
A WoT Approach to eHealth: Case Study of a Hospital
Laboratory Alert Escalation System

Andreas Ruppen
Software Engineering Group

University of Fribourg
1700 Switzerland

andreas.ruppen@unifr.ch

Jacques Pasquier
Software Engineering Group

University of Fribourg
1700 Switzerland

jacques.pasquier@unifr.ch

Jean-Frédéric Wagen
University of Applied Science

Fribourg
1700 Switzerland

jean-
frederic.wagen@hefr.ch

Beat Wolf
University of Applied Science

Fribourg
1700 Switzerland

beat.wolf@hefr.ch

Raphael Guye
University of Applied Science

Fribourg
1700 Switzerland

raphael.guye@gmail.com

ABSTRACT
With the generalization of network-enabled devices such as
smart phones, slate computers and tablets, new challenges
await the eHealth research community. Indeed, these devices
should not only integrate seamlessly into the daily work-
flow, but their usage must appear as ordinary as possible to
the different caregivers. Using RESTful architectures, it is
possible to model custom objects in the health domain as
resources, interact with them and combine them to mashup
applications, enhancing and facilitating in a natural way the
work of caregivers.

We claim that embedding eHealth workflows into the Web
of Things is not only possible, but even enhances the whole
process. An alert is no more an isolated event, but becomes
connected to other resources providing additional informa-
tion about its general context. In this paper, we illustrate
some of the challenges of bringing REST to the eHealth do-
main by studying an existing hospital laboratory alerts sys-
tem and by proposing to generalize it in order to encompass
the whole escalating process and exchanges of information
among caregivers, patients and their medical records.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures—Service-oriented
architecture (SOA); C.2.4 [Computer Systems Organi-
zation]: COMPUTER-COMMUNICATION NETWORKS—
Distributed applications; J.3 [Computer Applications]:
LIFE AND MEDICAL SCIENCES—Health

General Terms
Design, eHealth

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT 2012, June 2012; Newcastle, UK
Copyright 2012 ACM 978-1-4503-0624-9/11/06 ...$10.00.

Keywords
Web of Things, REST, ROA, eHealth, Smart Alert System

1. INTRODUCTION
Nowadays, the widespread acceptance of smart phones

and other network-enabled devices such as slate computers
and ”post-PC” tablets has reached a level where developers
can seriously start thinking about how to integrate them into
our daily lives in order to make our surrounding professional
environments smarter. One of the main challenges of this
undertaking is to make the manipulation of these new tools
as ordinary as possible for the professionals using them. Us-
ing RESTful architectures, it is possible to model custom
objects as resources, interact with them and combine them
to mashup applications, enhancing and facilitating in a nat-
ural way the work of professionals. Thus, we strongly believe
that the key architecture for a seamless integration of these
new resources is REST and RESTful services [10]. Several
research papers show that they have many advantages over
fully fledges WS-* web-services [9, 5, 3, 6, 8, 4].

eHealth existed before the upcoming of smart devices.
These tools, however have opened new possibilities and per-
spectives in this domain. eHealth is a well established re-
search and application domain. It is becoming the standard
for health-care. Already today one can see the emergence
of computers and other connected devices into health-care.
A prominent example is the acquisition of images by com-
puter tomography. Unlike X-ray radiographs, the images
obtained from a computer tomography only exist in the dig-
ital world. However, there are still many open challenges re-
garding eHealth, among them privacy and security and the
seamless integration of computer aided tasks in the daily
business. Other examples can be found in [2].

For a funded applied research project, we were confronted
with these two domains. We had to design and implement
a smart alert escalation system in hospital environments.
The system should seamlessly integrate into the daily work-
flow, giving caregivers the needed information at the right
time without disturbing them with non relevant informa-
tion. Conducting this research allowed us to draw two very
interesting conclusions: 1. With the right choices for the

architecture and for the escalation framework, it becomes
possible to generalize the presented case to many other situ-
ations. This paper will focus on an eHealth use-case, but we
will give a few hints about other situations and use-cases;
2. By considering the different participants in a hospital as
resources within a WoT and with the help of a RESTful ar-
chitecture, is it possible to greatly enhance the alert system
toward a global eHealth one.

In order to best illustrate our findings, this paper focuses
first on a concrete use-case for a hospital alerts escalation
system. In its second part, the paper describes an extended
use-case, where almost everything becomes a resource and
can be accessed in a RESTful manner. This illustrates the
advantages of RESTful architectures in the eHealth domain.

2. THE ORIGINAL ALERT SYSTEM
Several alerting systems have been proposed over the past

years [1, 7, 13]. They all have in common that they try to
solve the global problematic in a smart way. Indeed, creat-
ing an alert system involves the resolution of several chal-
lenges. Among them, it has to be ensured that alerts reach
their destinations or that the system can handle delivery
failures. Furthermore, the receiving devices might not all be
the same and use the same technology. The system must
handle this heterogeneity. Besides these technical aspects,
a good alert system also has to fulfill some psychological
guidelines. Sending too many unrelated alerts, for example,
would be counterproductive. People will get bored and stop
checking or acknowledging them. User studies have been
made [12] in order to determine success criteria for such sys-
tems. Furthermore, systems like [2] show the emergence of
eHealth application using embedded and connected devices.
Using such equipments to monitor patients and sending out
alerts in case of critical conditions is just one step further in
the development of eHealth.

2.1 Requirements
Today’s healthcare remains largely paper-based. Patient’s

medical files are on paper, medical analysis results are on
paper, some other documents exist only on paper and are
added manually to the patients file. This approach is cum-
bersome. The focus of this project is to provide a seam-
less user experience when working with information about
a patient especially when dealing with automated medical
laboratory results, such as a blood analysis. Today most
hospitals already have in use software systems to handle
such analysis and the associated results in electronic form.
A caregiver will for example take blood samples and fill out
a sheet to select which analyses have to be done. Upon
arriving at the laboratory, this sheet is scanned, processed
automatically and inserted into the system. By scanning the
sheet, a bar-code is generated which has to be sticked on each
blood sample. They will then wait for being analyzed. Im-
mediately after the laboratory has done the required tests,
the results are inserted into the system and added to the
electronic form created earlier. As soon as the results are
introduced into the system, a caregiver can check them. Be-
sides, the system does some automatic checking for abnor-
mal values. This process of checking for critical values can
be seen as a black box with some business logic doing well
what it was designed for. If critical values are found, the
accountable caregiver has to be informed promptly about
them. Today, this information is passed through phone calls.

A secretary is monitoring the database for new critical re-
sults and if one happens, he informs the accountable care-
giver of it. The caregiver takes then the responsibility to
handle this case in a suitable manner. Since this system is
for a hospital environment it is essential to have a record of
who did what, e.g to decide upon responsibilities. The above
process has many drawbacks. It requires manual interven-
tion and monitoring of the alerts database. Additionally,
the accountable caregiver may not be reachable at the time
of the alert. Thus, the secretary has to decide which is the
next caregiver to alert. Such an approach is not only cum-
bersome, but also time-consuming and error prone.

We collaborated with a medical software company spe-
cialized in the development of IT solutions in the eHealth
domain. Actually, it offers a complete solution for an auto-
mated medical laboratory system, which we will call AMLS.
Through this application, doctors and laboratories can stay
in touch. Besides holding the results of each analysis, The
AMLS system does some verification in order to search for
critical results in each analysis. However, it is up to a person
to check for new critical results and inform the accountable
caregiver. Based on the scenario presented above and the
installation already in place, we propose a solution seam-
lessly integrated into the Web of Things. The system con-
ducting the analysis and doing the verification of the results
should be integrated into the solution as much as possible.
The process of alerting a caregiver should feel natural and
should not overwhelm him with alerts he is not accountable
for. In this chapter, we will focus on how to enhance this
system with a smart escalating alert framework to overcome
these problems.

Handling alerts in a smart and autonomous manner im-
plies several technical decisions. At some point, an alert will
be sent to a device. However, some caregivers use smart-
phones with the Android or the iPhone operating system,
others prefer receiving a SMS and when abroad many would
prefer a phone call. Thus, an alert system has to handle
these different technologies without requiring human inter-
vention to deliver the alert. Additionally, a caregiver might
want to register more than one device, using either of them
depending on the task he is actually doing. He might for
example use a tablet pc during medical visits, but is more
likely to only have his smartphone in his office. Another
important point is the handling of failures. Since alerts are
about critical results, it has to be ensured that at least one
caregiver will take care of the alert and handle it accordingly.
Thus, an alert needs some sort of escalation system where
the alert is propagated to someone else if the first caregiver
either rejects it or does not answer it. Since the use-case is
in a hospital environment, security and privacy need to be
ensured. Security is related to the escalation of alerts. The
system needs to know at any time in which state an alert
is (open or accepted) and who is actually in charge of it.
To ensure the successful delivery of such an alert, the final
option in the escalation list will always be a phone call. As
for the privacy, very strict confidentiality policies apply for
most medical documents.

2.2 Design Considerations
The actual deployed business solution is composed of two

parts. The first one consists in a client application, which
proposes a complete interface to the AMLS database con-
taining all the analysis data. The second one is the smart

Figure 1: Alert escalation over two caregivers

alert software, which connects the caregivers’ devices to the
database; forwards an alert according to its escalation list;
and monitors its status. Immediately after a critical result is
detected, this new framework starts creating the appropriate
alert. The latter can be seen as a bucket containing infor-
mation about a critical result and its actual state. For each
alert, a notification is sent. The framework proposes a trans-
parent way to handle the different underlying mechanisms
for successfully delivering a notification. As new technolo-
gies will emerge, it is sufficient to create a new adapter for
this device and plug it into the framework.

Since these notifications are out of the hospital control,
special care has to be taken regarding privacy issues. Care-
givers are required to respond to the medical confidentiality.
The same applies for documents concerning patients and by
that also the notifications. Thus, sending information about
critical results in an analysis over systems which are out of
the scope of the hospital would imply a breach of secrecy.
To avoid this situation, the notification does not contain any
information related to the patient or to the actual content
of the alert. It rather contains a link (i.e. a URI), where
the doctor can check the details and see which result has
created the alert and for which patient. Since this interac-
tion is done over HTTP, standard web mechanisms such as
HTTPS for protecting and securing access to resources is
applied. The refusal or validation of an alert is also done
directly on the web server. Thus, alerts can be seen like
first-class citizen resources in a WoT ecosystem. Architect-
ing the alerts as a RESTful resources has several advantages.
Besides the privacy issues mentioned before, such an archi-
tecture is not restricted to one application for handling the
alerts, but rather every web-enabled device can be used to
check, refuse, or validate them. Of course, not all CRUD1

actions are allowed on these resources. It is for example
not allowed to delete an alert. However, consultation and
modification are possible. Modifications include the refusal
and validation of alerts. This approach allows the creation
of interesting mashup applications in the eHealth domain as
we will see in Chapter 3.

One of the requirements discussed in Section 2.1 is the
necessity to ensure that each alert will be handled by some
caregiver. As it might happen that the caregiver who ini-
tiated the analysis is not available when critical results are
detected, somebody else has to take care of it. Thus, let us
introduce the following two concepts: 1. Each alert has an
owner. The owner designates the caregiver in charge of the
patient and usually the caregiver who asked for the analy-
sis. The owner is also the person who will be alerted first;

1Create, Read, Update, Delete

2. Besides, we introduce the concept of alert delegate. An
alert delegate is the caregiver currently in charge of a given
alert. This might be the same person as the alert owner, but
it can be somebody else. These two concepts are the core of
the escalation mechanism. Imagine the following situation:
caregiver A requested for an analysis and a critical result is
detected. Thus, he will get a notification and should take
care of it. However, at the time of receiving the notification,
he is occupied with another patient. The system has to re-
act to such a situation and find somebody else who will take
care of the situation. Thus, the alert will get a new dele-
gate which will receive a new notification. Figure 1 shows
such an escalation. Yet, the system will not escalate in a
random manner. The escalation of an alert is predictable
and given by the system. A hospital is divided in several
sections. Thus, at least each section has a different way of
escalating alerts. This is why each alert has an associated
escalation list, dictating which will be the next alert dele-
gate. Therefore, we propose as underlying architecture the
one of Figure 2.

Figure 2: Simplified class model for the alert system

2.3 The Implemented Prototype and its Gen-
eralization

Based on the requirements of Section 2.1 and the design
considerations of Section 2.2, we propose the following ar-
chitecture: AMLS is preserved and continues to be used to
consult the details of an analysis. Also, the core of AMLS,
which encapsulates the business logic for the search of crit-
ical results in analysis, is kept as part of the implemented
system. Figure 3 gives an overview of the involved com-
ponents. On the top is the AMLS business logic and its
database. Below sits the Smart alert framework, handling
everything related to alerts.

AMLS scans each medical analysis to find critical results.
If such a result is found, a new entry is created in the Alerts
database. This database is the contact point between the
two systems. The smart alert framework reads from this
database, creates the necessary alerts and notifications and
ensures that somebody will take care of if. In order to
achieve this task, the framework is divided into three sub-
systems: one for sending the notifications, one for handling
the escalation and one for giving access to alerts. The sub-
system responsible for sending the notification relies on sev-
eral adapters as discussed in Section 2.2. The escalation
system is built in a similar manner. There are several lists
depending on the needs of a hospital. In our use-case these
are just simple linked list.

Finally, the Web component is responsible for serving in-
coming requests for consulting or modifying alerts. It ex-
poses several resources which can be accessed, browsed and
linked to in a RESTful manner. Figure 4 gives an overview

Figure 3: An Automatic Medical Laboratory Sys-
tem (AMLS) enhanced with the Smart Alert frame-
work

of the available resources. As already discussed the Alert
resource is the central one and sits at the heart of the sys-
tem. Furthermore, the relations between the resources are
translated into links. By that, each alert will, for example,
contain a link to a Caregiver resource. The Device resource
contains information about a device (e.g. its type and its
priority). Using priorities makes it possible to send the first
notification to one device and if there is no answer after a
given time, to forward it to a second one, without changing
the alert delegate. Since an analysis is always initiated by
a caregiver and alerts are treated by a caregiver it makes
sense to model them as resource too.

The last resource in Figure 4 is the Escalation list. Each
alert has an associated escalation list. In our case this is just
a simple list containing caregivers. Nevertheless, other sys-
tems are possible. One could imagine a system taking into
account the current schedule of caregivers, and choosing the
next alert delegate based on an availability criterion. In a
broader case, the presented architecture allows two interest-
ing generalizations:

Figure 4: Identified Resources

First, it is possible to reuse the same architecture for alert-
ing systems in other domains. In [11] we presented a use-case
of an alert system for firefighters. The use-case was based
on voluntary firefighters and how they organize in case of
an alert. While current organization involves several phone-
calls, this paper proposed a way to approach this problem
involving smart alerts. Immediately after a new incident is

reported to the fire central, some firefighters have to be dis-
patched. British firefighters for example, are organized in
areas, groups, and stations. The alert has to collect enough
firefighters willing to accept the mission. As for the system
presented in this chapter, the same requirements apply. It
has to be ensured that somebody takes care of the event.
Furthermore, the fact that the notification does not contain
any data, but rather a link to a given alert seems to be a
smart choice for this scenario too. Depending on the alert,
only a reduced number of firefighters may be needed. Thus,
the link in the notification would lead each firefighter to a
WebSocket enabled resource, where he cannot only refuse or
validate the alert, but also see how many colleagues have al-
ready committed and how many are still needed. In order to
adapt the current system to this use-case, only few changes
would be needed. The escalation list, for example, would
not be a simple list but would rather have a tree structure.
Again, this change would not require any major architec-
tural modifications. The attentive reader will notice that
changing the escalation list business logic does not change
its RESTful API.

Second, Figure 4 reveals another interesting detail: the
alert resource points to some other resources, the WoT Cloud.
This is not a simple resource as the other ones. It is more
a link to other possibly interesting elements of information
related to alerts. The important point is that the alert re-
source is the entry point to a whole eco-system. From an
alert, it is possible to go to the associated caregiver but it
would also be possible to go to other resources living in the
WoT. We shall elaborate on this idea in the next chapter.

3. THE EXTENDED VISION
When looking at the use-case presented in Chapter 2 and

the proposed architecture, it appears that the system, al-
though working, lacks some functions which would allow
working with it in a more natural manner. The end of Sec-
tion 2.3 and Figure 4 already opened the discussion about
additional resources. To identify interesting resources lack-
ing in Figure 4, one has first to look a the daily business
at some hospital or medical practice. A hospital is not only
populated by caregivers, but also by other people (like visi-
tors, administrative staff, cleaning staff, or patients). A pa-
tient has some general information like a name, or a phone
number, similar to a caregiver. Still, patients are different
since each one has its own medical record. These records
are kept in a drawer-shelf organized alphabetically. Such a
record contains, among others, information about past con-
sultations, X-ray, analysis results and so on. In the morning,
the doctor’s assistant will fetch the medical records for the
first patients from this drawer-shelf. During the consulta-
tion, the doctor may add some more information. After-
ward, the medical record is put back in the drawer-shelf.
Since we are trying to build a system which reflects as much
as possible today’s processes, we claim that, besides the
alerts of Chapter 2, caregivers, patients, and medical records
should also be modeled. Figure 5 gives an overview of the
currently discussed resources. Since this vision is an exten-
sion from the use-case presented in Chapter 2, they have
some of them in common. The interested reader will notice
that other staff has no dedicated resource. This comes from
the fact, that they are not directly concerned by a patients
medical treatment.

Figure 5 depicts the relationship between these resources.

Figure 5: Adding more Resources to the system

In Chapter 2 we saw that an alert always has an associated
escalation list. Moreover, the alert owner and delegate are
both of type caregiver. One new part with respect to the
design presented in the previous chapter, is the Patient re-
source. This will be the primary place to fetch any further
information related to a patient. As shown in Figure 5, a pa-
tient is connected with almost every other resource. He can
have many caregivers in charge of him. This comes from the
fact that a patient’s caregiver may change between different
stays at the hospital. This is especially true, if the patient
is treated for different diseases. Furthermore, several alerts
can exist for a given patient. This can have different reasons.
A patient may have multiple analysis done during one stay,
or he may stay several times at a hospital, each time needing
a new analysis. Whereas the patients’ resource only contains
general information about the patient, it does not contain
anything about his health condition. Notes of medical con-
sultations, medications, or X-ray radiographs are stored in
the Medical Record resource. Ideally, each patient has ex-
actly one medical record containing all his medical history
in a given hospital. This resource can merely be seen as
list of blobs. Each blob can contain any structured or un-
structured data. Besides, a blob can also contain or link to
more complex data like an X-ray radiograph or a ECG 2

recording. Each relation in Figure 5 translates into a link
to other resources. As such, the representation of a patient
contains information about himself but also a link to his
medical record. This design allows browsing, and discover-
ing resources related to a patient.

The entry point of Chapter 2 use-case was a patients blood
analysis. It described how critical results can be escalated
to caregivers. However, the analysis itself was out of focus.
This is mainly because in the actual implementation, care-
givers desire to continue to use AMLS to consult analysis
results. With this choice, the system currently in place can
continue to work. Yet, in a world completely immersed into
the WoT, it should be possible to access these results in a
RESTful manner. Imagine for example, a patient who has
his cholesterol determined by an analysis. It is possible that
the determined value does not raise an alert but that the
doctor should discuss it with the patient as so to propose
some possible changes in the patients’ nutrition to reduce
his cholesterol value. To do so, we need to introduce a new
resource, the Analyis resource.

The introduction of the analysis resource adds some other
benefits. When an alert is raised for a given result and

2electrocardiogram

notifications are sent out; the receiver of the notification will
check the alert. In the use-case of Chapter 2 the content of
an alert was limited to some basic information about the
patient and the value which raised the alert. However, since
analyses were out of the scope of the system, a caregiver
had no seamless integrated way to consult the results of an
analysis. He had either to come back to a paper version
of the results or to connect to the AMLS system from his
desktop. Additionally, having a look at the result sheet of
an analysis upon receiving a notification of an alert, permits
to put the critical values into some context. As depicted in
Figure 5, the analysis resource sits between the alert and the
patient one. An alert always refers to a given analysis and
an analysis is always associated to a patient. By transitivity,
an alert is thus always associated to a patient.

Another newly introduced resource is the Laboratory one.
Each analysis is executed by exactly one laboratory. Yet,
a hospital can work with several different laboratories, de-
pending on the type of analysis. Furthermore, our use-case
foresees that a caregiver might not only work in one hospi-
tal. Many doctors work in a hospital and have their own
practice. Since analyzing blood sample is the daily business
of caregivers, such a doctor might work with different lab-
oratories. Nevertheless, he wants to receive alerts from all
of them. In this scenario, it makes sense to model the lab-
oratory as a resource. If the caregiver gets informed about
a critical result which requires further analysis to be done,
contacting the associated laboratory becomes easy.

Architecting the system using such a resource oriented
way has several advantages over the actual system. The
most obvious one is the liberation from the solution bound to
personal computers. A scenario illustrating this statement
would be the daily visits in a hospital. Each patient would
have a NFC3 wristlet instead of a plastic one. Upon arriving
at the patients bed, the caregiver scans the wristlet and the
associated resource will open on his device. Since everything
is architected as resources which are, according to RESTful
principles, linked together, the caregiver can now browse this
information just as he would pick up the clipboard from the
patients bed and flick through it.

Furthermore, adding a new resource, like a room, would
be easy. Once the resource is designed and made available
through a proper URI, it is very easy to integrate and link
it to other ones. Thus, a patient would be linked to ”his”
room in which he is staying. Users of the system would then
immediately discover this new resource and can start using
it.

Most of the resource presented in Figure 5 are really sim-
ple and represent almost static things. While the phone
number of a caregiver might change, it implies only an atomic
operation on the resource to update it and reflect the new
state. The same applies, for example, for the medical record.
During each consultation, a new entry is added to the pa-
tients medical record. Such changes are atomic and do not
require special care. Things changes when talking about the
implementation of the analysis resource. An analysis is an
ongoing process which has different stages during its life cy-
cle. Moreover, some steps involved in a given analysis can
be executed in parallel. This allows for a decomposition of
the problem. A possible approach is to reuse the design pro-
posed in [11]. The process of a blood analysis can be seen

3Near Field Communication

as a long lasting decomposable process. This process can be
followed starting with its root URI and continuing with its
sub-URIs until it is finished.

4. CONCLUSION
We identified the challenge of designing an integrated REST-

ful systems in the eHealth domain. The emphasis was first
set on the alerting mechanisms of the system, but we also
enlarged this vision and proposes a scenario completely em-
bedded in the WoT. The starting point of our considerations
was the daily business in a hospital or a doctor’s office. We
then tried to model the objects implied in this daily busi-
ness as resources and expressed their natural relation by
using links. Replacing the current human operated system
with one based on network enabled tools, will only work if
the daily business will still feel natural and will be improved.
With this purpose in mind, it seems that REST is a good
candidate for modeling the world as it really is. Having a
resource for each major physical object implied in a process
is a plus. Easy access to these resources is also a plus. A
standardized interface for accessing all the resources makes
their usage simple. Finally, the HATEOAS4 principles allow
to start using all these resources right from any web enabled
device. Besides, new resource will seamlessly integrate into
the system, since they can be discovered just by browsing
known ones.

The most important question when building an eHealth
system is always to ask whether the quality of the medi-
cal support gets improved or not. From this perspective,
one of the advantages of the presented system is the greatly
enhanced response time to critical incidents. Reducing the
time between the detection of a critical result and the suc-
cessful transmission of this information to the right caregiver
can be life-saving. Furthermore, the system can handle its
own failures in the delivery of notifications and give guar-
anties about the delivery of them. This is an important fea-
ture, since it would not be acceptable that an alert remains
open without anybody noticing it.

A prototype based on the scenario of Chapter 2 is cur-
rently tested by caregivers in collaboration with a medical
software company and a regional hospital. This application
is only a starting point to a broader usage of IT systems in
the health domain. We believe that REST will be an en-
abling technology for eHealth together with the increasing
business use of smartphones and pads. It fulfills all aspects
regarding usability but also regarding security and privacy
of the data. The implementation of a prototype based on
the extended vision of Chapter 3 is under discussion and will
depend from the results gathered from the field tests of our
first prototype.

5. ACKNOWLEDGMENTS
We express our gratitude to the Fribourg cantonal fund

for innovation for funding the DMAlert project.

6. REFERENCES
[1] D. K. Chiu, B. W. C. Kwok, R. L. S. Wong,

S. Cheung, and E. Kafeza. Alert-driven e-service
management. Hawaii International Conference on
System Sciences, 3:30068, 2004.

4Hypermedia As The Engine Of Application State

[2] M. Colunas, J. Fernandes, I. Oliveira, and J. Cunha.
Droidjacket: An android-based application for first
responders monitoring. In 6th Iberian Conference on
Information Systems and Technologies (CISTI), 2011,
pages 1 –4, june 2011.

[3] W. Drytkiewicz, I. Radusch, S. Arbanowski, and
R. Popescu-Zeletin. pREST: a REST-based protocol
for pervasive systems. In Mobile Ad-hoc and Sensor
Systems, 2004 IEEE International Conference, 2004.

[4] D. Guinard, M. Mueller, and J. Pasquier. Giving
RFID a REST: Building a Web-Enabled EPCIS. In
Proceedings of Internet of Things 2010 International
Conference (IoT 2010), Tokyo, Japan, 2010.

[5] D. Guinard, M. Mueller, and V. Trifa. RESTifying
Real-World Systems: A Practical Case Study in
RFID. In E. Wilde and C. Pautasso, editors, REST:
From Research to Practice, pages 359–379. Springer
New York, 2011.

[6] D. Guinard, V. Trifa, T. Pham, and O. Liechti.
Towards Physical Mashups in the Web of Things. In
Proceedings of INSS 2009 (IEEE Sixth International
Conference on Networked Sensing Systems),
Pittsburgh, USA, June 2009.

[7] E. Kafeza, D. Chiu, S. Cheung, and M. Kafeza. Alerts
in mobile healthcare applications: requirements and
pilot study. Information Technology in Biomedicine,
IEEE Transactions on, 8(2):173 –181, june 2004.

[8] T. Luckenbach, P. Gober, S. Arbanowski, F. Fokus,
A. Kotsopoulos, K. Kim, S. Advanced, T. Sait, and
P. Box. TinyREST - a Protocol for Integrating Sensor
Networks into the Internet. In Proc. of REALWSN,
2005.

[9] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. ”big”’ web services: making
the right architectural decision. In Proceeding of the
17th international conference on World Wide Web,
WWW ’08, New York, NY, USA, 2008. ACM.

[10] L. Richardson and S. Ruby. RESTful web services.
O’Reilly Media, Inc., 1 edition, May 2007.

[11] A. Ruppen, J. Pasquier, and T. Hurlimann. A
RESTful Architecture for Integrating Decomposable
Delayed Services within the Web of Things. To be
published in International Journal of Internet Protocol
Technology 2012.

[12] A. Thunberg and A.-L. Osvalder. What constitutes a
well-designed alarm system? In Human Factors and
Power Plants and HPRCT 13th Annual Meeting, 2007
IEEE 8th, pages 85 –91, aug. 2007.

[13] M. van Ettinger, J. Lipton, S. Nelwan, T. van Dam,
and N. van der Putten. Multimedia paging for clinical
alarms on mobile platforms. In Computing in
Cardiology, 2010, pages 57 –60, sept. 2010.

