
Salable Computing: Pratie and ExperieneVolume 7, Number 1, pp. 23�36. http://www.spe.org ISSN 1895-1767© 2006 SWPSA WS-AGREEMENT BASED RESOURCE NEGOTIATION FRAMEWORK FOR MOBILEAGENTSD. G. A. MOBACH, B. J. OVEREINDER, AND F. M. T. BRAZIER∗Abstrat. Mobile agents require aess to omputing resoures on heterogeneous systems aross the Internet. They needto be able to negotiate their requirements with the systems on whih they wish to be hosted. This paper presents a negotiationinfrastruture with whih agents aquire time-limited resoure ontrats through negotiation with one or more mediators insteadof individual hosting systems. Mediators represent groups of autonomous hosts. The negotiation protool and language are basedon the WS-Agreement Spei�ation, and have been implemented and tested within the AgentSape framework.Key words. mobile agents, resoure management, agent-based negotiation, WS-Agreements1. Introdution. One of the assumptions behind the mobile agent paradigm in open, heterogeneousenvironments is that agents will have aess to omputing resoures. Little thought has been given to the wayin whih this an be implemented. Not only do they need aess, they need to be able to plan oordinatedresoure usage aross multiple domains. Reently, negotiation of the onditions and quality of servie of resoureaess has been onsidered to be an important apability for distributed, servie-oriented arhitetures. Thispaper fouses on the negotiation of resoure aess for mobile agent appliations deployed on Internet-sale, opendistributed systems. The resoures required by agents an vary from CPU type, bandwidth, to the provisionof spei� servies (e. g., databases, web servers, et.), and level of seurity required, depending on the task athand. Well-de�ned, open protools and mehanisms are neessary for agents to negotiate their resoure aessrequirements with heterogeneous hosts.This paper presents a negotiation infrastruture within whih individual agents aquire time-limited on-trats for the resoures they need, through negotiation with one or more system domain oordinators: mediatorsrepresenting multiple autonomous hosts. The protools with whih agent appliations, domain oordinators, andhosts interat, are based on the WS-Agreement Spei�ation [1℄ with appliation dependent domain ontologiesfor spei� resoures.The next setions present the negotiation infrastruture, inluding the model and the arhiteture. Setion 4desribes a spei� implementation of this arhiteture whih is integrated within the AgentSape framework.The appliation dependent domain ontology for spei� omputer resoures is presented together with examplesof the WS-Agreement based protool. In Setion 5, two di�erent poliies for request distribution by the domainoordinators are ompared empirially and evaluated. The paper onludes with related work and disussion.2. Negotiation infrastruture. The overall goal and use of the negotiation infrastruture is to allow forthe negotiation of terms of onditions and quality of servie of resoure aess by agents. The negotiation modelinludes the exhange of agreement o�ers and aeptane of the o�ers between di�erent parties.2.1. Design Goals. The negotiation infrastruture has to deal with (i) large numbers of heterogeneousagents, and (ii) dynami groups of heterogeneous hosts eah with their own spei� sets of requirements.From the agent's perspetive, the negotiation infrastruture de�nes a uniform and straightforward negoti-ation protool and well-de�ned interfae. Agents are not interested in knowing how the proess of alloatingspei� resoures to spei� hosts is ahieved: their interest is to aquire the resoures they need. The negoti-ation infrastruture needs to hide the details from the agent appliations.On the other side, hosts need to keep full ontrol over their own system, over the use of their resoures byagent appliations. Negotiation poliies spanning multiple hosts, allowing spei�ation of resoure aess andusage poliies over a set of hosts (e.g., for load balaning purposes, or virtual organization-wide poliies, et.)must also be failitated.2.2. Negotiation Model. In our negotiation model, hosts (H) are autonomous entities that provideresoures (R) to agents (A) under spei� usage and aess poliies. Hosts are aggregated into virtual domains.The domain oordinator (DC), represents the hosts (H) within a virtual domain in the negotiation proess,negotiating with both agents and hosts. Figure 2.1 shows an overview of the model.
∗IIDS Group, Department of Computer Siene, Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081 HV Amsterdam, TheNetherlands 23

24 D. G. A. Mobah, B. J. Overeinder, and F. M. T. Brazier
R

R

R

R
R

A

H

H

DC

Fig. 2.1. Negotiation model overview.The use of a mediating domain oordinator makes a two-layered negotiation proess within the model pos-sible. Agents negotiate resoure aess with domain oordinators, and domain oordinators, in turn, negotiatewith groups of host managers in virtual domains to obtain the atual resoures agents require. The resultsof negotiation are time-limited ontrats speifying whih resoures may be aessed during the time span ofthe ontrat, and under whih onditions the resoures may be used. Agents an negotiate their options withdomain oordinators of multiple domains, and selet the DC that provides the best o�er.In the model presented in this paper, a domain oordinator represents a virtual organization of resoureproviders. Agents are unaware of the individual resoures behind a domain oordinator: a domain oordinatoris viewed by agents to be a single virtual resoure provider. The task of seleting one appropriate o�er (based onthe available resoures at a spei� point in time) has been delegated to the domain oordinator. Alternatively, adomain oordinator ould return a set of possible o�ers, letting a requesting agent hoose the most appropriate.The model presented in this paper supports both options, but only the �rst is disussed. Setion 6 addressesthe seond option in more detail.The negotiation protool and language used in our negotiation model are based upon the WS-AgreementSpei�ation [1℄. This spei�ation de�nes the format used to speify agreement desriptions and agreementinterations.1 The spei�ation de�nes an XML-based language for agreements between resoure providers(hosts) and onsumers (agents), and a protool for establishing these agreements (these agreements are time-limited ontrats in our model). Agreement terms are used to desribe the (levels of) servie involved. Two typesof terms are distinguished for agreement spei�ations: (i) servie desription terms, desribing the servies tobe delivered under the agreement, and (ii) guarantee terms, expressing the assuranes on servie quality (e.g.,minimum bounds) for the servies desribed in the servie desription terms. An agreement spei�ation alsoontains a ontext setion, ontaining meta information about the agreement (see Figure 2.2). This setion ofthe agreement an be used to speify the parties of the agreement, the duration of the agreement, et. Thespei�ation of domain-spei� term languages is expliitly left open.The WS-Agreement interation model (see Figure 2.3) de�nes that onsumers (C) an request agreementsfrom resoure providers (P) by issuing an agreement request based on available agreements templates, whih, ifaepted, result in new agreements.In the proposed negotiation model, hosts provide an agreement interfae to the domain oordinator. Thedomain oordinator aggregates the templates o�ered by the hosts into omposed templates. The domainoordinator makes these ombined templates available to agents. Agreement requests made by agents arereeived by the domain oordinator. The domain oordinator negotiates an agreement with the hosts withrequested resoures.The interation protool as spei�ed in the WS-Agreement Spei�ation only allows for a single �request,aept� interation, in whih the requesting party reeives either an aept of rejet message from the providingparty as a response to an agreement request. This is a very limited interation model. In the model proposedin this paper, an additional aept/rejet interation sequene is introdued, allowing the requesting party to
1This spei�ation is urrently under development by the Global Grid Forum's Grid Resoure Alloation and Agreement ProtoolWorking Group.

A WS-Agreement Based Resoure Negotiation Framework for Mobile Agents 25
Agreement
Context

Service
Description
Terms

Guarantee
Terms

Agreement

Fig. 2.2. WS-Agreement ontents.
C P

C P

C P

template

agreement request

agreementFig. 2.3. WS-Agreement protool.expliitly aept or rejet an o�er reated by the providing party. For example, in the ontext of mobile agentappliations, this allows agents to negotiate with multiple domain oordinators simultaneously, and aept thebest o�er from the set of o�ers reeived. Additionally, an expliit request for templates interation is spei�ed.This step in the protool allows for the initial exhange of information between agents and a domain oordinator,for example for authentiation purposes. Figure 2.4 shows the extended interation model.
DC

DC

DC

DC

DC

agreement request

A

template
A

A

agreement offer
A

accept/reject
A

for templates
request

Fig. 2.4. Extended WS-Agreement protool.3. Negotiation Arhiteture. The negotiation arhiteture de�nes the subsystems and interfaes of thenegotiation infrastruture. The two important subsystems host manager and domain oordinator and theirinterfaes are presented in detail.

26 D. G. A. Mobah, B. J. Overeinder, and F. M. T. Brazier3.1. Host Manager. A host manager is responsible for providing and managing resoures on its host(see Fig. 2.1). This inludes funtionality for negotiation, reation, and enforement of agreements. It is theresponsibility of the host manager to translate resoure usage and aess poliies into templates on demand.These templates speify whih resoures an be made available at a spei� point in time. The o�er a hostmakes on request of a domain oordinator is based on these templates. After the negotiation phase, the hostmanager monitors and ontrols the resoure usage to ensure that agreements are honored.Figure 3.1 shows the arhiteture and negotiation interfae of a host manager. The agreements in themodel are time-limited ontrats: agreements that expire after some predetermined time. In the presentationof the arhiteture, the term lease is used instead of time-limited ontrat. Eah host manager is equipped withthree modules: a leasing module, implementing the main negotiation funtionality; a poliy manager ontainingresoure poliies, whih are applied by the leasing module; a resoure manager with resoure handlers, allowingmonitoring and ontrol of resoure aess. The omponents of the host manager shown in Fig. 3.1 are furtherdesribed below.
Template

ManagementManagement
Lease

Other
Host

Manager
Modules

R R

Resources

Resource

Policy

Resource

Policy

Host Manager

acceptLease(...)

requestLeaseStatus(...) requestLease(..)

requestTemplates()

Request
Processor

Resource Manager

Handler

Resource

Handler

Resource

Policy Manager

Leasing Module

Fig. 3.1. Components within the Host Manager.3.1.1. Leasing Module. The leasing module in the host manager implements the negotiation and agree-ment protool. The funtionality of the leasing module is available via the interfae of the host manager.Leasing Interfae. The leasing interfae o�ered by host managers to their loation manager ontains thefollowing alls:
• requestTemplates(): template-listRequest the available lease templates.
• requestLease(LeaseRequest): leaseRequest a lease based on the supplied lease request.
• aeptLease(LeaseID)Aept a lease. Returns the aepted lease doument.
• requestLeaseStatus(LeaseID): leaseRequest the urrent status of a lease. Returns a lease doument, inluding the urrent status of eahterm.Request Proessor.
• Responding to template requests from the domain oordinator aording to loal poliies.

A WS-Agreement Based Resoure Negotiation Framework for Mobile Agents 27
• Creating lease o�ers. This involves determining the availability of the requested resoures, and reatingo�ers based on the inoming request, resoure usage and aess poliies, and the urrent status of theresoures.Template Management.
• Creating templates based on available resoures, resoure usage, and aess poliies, and atively main-taining this information. Note that poliies an be dynami, that is, hange over time (e.g., half ofavailable apaity an be reserved during o�e hours, omplete apaity is available outside o�ehours).Lease Management.
• Enforing the aepted leases. This involves ensuring that the resoure manager module performs therequired resoure negotiation tasks.
• Handling expiration of leases. This involves freeing the resoures spei�ed in the expired lease, andpossibly sending noti�ations of lease expiration to the domain oordinator.
• Maintaining lease o�ers: removing the o�ers after a ertain set time, or implementing the o�er afternoti�ation of aeptane has been reeived.
• Handling requests for status information on the running leases.
• Handling violation of leases. In ases where resoure usage annot be stritly enfored, and onlymonitoring an be performed, lease violations should be handled. When an appliation violates theonditions set in a lease, appropriate ations should be performed, suh as suspending or killing theviolating agent.3.1.2. Poliy Manager. The poliy manager module ontains resoure poliy desriptions whih an beused by the leasing module during the proessing of requests. Poliies an be de�ned for spei� resoures, orpoliies an be de�ned overing other aspets of inoming requests (identity of the requesting appliation, or�global� host poliies suh as the total number of requests, et.). A resoure poliy an ontain stati information,suh as the maximum number of allowed requests for a resoure, but an also refer to the monitoring apabilitiesof resoure handlers to inorporate up-to-date monitoring data onerning the resoures to whih the poliyapplies.3.1.3. Resoure Manager Module. The resoure manager module ontains a set of resoure handlers,enabling the leasing module to manage resoures available on the host. Eah resoure at a host is represented bya resoure handler. The handler implements a resoure independent interfae for the leasing module to monitorand ontrol the resoures. Eah resoure handler supports: (i) reation of resoure reservations based on leaseo�ers; (ii) implementation of the reservation, whih ativates the resoure handler to start monitoring resoureonsumption with respet to aepted leases; (iii) release of a reservation, freeing the resoure (amount) relatedto expired or violated leases. Eah resoure handler also supports a monitoring interfae, allowing for retrievalof resoure spei� monitoring information, to be used in, for example, resoure poliies.
• reserve(LeaseRequest): RefereneIDCan be used to reserve a resoure (amount) for a spei� lease request. The resoure handler inspetsthe request, and reates a reservation. A referene identi�er is returned to enable further managementof the reservation.
• implement(RefereneID): voidUsed to request implementation of a reservation (indiated by RefereneID).
• release(RefereneID): voidRelease an implemented resoure reservation (indiated by RefereneID).
• getStatus([RefereneID℄): statusUsed to request the status of a reservation. Returned value an be one of: initialized, reserved, ative,violated.
• getMonitorValue(SensorID): domain_speifi_valueUsed to request resoure spei� monitoring information onerning a resoure.3.2. Domain oordinator. The domain oordinator abstrats from the individual hosts (resoure pro-viders) and presents the aggregated resoures as one virtual resoure provider. The domain oordinator isresponsible for resoure aess negotiation with appliations and its enforement. To this purpose it providesappliations with templates of resoures available within its domain at the time requested. The domain oordi-

28 D. G. A. Mobah, B. J. Overeinder, and F. M. T. Braziernator, in turn, requests and reeives information on availability of resoures from its hosts, and ombines thisinformation if, and when appropriate, to onstrut appliation direted templates.One a template-based request is reeived from an appliation, the domain oordinator pursues delegation ofresoures to hosts. Upon reeiving the host bids, the domain oordinator hooses based on available templates,host and domain poliies, and returns a proposed lease if possible. If a proposed lease is aepted, the domainoordinator is responsible its e�etuation and enforement.Figure 3.2 shows an overview of the leasing module within the domain oordinator.
Template

ManagementManagement
Lease

Other
Location
Manager
Modules

Request
Processor

acceptLease(...)

requestLeaseStatus(...) requestLease(..)

requestTemplates()

Host Managers

Leasing Module

Fig. 3.2. Leasing omponents within the domain oordinator.Request Proessor. This omponent is responsible for the following tasks:
• Proessing requests for templates by appliations. This implies heking poliies to determine to whihtemplate information the appliation is entitled.
• Proessing requests for leases by appliations. This involves determining whether the request is basedon a valid template, and whether the request exeeds the bounds set by that template.
• Handling lease o�ers returned by hosts in response to requests. If more than one host was sent thesame request, a hoie has to be made between their o�ers. In addition, if the o�ers are part of arequest based upon a ombined template, the o�ers are ombined into a single o�er for the appliation.Further, when a lease proposal is aepted by an appliation, the hosts o�ering the lease are informedof aeptane.
• Determining from whih hosts o�ers are requested. This involves determining whih host(s) are o�eringrelevant templates, and possibly splitting the request into multiple requests for di�erent hosts, if aombined lease template was used by the appliation.Template Management. This omponent requests, reates and maintains information about the templateson whih leases are based. This omponent performs the following tasks:
• Obtaining and maintaining template information of the hosts urrently in the domain.
• Creating template ombinations of resoures from multiple hosts in a single template. This involvesapplying loal template poliies speifying whih host templates an or annot be ombined.Lease Management. The lease management omponent maintains information about leases, lease requestsmade by appliations, and lease proposals from hosts, and performs the following tasks:
• Maintaining status information of urrent valid leases. This involves atively or passively retrievinglease status information from the hosts responsible for enforing the leases ating appropriately uponlease expiration.
• Maintaining information of urrently outstanding lease proposals.4. AgentSape Negotiation Arhiteture. The negotiation arhiteture desribed above has been im-plemented in the AgentSape framework, a framework for heterogeneous, mobile agents. This setion desribeshow the subsystems have been instantiated, and provides examples of how the agreement-based negotiation isused to reate leases for agent appliations using the AgentSape middleware.

A WS-Agreement Based Resoure Negotiation Framework for Mobile Agents 294.1. AgentSape. The AgentSape middleware [8℄ onsists of two layers. At the base of the middle-ware is the kernel, o�ering low-level seure ommuniation between middleware proesses, and failities forseure agent mobility. On top of the AgentSape kernel, middleware proesses provide higher-level middlewarefuntionality to agents. For example, agent servers provide a run-time environment for agents, and a Webservie gateway provides agents the ability to ommuniate with web servies using the SOAP/XML protool.In AgentSape, virtual domains are alled loations. An AgentSape loation onsists of one or more hostsrunning the AgentSape middleware, typially within a single administrative domain.In addition to the middleware proesses desribed above, eah host has a host manager middleware proess.This proess is responsible for managing the middleware omponents running on the host, and implementingthe required negotiation funtionality as desribed in the arhiteture. Furthermore, eah AgentSape loationruns a loation manager proess on one of the hosts, whih implements management funtionality required formanaging AgentSape hosts, and whih implements the funtionality of the domain oordinator, enabling agentappliation to enter into resoure negotiations with loations. Figure 4.1 shows an overview of an AgentSapeloation.
Agent
Server

Agent
Server

Server
Agent

Server
Agent

Web
Service

GWHM HM

LM

HM

Host B

Host A

Host C

Location

Fig. 4.1. Overview of an AgentSape loation.4.2. AgentSape Negotiation Arhiteture. Within AgentSape, agents an start negotiations witha number of loations, and given the o�ers the loations provide, selet the loation o�ering the best options.The agent then migrates to the loation with whih agreement has been reahed.4.2.1. AgentSape resoures. The AgentSape negotiation arhiteture de�nes a set of resoures thatan be alloated and used by agents in the AgentSape spei� ontology. This ontology is used during negotia-tion. Currently, the following resoures are inluded in this ontology:
• CPU time: The time (in milliseonds) that an agent spends on an agent server.
• Communiation bandwidth: The number of bytes/seond that an agent may send to other agents.
• Memory: The amount of RAM an agent may onsume while running on an agent server.
• Web servie aess: The web servies that an agent is allowed to aess using the AgentSape WebServie Gateway.
• Web servie all rate: The number of alls that an agent is allowed to do on a web servie using thegateway.
• Disk spae: The amount of disk spae an agent is allowed to use while running on an agent server.Additional resoures an be de�ned in the future, as the funtionality o�ered by AgentSape is extended.The resoures are spei�ed in the XML Shema language, enabling the use of these de�nitions within theagreement-based negotiation sequene. As an example, onsider the three resoures spei�ed in Example 4.1.In this example, the time-on-pu resoure and the ommuniation-bandwidth resoure are de�ned as simpleinteger values representing the number of milliseonds and the number of Kilobytes/seond respetively. The

30 D. G. A. Mobah, B. J. Overeinder, and F. M. T. Brazierweb-servie-aess resoure is de�ned as a list of servie names (strings) representing the list of servieswhih may be aessed.<xsd:simpleType name="time-on-pu"type="xsd:positiveInteger" /><xsd:simpleType name="ommuniation-bandwidth"type="xsd:positiveInteger" /><xsd:omplexType name="web-servie-aess"><xsd:all><xsd:element name="servie-name" type="xsd:string"minOurs="1" maxOurs="unbounded"/></xsd:all></xsd:omplexType> Example 4.1AgentSape resoure de�nitions.The AgentSape spei� language is used within the lease model to express resoure requirements and usageonditions. In Example 4.2, an example of agent resoure requirements is shown. In this example, an agentrequests 50 seonds of CPU time, and 50 Kb/s of ommuniation bandwidth.<!-- requirement: 50 seonds CPU time --><agentsape:time-on-pu>50000</agentsape:time-on-pu><!-- requirement: 50Kb/s bandwidth --><agentsape:ommuniation-bandwidth>51200</agentsape:ommuniation-bandwith> Example 4.2Agent resoure requirements.4.3. AgentSape Host Manager. The AgentSape host manager is responsible for o�ering resoures tothe loation manager. Based on its own information on the status of its resoures, and its own poliies regardingthese resoures, the host manager reates a set of templates. Example 4.3 shows an example of a template,using the syntax as de�ned in the WS-Agreement Spei�ation. The template spei�es that this host an nowo�er two resoures, eah with spei� aess onditions. For the �rst resoure: the time-on-pu resoure, amaximum value of 100 seonds is spei�ed. The seond resoure, ommuniation-bandwidth, is not restritedby the template.4.4. Loation Manager. The loation manager enters into negotiation with host managers within itsloation on behalf of agents. The loation manager maintains information on the templates o�ers by eah of thehosts within the loation, and uses this information to provide templates to agents. Agents base their requestsfor leases to the loation manager on these templates. As an example, onsider the following request, in whihan agent requests a loation for 50 seonds of CPU time, and 50 Kb/s of ommuniation bandwidth.To meet lease requests by agents, the loation manager enters into negotiation with the relevant hosts inits loation (those that an provide the resoures requested). For eah request reeived from an agent, one ormore suitable hosts are seleted (based on their templates). Eah of the hosts then reates an o�er based onthe urrent resoure onditions. The loation manager selets one of the o�ers, and disards the others, orombines a number of o�ers into a omposed o�er. The seleted o�er is returned to the agent. As mentionedin Setion 2.2, multiple o�ers an be returned to the agent, but does not omply with the AgentSape model.In the following example, a loation manager has reeived a request from an agent, and has seleted twohosts within its loation to whih it forwards the request. The hosts determine if and to whih extent therequest an be ful�lled, and return their o�ers (proposed leases) to the loation manager. In Example 4.5,Host 1 returns a proposal in whih the requested CPU-time is unhanged with respet to the request from

A WS-Agreement Based Resoure Negotiation Framework for Mobile Agents 31<wsag:Template><wsag:Name>Template1</wsag:Name><wsag:Context/><wsag:Terms/><wsag:CreationConstraints><wsag:Item><wsag:Loation>//wsag:ServieDesriptionTerm//agentsape:time-on-pu</wsag:Loation><xs:maxInlusive xs:value="100000"></wsag:Item></wsag:Item><wsag:Loation>//wsag:ServieDesriptionTerm//agentsape:ommuniation-bandwidth</wsag:Loation></wsag:Item></wsag:CreationConstraints></wsag:Template> Example 4.3AgentSape resoure template.<wsag:AgreementOffer><wsag:Name>Offer1</wsag:name><wsag:Context><wsag:AgreementInitiator>agentX</wsag:AgreementInitiator><wsag:TemplateName>Template1</wsag:TemplateName></wsag:Context><wsag:Terms><wsag:All><wsag:ServieDesriptionTermwsag:Name="TimeOnCPU"wsag:ServieName="LoationY"><agentsape:time-on-pu>50000</agentsape:time-on-pu></wsag:ServieDesriptionTerm><wsag:ServieDesriptionTermwsag:Name="Communiation"wsag:ServieName="LoationY"><agentsape:ommuniation-bandwidth>51200</agentsape:ommuniation-bandwidth></wsag:ServieDesriptionTerm></wsag:All></wsag:Terms></wsag:AgreementOffer> Example 4.4Lease request made by agent.the agent, and ommuniation-bandwidth is dereased to 10 Kb/s. Host 2 also returns a proposal in whihthe requested time-on-pu is redued to 40 seonds, and ommuniation-bandwidth is dereased to 30 Kb/s.Also, an ExpirationTime element is added to the ontext setion of the proposal, indiating when the leasewill expire, if aepted by the agent. Host 1 de�nes an expiration time of 23:04:44 upon whih it no longerguarantees the requested resoures, and Host 2 de�nes an expiration time of 23:10:00.The proposals are reeived and ompared by the loation manager. Host 1 o�ers fully the requestedtime-on-pu, but o�ers a ommuniation-bandwidth whih is substantially lower than the requested band-width. The o�er made by Host 2 o�ers a lower time-on-pu value, but does o�er a bandwidth value whih is

32 D. G. A. Mobah, B. J. Overeinder, and F. M. T. Brazier<wsag:Agreement><wsag:Context><wsag:AgreementInitiator>AgentX</wsag:AgreementInitiator><wsag:AgreementProvider>Host1</wsag:AgreementProvider><wsag:ExpirationTime>2005-07-23T23:04:00</wsag:ExpirationTime></wsag:Context><wsag:Terms><wsag:All><wsag:ServieDesriptionTermwsag:Name="TimeOnCPU"wsag:ServieName="LoationY"><agentsape:time-on-pu>50000</agentsape:time-on-pu></wsag:ServieDesriptionTerm><wsag:ServieDesriptionTermwsag:Name="Communiation"wsag:ServieName="LoationY"><agentsape:ommuniation-bandwidth>10240</agentsape:ommuniation-bandwidth></wsag:ServieDesriptionTerm></wsag:All></wsag:Terms></wsag:Agreement>

<wsag:Agreement><wsag:Context><wsag:AgreementInitiator>AgentX</wsag:AgreementInitiator><wsag:AgreementProvider>Host2</wsag:AgreementProvider><wsag:ExpirationTime>2005-07-23T23:10:00</wsag:ExpirationTime></wsag:Context><wsag:Terms><wsag:All><wsag:ServieDesriptionTermwsag:Name="TimeOnCPU"wsag:ServieName="LoationY"><agentsape:time-on-pu>40000</agentsape:time-on-pu></wsag:ServieDesriptionTerm><wsag:ServieDesriptionTermwsag:Name="Communiation"wsag:ServieName="LoationY"><agentsape:ommuniation-bandwidth>30720</agentsape:ommuniation-bandwidth></wsag:ServieDesriptionTerm></wsag:All></wsag:Terms></wsag:Agreement>Example 4.5Host lease proposals.loser to the requested value than the o�er of Host 1. The loation manager makes a seletion between theseo�ers based on urrent seletion poliies, and ommuniates this o�er to the agent. In our example, the loationmanager hooses the proposal made by Host 2. The agent hooses to aept the o�er. After aeptane, theagent has a limited time in whih it must migrate to the target loation, or the lease o�er will expire. After thearrival of the agent at the target loation, the agent is allowed to onsume the agreed upon resoures until thelease expires.

requestWSDLAccess(...)
sendSOAPRequest(...)

requestTemplates(LocationID)
requestLease(LocationID, leaseRequest)
requestLeaseStatus(LocationID, leaseID)
acceptLease(LocationID, leaseID)

...

sendMessage(agentID, messageContent)
receiveMessage()
move(LocationID)
kill()
suspend(timeOut)

Fig. 4.2. Lease related alls on the AgentSape agent interfae.4.5. AgentSape Agent Interfae. The interfae presented to agents by the AgentSape middlewareontains several lease related alls, as shown in Figure 4.2. These alls enable agents to enter into resoure leasenegotiations with AgentSape loations.5. Experiments. To evaluate the implementation and assess the operation of the negotiation arhiteturedesribed above, several experiments have been performed. The �rst set of experiments entered on the ability

A WS-Agreement Based Resoure Negotiation Framework for Mobile Agents 33of the negotiation arhiteture to aommodate domain-wide resoure poliies. The seond set of experimentsfoused on the use of the negotiation arhiteture to apply �quality of servie� poliies using individualized hostpoliies.5.1. Experimental setup. A distributed AgentSape loation is set up onsisting of nine hosts. Eighthosts are on�gured to run a host manager and an agent server, and one host is on�gured to run a loationmanager. The loation manager implements the domain oordinator negotiation funtionality. In eah ofthe experiments, agents migrate to the loation after a lease has been aquired through negotiation with theloation manager. The hosts used for the AgentSape loation are part of the DAS-2 luster at the VrijeUniversiteit Amsterdam, onsisting of Dual Pentium-III nodes onneted by Fast Ethernet (Myrinet-2000 isavailable between mahines at eah luster, but was not used in these experiments). The agents are insertedfrom a host outside the DAS-2 luster, also onneted by Fast Ethernet.In the experiments, CPU-time is the main subjet of the negotiation proess. In eah experiment, onethousand agents are inserted into the loation. For eah agent, a �desired� CPU-time amount is generatedaording to the Weibull distribution (sale = 3.0, shape = 2.0, mean = 26.587 seonds). This value from thedistribution is then used to reate a lease request whih is then sent to the loation. The intervals betweenlease requests of individual agents are distributed aording to the Poisson distribution (mean = 2 seonds).Eah lease request reeived by the loation manager is translated into lease requests to the 8 host managerswithin the loation. Eah host manager then responds with a lease o�er if the requested value is in line withthe loal CPU-time poliy, or responds with an empty o�er if the requested value is not in line with the poliy.In the experiments, the load on a host is represented as the number of agents running on a host, measured atone seond intervals.5.2. Domain-wide negotiation poliy experiments. In the area of distributed systems it is usefulto apply domain poliies failitating the distribution of omputational load aross available hosts in the en-vironment. Two straightforward types of poliies are based on the priniples of: (1) time-division, in whihomputational load is sheduled for exeution at di�erent times, and (2) spae-division, in whih omputationalload is sheduled on di�erent hosts. In these experiments, a round-robin (spae-division) negotiation poliy isapplied, i. e., a loation manager ollets o�ers made by the hosts, and applies a round-robin load balaningpoliy to selet one of the o�ers made by the hosts. This o�er is then sent bak as an answer to the originallease request. After aeptane of the lease, an agent is inserted at the host that has been seleted duringnegotiation. The agent will then start to onsume CPU-time by performing prede�ned alulations. Whenthe CPU-time delegated to the agent in the lease is onsumed, the agent is stopped and removed from thehost. In this experiment, hosts are on�gured with a negotiation poliy ditating that all lease requests shouldbe aepted, regardless of the requested CPU-time value. The loation manager selets host manager o�ersaording to a round-robin poliy, with the aim of to distribute all agents evenly throughout the loation.As a measure for the balane of the load within the AgentSape loation, the �Load Balane Metri� is used,as desribed by Bunt and Eager [4℄. This metri is de�ned by taking the weighted average of peak-to-meanserver load ratios. This ensures that a larger imbalane during high-load situations has a greater e�et on theLBM measure than a smaller imbalane during lower-load onditions. The value of the LBM measure rangesfrom the number of servers (8 hosts in the experiments) to 1, where a lower value represents a higher balane(LBM value 1 means perfet load balane). In Fig. 5.1, the LBM values are graphed, alulated over 10 seondintervals. The �gure shows that a onsistent balane is ahieved within the loation using the round-robinpoliy, during the insertion of agents as desribed in the experimental setup. At the end of the experiment,load balane an no longer be enfored, as all agents have been inserted and load imbalane is indued by theompletion of agents at a host, while a fration of the hosts is still exeuting long running agents. This is shownin the graph by the sharp inrease of the LBM value.5.3. Di�erentiated host poliy experiments. In the seond set of experiments, negotiation poliieswere applied to implement a quality of servie poliy aimed at improving responsiveness for agents with arelatively short running time (below the mean value as desribed above). In the experiments, two di�erent hostpoliies are used: a poliy allowing only requests below the mean CPU-time value, and a poliy allowing onlyrequests above the mean CPU-time value. (The CPU-time values are taken from the same Weibull distributionas desribed in Setion 5.1.) In eah experiment, the number of hosts aepting below-mean and above-meanis varied. The round-robin poliy of the loation manager is still applied, but within the two host groups

34 D. G. A. Mobah, B. J. Overeinder, and F. M. T. Brazier

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500

LB
M

time (s)Fig. 5.1. LBM over 10 seond intervals using round-robin negotiation poliy.separately, as attaining a balaned load within groups is still desirable, but is not feasible aross the di�erentgroups.In Table 5.1, the results of these experiments are shown. In the �rst olumn, the number of hosts aeptingonly agents with a CPU-time value below the mean is given. The seond and third olumn present a qualityof servie perentage for agents with a below-mean and above-mean CPU-time value respetively. The qualityof servie perentage metri is de�ned as the atual CPU-time agents have onsumed divided by the �walllok� time agents have spent on a host. The results in the table are the mean over three experiments. A highquality of servie perentage of 100% indiates a perfet quality of servie where the resoure is ompletelyavailable to the agent (the agents in the experiments are CPU bound, and, e.g., not waiting for I/O or networkommuniation). A low quality of servie perentage means that the agent has to ompete with other agents(or generally tasks) to aess the resoures.The values in the bottom row are obtained from the load balaning experiments presented in the previoussetion, in whih no di�erentiation was made based on CPU-time values, and agents ould be plaed on all hosts.This an be seen as a �referene� value, indiating the responsiveness in the undi�erentiated ase. From theresults it an be argued that a on�guration with 8 hosts, where 3 hosts aepting only agents with below-meanCPU-time values (and onsequently 5 hosts aepting only above-mean CPU-time), gives agents with a shorterrunning time a better responsiveness, at a not too great expense for the longer running agents. For 4 hostsreserved for short running agents, the responsiveness dramatially improves with about a fator of 5 omparedto the referene results, while the long running agents experiene an inreased turnaround time of a fator of 1.7.The experiments have shown that di�erent poliies an be relatively easily enfored, both on aggregateloation level, enforing a round-robin load balaning poliy, as well as on individual host level, aeptingeither short or long running agents. It should be stressed that the experiments are not intended to show theperformane of spei� poliies, but rather show how di�erent poliies de�ned on loation and host level an bede�ned and enfored by the resoure negotiation infrastruture presented in this paper.6. Related Work and Disussion. The negotiation arhiteture desribed above hides the omplexityof managing aess and usage of heterogeneous and distributed resoures from agents, by providing a uniformnegotiation infrastruture aggregating the resoures within a virtual domain. The arhiteture uses the WS-Agreement emerging Grid standard as a basis for its negotiation protool and language.The WS-Agreement framework o�ers an extensible basis for resoure management involving distributedheterogeneous resoures and distributed appliations. In its urrent state however, the WS-Agreement frame-

A WS-Agreement Based Resoure Negotiation Framework for Mobile Agents 35# below mean avg. for below avg. for abovehosts mean agents % mean agents %2 8.3 38.63 24.9 13.24 76.3 9.75 87.7 5.86 90.9 4.5referene 14.5 16.2Table 5.1Quality of servie perentage results of the CPU-time di�erentiated host poliy experiments.work has a number of shortomings. First, the spei�ation only provides for a basi negotiation protool andrelated information strutures. This ould be su�ient for use in servie-oriented environments for whih themodel is intended, however, in a self-managing appliation domain, as desribed in this paper, more elaboratenegotiation failities ould provide these appliations with more ontrol over alloation and use of resoures.Seond, the framework does not provide a model desribing how enforement of agreements is to be integratedin the system providing the resoures. Although it an be argued that muh of this is very domain-spei�and annot be aptured in a useful model, the framework ould present an abstrat model of the requiredinformation strutures and design of an agreement-based infrastruture supporting the WS-Agreement frame-work.In this paper, an extension of the WS-Agreement negotiation protool is proposed. The addition of anexpliit aept/rejet interation sequene allows agents to enter into negotiations with multiple providers andompare reeived o�ers. The proposed framework is implemented in the AgentSape middleware. In a reentpaper, Paurobally and Jennings [9℄ also reognize the need for more omplex negotiation patterns other thanpossible within the WS-Agreement Spei�ation. In their paper, riher message types (i. e., inform and bid)and interation protools are proposed in the form of an additional layer, allowing for the spei�ation of agentinteration protools on top of the WS-Agreement messaging layer. The Grid Resoure Alloation AgreementProtool (GRAAP) working group also extended their work on WS-Agreement with the WS-Agreement Nego-tiation Spei�ation [2℄. Here, a negotiation layer is de�ned to be inorporated on top of the WS-AgreementSpei�ation. The negotiation layer allows to express negotiation o�ers in terms expressed in the meta-languagealready de�ned in WS-Agreement.Independent from the WS-Agreement Spei�ation ativities, Hung et al. [6℄ proposed a Web servie nego-tiation model alled WS-Negotiation. Also, a servie level agreement (SLA) template model is presented, withdi�erent domain spei� voabularies for supporting di�erent types of negotiation. The negotiation protoolin their model is geared toward integrative negotiation, where both parties loate and adopt the option thatprovide greater joint utility to the parties taken olletively. The message types re�et this negotiation modeland is more extended than the models presented by Paurobally and Jennings [9℄ and the GRAAP workinggroup [2℄.IBM's Cremona [7℄ (Creation and Monitoring of Agreements) is an e�ort to reate an arhiteture and setof libraries that implement the WS-Agreement interfaes and agreement (template) management, and provideagreement funtionality suitable for implementations in domain-spei� environments. The Cremona arhite-ture spei�es domain-independent and domain-spei� omponents required for agreement-based management,and the Cremona libraries provide implementations of the agreement interfaes, domain-independent ompo-nents, and well-de�ned interfaes for the domain-spei� omponents. Cremona is urrently being o�ered as apart of IBM's Emerging Tehnologies Toolkit.The design goals and the realization of the WS-Agreement-based negotiation infrastruture presented inthis paper and the Cremona arhiteture are quite similar. However, the WS-Agreement-based negotiationinfrastruture extends the Cremona arhiteture with the option to ombine templates and agreements frommultiple resoures. The ombination of templates and agreements is neessary to aomplish resoure aggrega-tion, for example, to implement virtual organizations where multiple resoure ooperate to provide a (numberof) servies.

36 D. G. A. Mobah, B. J. Overeinder, and F. M. T. BrazierThe onept of leasing has been used in the area of distributed appliation frameworks, for example inJini [10℄, where leases are used for distributed garbage olletion. In the Jini framework, lients lease resoureaess, suh as for example servie registration within a lookup servie. The aquired lease allows a lientto make of use of that resoure for a limited time-period. When a lease expires, and no expliit renewal isrequested by the lient (for example beause of network failure), the assoiated resoure is made availablefor other lients, preventing unneessary resoure alloation. This harateristi has been inluded in thenegotiation model presented in this paper. The Jini spei�ation, however, does not over a negotiation modelor protool spei�ation. In the SHARP [5℄ arhiteture, tikets (soft resoure laims) an be redeemed byresoure onsumers for leases (hard resoure laims), whih guarantee aess to a resoure. Tiket holders andelegate resoures to other prinipals by issuing new tikets. The goals of the SHARP arhiteture and theAgentSape negotiation arhiteture are similar in nature, with the AgentSape negotiation arhiteture beingmore oriented towards agent appliations.The fous of our urrent and future work inludes extending the arhiteture and model with agent levelomponents, allowing appliation developers to more easily integrate and implement resoure negotiation inter-ations into their appliations. As an example, for the AgentSape middleware, a WS-Agreement based AgentCommuniation Language would enable agents to more easily ommuniate with the resoure negotiation in-frastruture. Furthermore, the addition of more expressive and �exible negotiation protools would allow bothappliations and resoures more �ne-grained ontrol of the negotiation proess.As stated in Setion 2.2, the urrent implementation of the domain oordinator in the negotiation infras-truture returns one o�er in reply to an agent request. This is an implementation deision and not a limitationof the negotiation model or protool. If the domain oordinator returns multiple o�ers, the requesting agentan deide whih o�er is most appropriate to omplete its urrent task, e. g., onsidering expeted omputingtime, exeution osts, seurity level, or other uses of resoures. Part of the extended negotiation protool anbe the spei�ation by the agent whether it opts for a light-weight negotiation protool with single o�ers, or amore omplex negotiation protool with multiple o�ers.The negotiation arhiteture makes it also possible for a virtual provider to hek an agent's redentialsbefore even starting to negotiate with an agent. As identity management is an important aspet in the designof large-sale open agent systems [3℄, this aspet is urrently being further explored, in partiular in relation tolegal impliations of the use of mobile agents. REFERENCES[1℄ A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tueke,and M. Xu, Web servies agreement spei�ation (WS-Agreement) (draft) 2006,https://forge.gridforum.org/projets/graap-wg[2℄ A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tueke, and M. Xu,Web servies agreement negotiation spei�ation (WS-AgreementNegotiation) (draft) 2004,https://forge.gridforum.org/projets/graap-wg[3℄ F. Brazier, A. Oskamp, J. Prins, M. Shellekens, and N. Wijngaards, Anonymity and software agents: An inter-displinary hallenge, AI & Law, 1-2 (2004), pp. 137�157.[4℄ R. B. Bunt, D. L. Eager, G. M. Oster, and C. L. Williamson, Ahieving load balane and e�etive ahing in lusteredWeb servers, in Proeedings of the 4th International Web Cahing Workshop, San Diego, CA, Apr. 1999, pp. 159�169.[5℄ Y. Fu, J. Chase, B. Chun, S. Shwab, and A. Vahdat, SHARP: An arhiteture for seure resoure peering, in Pro-eedings of the 19th ACM Symposium on Operating Systems Priniples, Bolton Landing, NY, Ot. 2003, pp. 133�148.[6℄ P. C. K. Hung, H. Li, and J.-J. Jeng, WS-Negotiation: An overview of researh issues, in Proeedings of the 37th HawaiiInternational Conferene on System Sienes (HICSS'04), Big Island, Hawaii, Jan. 2004, pp. 33�42.[7℄ H. Ludwig, A. Dan, and R. Keaney,Cremona: An arhiteture and library for reation and monitoring of WS-Agreements,teh. report, IBM Researh Division, June 2004.[8℄ B. J. Overeinder and F. M. T. Brazier, Salable middleware environment for agent-based Internet appliations, inProeedings of the Workshop on State-of-the-Art in Sienti� Computing (PARA'04), Copenhagen, Denmark, June 2004,pp. 675�679. Published in Applied Parallel Computing, LNCS 3732, Springer, Berlin, 2006.[9℄ S. Paurobally and N. R. Jennings, Developing agent Web servie agreements, in Proeedings of the IEEE/WIC/ACMInternational Conferene on Intelligent Agent Tehnology, Compiegne, Frane, Sept. 2005, pp. 464�470.[10℄ J. Waldo, The Jini arhiteture for network-entri omputing, Communiations of the ACM, 42 (1999), pp. 76�82.Edited by: Shahram Rahimi, Raheel AhmadReeived: November 8, 2005Aepted: Marh 19, 2006

