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Abstract 
 A worst-case evaluation method is presented in this paper.  The objective of this 
method is to identify worst-case maneuvers so that the performance of dynamic systems 
under extreme conditions can be evaluated.  Depending on the dynamics and information 
structure of the system, the worst-case evaluation problems can be classified into four 
sub-cases.  Classical optimal control and game theories are used to construct algorithms 
to obtain linear solutions analytically.  When the plant and/or the control algorithm is 
nonlinear, the true worst-case solution can be obtained from numerical methods.  Two 
case-study examples are presented.  A linear example presents the time domain and 
frequency domain results comparing the four linear algorithms.  The generation of the 
worst-case steering and braking maneuver to rollover an articulated vehicle is then 
presented as a "real" application example.  Interested reader can download the PC-based 
software and generate the simulation results by visiting the website 
http://arc.engin.umich.edu/sw_distri/arcsim.html. 
 
1. Introduction 
 Automatic control theories have made tremendous progress in the past three 
decades.  Control analysis and synthesis methodologies have been extended from linear, 
single-input-single-output (SISO), nominal stability consideration to nonlinear, multi-
input-multi-output (MIMO) and robust performance.  Control systems are now an 
integral part of many complex engineering systems, and have greatly improved their 
efficiency, safety and convenience.  While tools exist for the design, analysis and 
simulation of these control systems, many mission-critical control systems have been 
evaluated/fine-tuned in a brute-force manner.  This brute-force evaluation process is very 
time-consuming because one must ensure that these control systems work satisfactorily 
under all possible scenarios.  This process usually involves extensive experiments and/or 
simulations, and may take up to dozens of work-years to accomplish.  Further, there is no 
guarantee that the worst-case scenario has been identified.  These two weaknesses 
demonstrate the need for a more systematic evaluation methodology.  Such methodology 
should identify the weak link of the plant/control systems, and generate worst-case 
scenarios intelligently.   
 
 In this paper, we propose a worst-case evaluation criterion and present associated 
design methodologies.  It should be emphasized that we are not proposing a control 
design method and claim that the controller should be optimized under the worst-case 
scenarios.  Rather, the methodology proposed is a evaluation process to make sure that 
the performance of the dynamic system is satisfactory under worst-case scenarios.  One 
example that clearly shows the importance of performance under worst-case scenarios is 
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the 1992 Isuzu trooper episode.  The Consumer Report rated the safety of Isuzu-Trooper 
"unacceptable" since it rolls over under a test maneuver.  Isuzu countered that the 
maneuver is too extreme and rarely occurs in real world.  Nevertheless, its sales 
plummeted more than 53% in one year.   
 
 There are two major theoretical contributions by this paper: (1) a systematic 
worst-case evaluation procedure is presented; and (2) a two-player game theory with 
preview information structure is solved.  Two-player game theory has been widely used 
to study the dynamic interactions of two opposing intelligent bodies, especially in the 
areas such as economics, politics, and war games for several decades.  In the modern 
control field, game theory has been used for the robust control design since the 1960's 
(e.g., Dorato and Drenick, 1964, Witsenhausen 1968, Yaesh and Shaked 1989).  The 
design objective is to find the control algorithm that minimizes a given performance 
index under worst-case disturbances.  When the performance index is of linear-quadratic 
type, the result was found to be equivalent to an ∞H  control problem (Basar and 
Bernhard, 1995).  In this paper, we apply the two-player game theory to the evaluation of 
vehicle control systems, in which case the vehicle control systems and the worst-case 
scenario generator are described as two intelligent bodies with opposing goals. 
 
 Preview information, which is often utilized in control designs, has not been fully 
explored in the development of two-player game theories.  When preview information is 
available to one of the players, we have either the control advantaged case or the 
disturbance advantaged case.  In the control advantaged case, the control law has access 
to the disturbance signal within a finite preview window (e.g. forward-looking vision 
systems can preview future road curvature).  The control algorithm depends partially on 
the feedforward information, rather than relies on large feedback gains.  When the control 
signal is previewable (e.g. due to actuator delays), we have the disturbance advantaged 
case.  It is necessary to solve the preview game theories since actuator delays frequently 
exist in control systems. 
 
 For most dynamic systems, worst-case scenarios usually occur in the regions 
where nonlinearities cannot be neglected.  Therefore, it will be necessary to extend the 
worst-case methodology to cover nonlinear systems.  Existing nonlinear ∞H  algorithms 
(e.g. Isidori and Astofi 1992, Lu and Doyle 1993, Van der Schaft 1992) are useful tools 
for generating worst-case disturbances for nonlinear systems.  Numerical solutions, on 
the other hand, are much more important in practice.  A major advantage of numerical 
solutions is that they can be applied to a wide varieties of nonlinear systems.  
Nonlinearities such as look-up tables, if-then rules, hysteresis and so forth are difficult to 
be described/solved through analytical techniques.  These nonlinearities, however, are 
commonly included in modern simulation models.  A finite horizon optimal solution, 
with proper initial guess for optimal disturbances (based on analytical solutions, 
engineering intuitions, etc.) could be used to solve worst-case disturbances for general 
nonlinear systems numerically.   
 
 The remainder of this paper is organized as follows: Section 2 contains the 
problem statement.  In section 3, solutions of the four worst-case categories are 
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presented.  The numerical algorithms to compute nonlinear worst-case disturbances will 
be presented in section 4.  Simulation results for two example systems are presented in 
section 5.  Finally, conclusions are made in section 6. 
 
2. Problem Statement 
 The purpose of the worst-case evaluation methodology is to generate worst-case 
disturbances for dynamic systems which might include control sub-systems.  In other 
words, the methodology should cover both 1-player (worst-case disturbance only) and 2-
player (disturbance and control) cases.  In general, the nonlinear plant may have the form 
 
  ),,,( twuxfx =         (1) 
 
where x  is the state vector, )(tu  is the control vector and )(tw  is the disturbance vector.  
Instead of dealing with the worst-case disturbance generation problem for general 
nonlinear dynamic systems shown in Eq.(1), we selected an easier route.  First, the 
problems are divided into four cases according to the plant dynamics and information 
structure.  The linear time-invariant solutions of the four cases are then obtained.  All the 
plant nonlinearities and/or time-varyingness are then taken care of numerically.  
Analytical solutions from the linear algorithms serve as "good initial guesses" which 
improve the chances of obtaining the global optimal solution numerically.  The linearized 
time-invariant model of Eq.(1) is assumed to have the following state space 
representation: 
 
 )()()()( twDtuBtxAtx ++=       (2) 
 
These control ( )(tu ) and disturbance ( )(tw ) players have contradicting goals, in the sense 
that )(tu  tries to minimize, while )(tw  tries to maximize the cost function 
 

  ∫ −+= ft
t
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In the 1-player case, the control player is absent from the game, and the optimization 
problem is to find )(tw  which maximizes the following cost function 
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The cost function might be modified when preview information exists, but is always 
assumed to have the quadratic form shown in Eqs.(3) and (4).  Q, R, and P are weighting 
matrices that are positive semi-definite (Q) and positive definite (R and P), respectively.  
This requirement is meant to make the cost function strictly convex-concave, so that the 
optimal solution is unique.  In this paper, the derivation will be performed based on finite 
horizon cases.  The algebraic solutions will be implemented to generate the initial guess 
in the simulations.  This is, however, strictly due to their easier implementation, and 
should not be viewed as an implication that we are solving infinite-horizon problems. 
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3. Four cases of the worst-case problems 
 Depending on the problem architecture and the information available to the 
control and/or disturbance player, the worst-case disturbance generation problems can be 
classified into the following four cases: 
 
 - One player without preview information (1P) 
 - One player with preview information (1PP) 
 - Two players without preview information (2P) 
 - Two players with preview information (2PP) 
 
It should be pointed out that in the one-player cases, control signals may still present.  
However, they are not "in the game".  In other words, when the control algorithm is not 
designed to optimize the cost function, one-player cases apply.  The linear solutions of 
these four cases are summarized in the following. 
 
  3.1  One-Player without Preview (1P) 
 When we are evaluating a dynamic system either without control sub-systems, or 
with control sub-systems whose control laws (e.g. PID, LQ) are exactly known to the 
disturbance algorithm, it is appropriate to formulate a 1-player optimization problem.  In 
the case control sub-systems do not exist, the optimization problem becomes: 
 
 Given 
   )()()( twDtxAtx +=        (5) 
 
 Find the disturbance signal which maximizes the cost function 
   ∫ −= ft

t
TT dttwPtwtxQtxJ

0
)]()()()([

2
1     (6) 

 
This problem is quite standard, and the optimal solution is known to be (Bryson and Ho 
1975) 
   )()()( 1 txtKDPtw T−−=*       (7) 
 
where K is solved from the Riccati-like equation 
 
   QtKDDPtKAtKtKAtK TT ++−−= − )()()()()( 1    (8) 
 
 The 1P problem formulation can also be applied to the evaluation of a dynamic 
system with control sub-systems.  In this case, the disturbance signal is computed based 
on the augmented plant dynamics, and the augmented state matrix cA  should be used 
instead of the openloop state matrix A  in Eqs.(5) and (8). 
 
  3.2 One-Player with Preview (1PP) 
 When the control law is unknown, but the control signal within a finite preview 
window is available to the disturbance player (e.g. due to actuator delay), we have a 
preview disturbance problem which is exactly dual to the classical LQ preview control 
problem (Tomizuka and Whitney 1975, Tomizuka 1975, Tomizuka 1976).  For the sake 
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of conciseness, we will only list the crucial equations below.  The key trick of solving the 
preview problem is to assume that the optimal cost function can be described by : 
 

 )()()(
2
1)(* txtKtxtJ T= ∫ ∫ +++ la lat t

u
T dldlltulltKltu

0 210 2211 )(),,()(
2
1  

  )()()(
2
1

ladla
T ttutKttu +++ dlltultFtx latT )(),()(

0 1 ++ ∫ )()()( 2 la
T ttutFtx ++  (9) 

 
where lat  is the preview time, i.e., at time t , the control signal )(τu , ],[ lattt +∈τ  is known 
to the disturbance player.  K , uK , dK , 1F  and 2F  are weighting matrices.  This 
"generalized quadratic function" is assumed to be a good approximation of the true 
convex cost function in the neighborhood of the global optimal solution.  Since we only 
know the control signal within the preview window, and intuitively the cost function 
depends on the control signal over the whole time horizon, certain assumption about 
future control signal is needed.  A general dynamic form was commonly assumed 
(Tomizuka 1976): 
 
    )()( ττ uAu u=          uA ≤  0          latt +≥τ    (10) 
 
Frequently, uA  is assumed to be zero, which means that the control signal is assumed to 
stay constant outside of the preview window.  Under Eqs.(9) and (10), the optimal 
disturbance law can be obtained through standard Dynamic Programming techniques 
(Bryson and Ho 1975): 
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where the feedback and feedforward gains of this disturbance law are obtained from the 
following equations 
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Detailed derivation of this optimization problem (albeit in a dual form) can be found 
from the literature (Tomizuka 1976, Peng and Tomizuka 1993) and thus are omitted here.  
It should be noted that Eq.(12) is exactly the same as Eq.(8).  Also, Eq.(11) reduces to 
Eq.(7) when the preview time is zero. 
 
  3.3 Two-Player without Preview (2P) 
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 In many applications, the control law may be either unknown or time-varying.  
Therefore, the one-player formulation described in sections 3.1-3.2 may not be 
applicable.  The two-player game setting (Basar and Bernhard 1995) which prepares the 
disturbance player for its worst possible foe, seems a good alternative.  The powerfulness 
of the two players can be specified by adjusting the weighting matrices (P, Q and R) of 
the cost function shown in Eq.(3).  The finite-time solution of this two-player game is 
well documented in the literature (Basar and Bernhard 1995) and the main results are 
summarized below.  The optimal laws for the control and disturbance signals are 
 
  )()()( 1 txtKDPtw T−=*       (15) 
  )()()( 1 txtKBRtu T−−=*       (16) 
 
respectively, where the gain matrix K is solved from the following equation 
 

 AtKtKAtK T )()()( −−= QtKDDPBBRtK TT −−+ −− )()( 11 )(   (17) 
 0)( =ftK  
 
  3.4 Two-Player with Preview (2PP) 
 At first glance, preview and two-player assumptions seem to be contradictory to 
each other.  When we have preview information, why couldn't we simply use the 1PP 
algorithm?  When the preview time t la  is long enough, 1PP algorithm could be used.  If 
the preview time is short, preview signal may not reveal the whole picture of the control 
player.  Optimal disturbance law based on the 2PP algorithm takes the feedback 
algorithm of its opponent into consideration, and is more proper.  Since the preview two 
player game theory is a new theoretical result, we will present both control-advantaged 
case and disturbance-advantaged case in the following.   
 
 When the disturbance signal is previewable to the control law, we have the 
control-advantaged case, the cost function to be optimized is modified to the following 
form 
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With proper modification of the "generalized quadratic cost function", the optimal cost 
function for this case is assumed to be 
 )()()(
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Define the Hamiltonian 
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The optimal algorithms can then be obtained based on the relationship 0
)( )(*

=
tutu
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∂
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0
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∂
∂ .  After tedious, but standard derivation based on the Dynamic 

Programming technique (Bryson and Ho 1975), the optimal disturbance and control laws 
were found to be  
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 It should be noted that Eqs.(23) reduces to Eq.(17) when the preview time is zero.  
This can be shown simply by plugging in Eq.(24) to Eq.(23). 
 
 When the control signal is previewable to the disturbance law, we have the 
disturbance-advantaged case.  The cost function to be optimized is then: 
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For this case, the optimal cost function is assumed to have the form 
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Follow a similar derivation process like the control advantaged case, the optimal laws 
were found to be 
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where 
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Again, it should be pointed out that Eq.(30) reduces to Eq.(17) when the preview time 
becomes zero. 
 
4. Nonlinear algorithms 
 In many cases, nonlinear equations are necessary to describe the behavior of the 
dynamic systems accurately, based on which the worst-case maneuver can be computed.  
This is important since worst-case maneuvers usually occur in nonlinear regions.  The 
nonlinear dynamic equations for the 1-player cases are assumed to be presented in the 
state-space form 
 
   ),,( twxfx =   oxx =)0(     (33) 
 
where the initial time is assumed to be zero, and x o  is the initial condition of the state 
vector.  The goal of the disturbance player is to maximize the performance index shown 
in Eq.(4).  This is again a standard optimization problem, and the solution is known to be 
(Bryson and Ho 1975): 
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where the dynamics of the costate vector λ  is governed by 
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For most nonlinear problems, analytical solution of this optimization problem is difficult 
to obtain.  A two-point-boundary-value-problem (TPBVP) thus needs to be solved.  
Many modern simulation programs frequently include complex interaction among sub-
models.  In other words, the nonlinear function ),,( twxf  may not be presented in concise 

equation forms.  The partial derivatives needed to for the TPBVP (
)(
)(
tw
tf

∂
∂  and 

)(
)(
tx
tf

∂
∂ ) thus 

need to be obtained numerically.  The numerical procedure to solve the TPBVP is 
summarized in the following: 
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• Step 1, start with initial guess of the optimal disturbance (e.g. from 1P or 1PP 
linear solutions).  Solve Eq.(33) forward in time to obtain the states within the 
time horizon ],0[ ft  . 

• Step 2, compute 
)(
)(
tw
tf

∂
∂  and 

)(
)(
tx
tf

∂
∂  from the approximation 
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 by perturbing the vehicle dynamics artificially.  The perturbation should be small  
 enough so that Eqs.(36) and (37) remain good approximations, but large enough 

so that the search direction takes system nonlinearities into consideration. 
• Step 3, Solve Eq.(35) backwards in time to obtain λ ( t )  from time t f  to time 0.  
• Step 4, calculate the new disturbance )(tw   from Eq.(34). 
• Step 5, Check the convergence of )(tw .  Go back to Step 2 if necessary. 

 
 For two-player cases, the optimal disturbance algorithm is still generated by 
Eqs.(34) and (35), except that the nonlinear dynamics is now affected by both control and 
disturbance inputs (i.e., ),,,( twuxfx = ).  The associated optimal algorithm for the control 

player is 
)(
)()()( 1
tu
tftRtu

∂
∂λ−= .  The partial derivative 

)(
)(
tu
tf

∂
∂  can be obtained numerically in 

the same manner as described in Eqs.(36). 
 
5. Simulation Results 
 Two example worst-case evaluation problems are presented in this section.  In 
sub-section 5.1, results of a linear automatic steering problem is given.  Results of this 
example highlight the difference among the four linear analytical solutions.  A nonlinear, 
example is given in sub-section 5.2.  This nonlinear example involves the generation of 
worst-case disturbance signals to rollover an articulated truck. 
 
  5.1  Automatic steering example 
 The target control system to be evaluated in this section is an automatic steering 
control system (Peng and Tomizuka 1990).  The following fourth order model 
(commonly known as the bicycle model in the literature) is assumed to describe the 
vehicle lateral dynamics: 
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where yr is the lateral deviation of the mass center of the vehicle from the reference (e.g. 
lane center), ψ is the yaw angle of the vehicle, ψd is the desired yaw angle defined by the 
road.  u  (the control) is the vehicle front wheel steering angle, and w  (the disturbance) is 
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the road curvature.  The elements of the state and input matrices are functions of vehicle 
parameters, and are known to be 
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where fCα  and rCα  are the cornering stiffness of the front and rear tires, respectively.  a  
and b  are the distance between vehicle c.g. to the front and rear axles, respectively.  m  is 
the vehicle mass, and zI  is the vehicle yaw moment of inertia.  The objective of the 
disturbance player (which controls w ) is to maximize the output signal  
 

  [ ]xddyy sdsr 001)( =−+= ψψ     (40) 
 
which corresponds to the lateral deviation of a point at a distance, ds, ahead of the vehicle 
mass center.  The nominal values of the vehicle parameters are listed in Table 1. 
 

Table 1  Nominal values of the vehicle parameters 
 

Parameter m (kg) Iz (kg-m2) αC  (N/rad) V(m/sec) a,b  (m) ds (m) 
Nominal Value 1573 2782 46000 (f) 

38850(r) 
32 1.034, 1.491 1.9 

 
 The simulation scenario is as following: the vehicle starts from a non-zero initial 
tracking error (y=0.5m, ψ − ψ d =0).  The control algorithm for the front wheel steering 
angle is LQ-based (i.e., xKtu c−=)( ).  The road curvature w(t) is computed from the four 
algorithms presented in section 3.  In addition, it is limited by a saturation function 
(minimum radius of curvature = 200meter).  In the state penalty matrix Q, only y is 
penalized. 
 
 Figure 1 shows the tracking error and disturbance signals of the 1P algorithms 
(based on both openloop state matrix A  and closed-loop state matrix cc BKAA −= ).  The 
openloop (i.e. w=0) case is also presented for comparison.  It can be seen that when the 
disturbance law is based on openloop state matrix A , it is too weak compared with the 
control player, and simply gives up (not a good worst-case algorithm).  When the 
disturbance is designed based on cA , it does something quite intuitive: maximum 
curvature will be used; and fast switching between the two extreme values "at the right 
time".   
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Figure 1  Simulation results of the 1P cases 
 
 Figure 2 shows the simulation results of the 1PP  algorithm (disturbance 
advantaged case based on openloop A).  The openloop (i.e. w=0) as well as 1P (based on 
openloop A) cases are also presented for comparison.  The disturbance law still does 
what intuition suggests.  The disturbance signal switches even faster than the 1P-Ac case.  
This is an indication that the preview signal significantly improves the performance of 
the disturbance player.  For this set of simulations, we have assumed that a time delay of 
50 msec exists between the steering angle command and the tire lateral force generation.  
Even with this short delay, the disturbance law did a better job than the 1P-Ac case 
(when the control law is exactly known to the disturbance player).  It is important, 
however, to note action of the control player is delayed in the 1PP case.  In other words, 
the plant dynamics of the 1P and 1PP cases are different.   
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Figure 2  Simulation results of the 1PP case 

 
 Figure 3 shows the simulation results of the 2P algorithm.  Two cases are 
presented.  In the first case, both control and disturbance signals were generated from the 
2P algorithm.  In the second case, we substitute the 2P control algorithm by the LQ 
algorithm.  It can be seen again that the disturbance signal switches between the two 
extreme values in the later case.  The 2P control law stabilizes the vehicle quickly, while 
the LQ control law only achieves marginal stability.  The point is that 2P algorithm can 
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generate a disturbance player that is strong enough to defeat an ordinary control player 
(which, in this case, is based on LQ rather than 2P algorithm).   
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Figure 3  Simulation results of the 2P case 

 
 Figure 4 shows the 2PP case.  The control law based on the 2PP algorithm is not 
very useful because the control law is so weak compared to the 2PP disturbance law that 
it simply gives up.  The LQ control algorithm is used instead as the opponent for the 
disturbance laws.  It can be seen that when preview information is available, the 2PP 
disturbance law performs even better than the 2P disturbance law.  The preview time is 
again selected to be 50 msec.  Even at such a short preview time, tracking error increases 
noticeably.   
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Figure 4  Simulation results of the 2PP case 

 

 Figures 5 and 6 show frequency-domain comparison of the four algorithms.  We 
plug-in the disturbance laws into the dynamic equations, and obtain the closed-loop 
transfer functions from the control signal to output signals.  Two output signals were 
selected, the lateral tracking error and the vehicle lateral acceleration.  It can be seen that, 
compare to the openloop response (w=0), all the four proposed disturbance laws reduce 
the effectiveness of the control signal (reduced gain from u to the tracking error ys).  
More oscillation is generated and therefore the frequency response of the lateral 
acceleration transfer functions have higher magnitudes.  The best performance is 
obviously achieved by the 2PP disturbance law.   
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Figure 5  Frequency response of the 1P and 1PP cases 
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Figure 6  Frequency response of the 2P and 2PP cases 

 
  5.2  Articulated truck rollover example 
 The second application example deals with the rollover of an articulated vehicle.  
The plant is highly nonlinear, and include 79 state variables.  All the simulations are 
obtained from ArcSim, a public-domain truck simulation software owned by the 
University of Michigan.  This software simulates the Army M916A1/M870A2 vehicle, 
with detailed (and verified) nonlinear suspension, tire and steering models.  Interested 
readers can download the ArcSim software and examine the rollover results from the 
University of Michigan web site http://arc.engin.umich.edu/sw_distri/arcsim.html. 
 
 The rollover problem is formulated as a 1P problem in this study.  The steering 
wheel angle and the brake pressure are assumed to be controlled by the disturbance 
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player, whose objective is to create rollover.  Before showing the simulation results, we 
would like to emphasize the fact that if the excitation inputs (e.g. steering) are large 
enough, the truck will rollover, even under inputs of very simple forms.  For example, it 
was found that at 60mi/hr, this truck rolls over under a step steering input of 150 degree, 
which translates to about 2.5 degree of steering at the front tires.   In other words, when 
the disturbance input level is not limited, there are infinitely many maneuvers that are 
"bad".  When the disturbance signal is limited to, say, 100 degrees.  It is no longer a 
trivial task to come up with a steering/braking maneuver that rolls over the truck.   
 
 All the following simulation runs will assume an initial speed of 60mi/hr, unless 
otherwise stated.  Due to the fact that the nonlinear vehicle model contains several 
hundred parameters, it is impossible to list all the parameter values.  They can be found, 
however, from the downloadable ArcSim software.  Figure 7 shows the vehicle response 
under two kinds of input excitations: a 130-degree step and a 130-degree sinusoidal 
steering.  The frequency of the sinusoidal steering is selected to coincide with the natural 
frequency of the vehicle roll mode.  The response of vehicle under the sinusoidal 
excitation is interesting, since the slalom test, frequently used to illustrate the rollover 
characteristic of passenger vehicles, are sinusoidal in nature.  It is clear that the vehicle 
does not rollover under either maneuver.  The maximum roll angle is only 7 degrees.  
The worst-case steering, identified by the nonlinear learning algorithm, however, easily 
rolls over the truck (see Figure 8).   
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Figure 7  Vehicle response under 130 degree step and sinusoidal steering inputs, no brake 
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Figure 8  Vehicle response under 130 degree worst-case steering input, no brake 
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 When there are more than one input signals, no general engineering guideline 
guarantees inputs that work coherently with each other.  Educated guesses even from 
experts are usually done in an ad hoc manner.  One such coordination scheme has been 
proposed by UMTRI (The University of Michigan Transportation Research Institute) for 
the rollover of passenger vehicles (Dugoff et al. 1970).  They proposed to steer the 
vehicle consistently to one side (a half-sinusoid), apply maximum brake when the vehicle 
roll rate becomes zero, and then switch the brake off when the roll rate crosses zero 
again.  They applied this so-called "drastic maneuver" and successfully rolls over a 
passenger car (a Chevy Covair).  In this paper, we borrow their idea and apply this 
"drastic maneuver" to this articulated truck.   
 
 When we limit the steering to 10 degrees, and brake to 120 psi, vehicle response 
of the corresponding "drastic maneuver" is shown in Figure 9.  While the drastic 
maneuver is quite clever, most of the tricks are on manipulating the brake.  The steering 
is pre-determined, and its potential has not been fully explored.  The roll angle only 
reaches 3.8 degrees. 
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Figure 9  Vehicle response under the drastic maneuver 

 
 Under the same steering and brake limits, the vehicle response under the worst-
case maneuver is shown in Figure 10.  The input signals look very simple (switching 
functions) but the timing of the switching is non-trivial.  The basic response of the 
vehicle is very similar to the UMTRI Drastic maneuver.  However, the potential of both 
steering and brake are fully explored.  The steering angle switches to help generating 
large roll angle.  At about 4 seconds, the truck rolls over.  The results can be best seen by 
examining Figure 10, as well as watching the animation results by actually running the 
ArcSim software.  Figure 10 also include a shot from the ArcSim animator, which shows 
the truck rolling over by the worst-case maneuver. 
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Figure 10  Vehicle response under the worst-case steering and braking maneuver 

 
6. Conclusions 
 This paper presents an innovative worst-case evaluation methodology, which 
systematically generates worst-case disturbances for the evaluation of dynamic systems 
under extreme maneuvers.  Four linear disturbance laws were presented: 1-player without 
preview (1P), 1-player with preview (1PP), 2-player without preview (2P), and 2-player 
with preview (2PP).  These linear algorithms are exact dual, or simple extension of 
existing classical control and two-player game theories.  When the dynamic system to be 
evaluated is nonlinear, these linear analytical results serve as initial guess for a nonlinear 
optimization algorithm.  The final worst-case disturbance is then obtained numerically.  
An automatic vehicle steering control system was used to verify the effectiveness of the 
proposed algorithms.  It was shown that when control player does not exist, or it exists 
and its behavior is well-known to the disturbance player, the disturbance signal generally 
switches between extreme values.  The proposed methodology is applied to a complex 
behavior of the rollover of articulated trucks.  It is shown that the most dangerous 
steering and braking excitation to rollover the truck is easily identified.   
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