain better contour. The morphological dilation

operation is performed on Fig. 12a to obtain Fig. 12b, and

then the morphological erosion operation is performed on

Fig. 12b to obtain Fig. 12c. Finally, the contour of each woven

bag in Fig. 12d is obtained by extracting the inner contour

from Fig. 12c.
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FIGURE 11. The statistical preferable parameter results of images with different illumination.The parameter MaxTimes is the maximal times of
successful recognition. (a) M=60.71, fixed Th. (b) M=60.71, fixed Max. (c) M=70.65, fixed Th. (d) M=70.65, fixed Max. (e) M=81.29, fixed Th.
(f) M=81.29, fixed Max. (g) M=90.31, fixed Th. (h) M=90.31, fixed Max. (i) M=98.66, fixed Th. (j) M=98.66, fixed Max. (k) M=108.68, fixed Th.
(l) M=108.68, fixed Max. (m) M=120.70, fixed Th. (n) M=120.70, fixed Max.

TABLE 2. Corresponding PPHT parameter values for illumination
intervals.

After the contour of each woven bag is extracted, the cir-

cumscribed rectangle with a minimum area can also be

obtained, whose center is exactly the central position of each

workpiece [22]. Fig. 13b shows the extraction result of the

single woven bag placed vertically on the first one of the

second row, in which the centroid of its circumscribed rectan-

gle represented by a white point is exactly the central position

of workpiece.

When the robot performs the de-palletizing job, in addi-

tion to the center position of each workpiece, the posture

information of each workpiece is also required. Fig. 14 and

Fig. 15 show the placement postures of the separated work-

pieces respectively, in which W is the first rectangular side

parallel to the horizontal axis when the horizontal axis rotates

counterclockwise, and the other side is denoted as H. The

angle between line W and the horizontal axis is denoted

as ∂ , which is obtained through the circumscribed rectangle

extracted. The posture of the woven bag is denoted as β,

which is calculated by using (4). When the robot is grabbing

a woven bag, it adjusts the grabbing direction according to

the posture of the woven bag. The attributes of the workpiece

in Fig. 13 are shown in Table 3.
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FIGURE 12. (a) The result of PPHT. (b)The result of morphological
dilationoperation. (c)The result of morphological erosion operation.
(d) The contour of a single braided bag.

FIGURE 13. (a)The left woven bag of the second row and its enlarged
view. (b)The fitted rectangle of this woven bag.

FIGURE 14. Workpiece placed with attitude 1.

FIGURE 15. Workpiece placed with attitude 2.

β =

{

∂ W > H

∂ + 90◦ W < H
(4)

After the central position and orientation information

of each woven bag is obtained, combined with the depth

TABLE 3. Workpiece pose properties.

information from the range sensor, the 3D coordinate infor-

mation of each workpiece at the first layer can be obtained,

and uploaded to the robot control system. Then the gripper

is controlled to grab the corresponding workpieces at the

first layer. Iteratively, the above procedures are repeated for

the next layer, which doesn’t give rise to any challenges not

covered by the abovementioned algorithm. Layer-by-layer,

the whole stack is de-palletized.

V. EXPERIMENTS AND DISCUSSION

To prove the effectiveness of the vision system proposed in

this paper, we built an actual robot de-palletizing job envi-

ronment in Qingdao Baojia Automation Equipment Co., Ltd.,

as shown in Fig. 16. Three parts of experiments under the

environment of unstable natural light are carried out to ver-

ify the applicability of the system to different de-palletizing

types, the accuracy of the system to identify and locate the

woven bag, the robustness of the system to the change of

illumination, respectively.

FIGURE 16. The field test photos.

A. THE APPLICABILITY OF THE SYSTEM TO DIFFERENT

DE-PALLETIZING TYPES

To test the applicability of the system, we need to exper-

iment with different de-palletizing types. we consider that

the identification of woven bags is mainly for woven bag

postures information. The major differences between differ-

ent stack layers are the center position, orientation and size

of each woven bag. In Section II, we introduce and ana-

lyze the advantages and disadvantages of several pallet-type

commonly used in the industry. The criss-crossing type and

forward-reverse type have well stability andwide application,

and also cover the change of the positions and orientations

in the type of horizontal, vertical or forward-reverse. Mean-

while, the stack of five-flower and six-flower per layer are
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FIGURE 17. The images of the stack of different types: (a) five-flower
stack, (b) six-flower horizontal stack, and (c) six-flower vertical stack.

common quantity in the industry, and more/less woven bags

per layer can hardly bring about any new and neglected issues.

Therefore, the experiments on the typical five-flower stack,

six-flower horizontal stack and six-flower vertical stack,

which cover the change in the positions and orientations

of woven bags, and the number of woven bags per layer,

can effectively demonstrate the feasibility of the proposed

algorithm.

We collect 100 images in a natural light unstable envi-

ronment at different times on sunny and cloudy days, which

include five-flower stacks and six-flower horizontal or ver-

tical stacks, as shown in Fig. 17a,b,c. As aforementioned,

the localization of six-flower vertical stack has already been

realized. To verify the applicability of the system, the exper-

iments on the other two types are carried out.

In Fig. 18, the whole stacking area is completely extracted

from Fig. 17a,b, by using the optimal segmentation threshold

from the model constructed in Section III. Thus, with our

method, the whole stacking area can be accurately extracted

from the background for different illumination and stacking

types.

FIGURE 18. The complete stacking area of (a) five-flower stack, and
(b) six-flower horizontal stack.

Then, the identification and localization results of each

woven bag are obtained by using PPHT with the optimal

parameters given in Table 2. In Fig. 19a,b, the center points

of woven bags with different postures are marked with white

points, and the number is marked for each woven bag. The

center position coordinates and orientation information of

each bag are shown in Tables 4 and 5. As shown in the

results above, the proposed algorithm can extract with high

accuracy the posture of each woven bag with a wide range of

position, orientation and sizes (caused by layer height varia-

tion), proving the feasibility and applicability of the algorithm

to different de-palletizing types under the environment of

unstable natural light.

FIGURE 19. The result of identification and location of single woven bag
in (a) five-flower stack, and (b) six-flower horizontal stack.

TABLE 4. The center position coordinates and orientation information for
each woven bag in the five-flowered stacking.

TABLE 5. The center position coordinates and orientation information for
each woven bag in the six-flowered stacking.

B. THE ACCURACY OF THE SYSTEM TO IDENTIFY

AND LOCATE THE WOVEN BAG

In order to evaluate the accuracy of identification of woven

bag with unstable natural light, we analyze the error between

the center point coordinates detected by the system and man-

ually extracted. As shown in Fig. 20, we manually extract the

center position of woven bag from the original 50 images with

different illumination.
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FIGURE 20. The center position of each woven bag by manually
extraction.

In the actual robot de-palletizing working environment,

the error is allowed in about 30mm. For robotic de-palletizing

tasks, before grabbing the woven bag, the image processing

system is always moved in a horizontal guide, as shown

in Fig. 1, which guarantees that the camera is always posi-

tioned at the same height, with the optical axis of the camera

perpendicular to the ground. On the other hand, the height

of woven bags is not always kept the same because stack-

ing layers vary with time. However, the stacking layers are

typicalless than 7 to avoid collapsing risks and othr poten-

tial dangers due to the collapsibility under great pressure of

woven bags. When the stacking layers is only one, we mea-

sured the Euclidean diagonal distance of single woven bag

in both image and real world. The results are 780.45 pixels

and 778.53 mm, respectively, so the ratio between them is

0.9975 mm/pixel, approximately 1 mm/pixel. So 30mm in

real world corresponds to around 30 pixels in the image.

When the stacking layers increased, the height of upper layer

is bigger, indicating the decreased ratio. When the stacking

layers is up to five, this ratio is attenuated to approximately

0.8 mm/pixel. Under this circumstance, 30 mm in real world

corresponds to around 37.5 pixels in the image. Hence the

minimal error in pixels is set as low as 30 pixels in this paper

to guarantee success for all circumstances.

Fig. 21a,b,c are the relationships between the allowable

error pixels and the recognition success rate of 50 woven

bag images in the Euclidean distance and distance along the

horizontal and vertical direction. From Fig. 21a, when the

allowable error is less than 5 pixels in the Euclidean distance,

the success rate is relatively low. As allowable error pixel

increases, the success rate is continuously improved; when

allowable error is greater than 13 pixels, the success rate can

reachmore than 90%;when allowable error reaches 19 pixels,

the success rate achieves 100%. From Fig. 21b,c, the recog-

nition success ratio reached 100% with allowable error along

horizontal and vertical axis being 12 and 17 pixels. One pos-

sible explanation for the difference is, for six-flower vertical

stack, the longer side of woven bags happens to be parallel to

the vertical axis. The extracted center coordinate and orienta-

tion of the woven bag is obtained by straight line extraction

using PPHT, and further fitting a rectangle. As is known to

us, the woven bags are readily deformable, supposing the

FIGURE 21. The relationship between the allowable error pixel values
and the recognition accuracy. (a) Recognition success rate versus
Euclidean distance. (b) Recognition success rate versus distance along the
horizontal direction. (c) Recognition success rate versus distance along
the vertical direction.

coordinate of each corner changed approximately the same

along vertical and horizontal axis because of deformation,

because the vertical sides of woven bags are longer, the hor-

izontal coordinate of the extracted center point tends to be

more accurate. Under such a circumstance, the allowable

error along the horizontal axis is smaller compared to the one

along the vertical axis when the success rate reached 100%.
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FIGURE 22. The relationship between the allowable error pixel values
and the recognition accuracy. (a) Recognition success rate versus
Euclidean distance. (b) Recognition success rate versus distance along the
horizontal direction. (c) Recognition success rate versus distance along
the vertical direction.

Then we test the images of six-flower horizontal stack

in the same way. The relationships between the allowable

error pixels and the recognition success rate of 50 images in

the Euclidean distance and distance along the horizontal and

vertical direction are respectively shown in Fig. 22a,b,c.

From Fig. 22a, when the allowable error is less than 5 pix-

els in the Euclidean distance, the success rate is relatively

low. As allowable error pixel increases, the success rate is

continuously improved; when allowable error is greater than

13 pixels, the success rate can reach more than 90%; when

allowable error reaches 16 pixels, the success rate achieves

100%. From Fig. 22b,c, the recognition success ratio reached

100% with allowable error along horizontal and vertical axis

being 13 and 11 pixels. Different from six-flower vertical

stack, the longer side of woven bags happens to be parallel

to the horizontal axis for six-flower horizontal stack. Under

such a circumstance, the allowable error along the vertical

axis is smaller compared to the one along the horizontal axis

when the success rate reached 100%.

The results of the above experiments on different palletiz-

ing types all satisfy the requirement, proving the feasibility of

the algorithm. And through error analysis, the identification

error of the woven bag is small and the accuracy is high,

proving the accuracy of the system to identify and locate the

woven bag. The workpiece localization algorithm runs on a

PC with an Intel(R) Core(TM) i5-8265U CPU (1.60 GHz)

and 8 GB RAM. The time consuming for each layer’s vision

processing is 500ms on the average.

C. THE ROBUSTNESS OF THE SYSTEM TO THE

CHANGE OF ILLUMINATION

Considering the obstacle of variable ambient light on which

we mainly focus, we test the robustness on illumination vari-

ation of the system. The original picture data of the six-flower

vertical stack type are expanded, to calculate the Root Mean

Square Error (RMSE) of each woven bag under different

illumination intervals. We collect 50 images of six-flower

horizontal stack with the same position, under different

illumination. According to their brightness values, images

are divided into seven illumination intervals (55-65, 65-75,

75-85, 85-95, 95-105, 105-115, 115-125). For the experi-

ment, select 5 images from each interval as sample pictures,

and then calculate the RMSE of eachwoven bag’s coordinates

in each interval. The results and analyses are as follows:

Fig. 23a,c RMSE-illumination-intervals graph represent-

ing histograms of RMSE of center positions’ x and y

coordinates respectively, in which, six different color of bars

represent positions of each woven bag in six-flower verti-

cal stack. The smaller the value of RMSE, the smaller the

volatility of this set of coordinates under different light. From

Fig. 23a,c, the most RMSEs of x coordinates are below 4 pix-

els, and y coordinates are below 6 pixels. The small RMSE

value means the system can accurately identify and locate

the woven bag in all illumination intervals, which also proves

the robustness of the system to the change of illumination.

And 105-115 is the optimal illumination interval with the best

results, comparing with the overall RMSE of the other six

illumination intervals.

As shown in Fig. 23b,d, RMSE-positions graph reflects

the RMSE of six woven bags’ positions in each image. The

smaller the value of RMSE, the smaller the volatility of this

set of coordinates in different positions. Comparing the over-

all RMSE of the six locations, we observed that the RMSEs

of 2 and 5 are obviously smaller than other positions, because
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FIGURE 23. the Root Mean Square Error (RMSE) of each woven bag’s
coordinates in each interval. (a) RMSE-illumination-intervals graph
representing histograms of RMSE of center positions’ x coordinates.
(b)RMSE-positions graph reflects the RMSE of center positions’
x coordinates of six woven bags’ positions in each image.
(c) RMSE-illumination-intervals graph representing histograms of RMSE
of center positions’ y coordinates. (d)RMSE-positions graph reflects the
RMSE of center positions’ y coordinates of six woven bags’ positions in
each image.

the corresponding positions of 2 and 5 are both in the middle,

with relatively small edge deformation.

On the whole, the main reasons generating failed recogni-

tion are presumably as follows. First, the intensity variation

of image caused by the varied ambient light. Our algorithm

is based on the acquired image, which is readily affected by

the unstable ambient light. Even if the influence of ambient

light is considered in our method, its influence can hardly be

utterly reduced. Second, foreground extraction error. At the

proposed method, the first step is to extract the whole stack

from the image. However, the extraction will be affected

by the background, when the background is similar to the

stack. Third, the characteristics of woven bags themselves.

As repeatedly mentioned in this paper, the woven bags are

prone to deform, which makes it difficult to ascertain its

center and orientation. Moreover, the edge of different woven

bags is similar to each other, which may cause recognition

errors.

VI. CONCLUSION

In this paper, we propose a two-step technique to accomplish

the de-palletizing task under the environment of unstable

natural light. Firstly, the whole stack is segmented from

background interference. Secondly, based on the whole stack

extracted, the optimized PPHT algorithm is used to identify

and locate a single woven bag. Among them, aiming at

the problems of illumination instability, low image contrast

and difficult segmentation in the actual de-palletizing job,

an effective Region Growing image segmentation method

based on the dynamic threshold is proposed. This method

establishes the relationship model between illumination and

optimal segmentation threshold, and enhances the robust-

ness of image segmentation to illumination change. Then,

three optimal parameters of PPHT function are ascertained

for different light intensity intervals, and a single woven

bag is located by PPHT with optimal parameters. On this

basis, the position and orientation information of each work-

piece can be obtained from the minimal circumscribed

rectangle, which can further guide the robot to complete

the de-palletizing action. Experiments show the proposed

technique is valid under stable natural light environment.

As application-oriented engineers, we will further focus on

challenges in workpiece localization, which include identi-

fication of heterogeneous surfaces, over-exposure induced

by objects with high reflectivity, algorithm acceleration and

optimization under limited computing power among others.
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