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A WSN-based Intelligent Light Control System
Considering User Activities and Profiles

Meng-Shiuan Pan, Lun-Wu Yeh, Yen-Ann Chen, Yu-Hsuan Lin, and Yu-Chee Tseng, Senior Member, IEEE

Abstract—Recently, wireless sensor networks (WSNs) have
been widely discussed in many applications. In this paper, we
propose a WSN-based intelligent light control system for indoor
environments. Wireless sensors are responsible for measuring
current illuminations. Two kinds of lighting devices, namely
whole lighting and local lighting devices, are used to provide
background and concentrated illuminations, respectively. Users
may have various illumination requirements according to their
activities and profiles. An illumination requirement is as the
combination of background and concentrated illumination de-
mands and users’ locations. We consider two requirement models,
namely binary satisfaction and continuous satisfaction models,
and propose two decision algorithms to determine the proper
illuminations of devices and to achieve the desired optimization
goals. Then a closed-loop device control algorithm is applied to
adjust the illumination levels of lighting devices. The prototyping
results verify that our ideas are practical and feasible.

Index Terms—intelligent buildings, light control, pervasive
computing, wireless communication, wireless sensor network

I. INTRODUCTION

Wireless sensor networks (WSNs) have made a lot of
progress recently. Extensive research works have dedicated to
energy-efficient MAC protocols [22], sensor deployment and
coverage [12], and localization [17]. Applications of WSN
include habitat monitoring [3], wildfire monitoring [2], and
navigation [13][20].

In this paper, we propose a WSN-based intelligent light
control system which considers users’ activities and profiles
in indoor environments. Fig. 1 shows the network scenario.
The network field is divided into regular grids. Each grid has
a fixed sensor. Together, these sensors form a multi-hop ad
hoc network. One of the nodes is designated as the sink of
the network and is connected to a control host. The control
host can issue light control commands via powerline or UPnP
communication protocols. In our system, there are two kinds
of lighting devices, called whole lighting and local lighting
devices. A whole lighting device is one such as a fluorescent
light, which can provide illuminations for multiple grids. For
example, in Fig. 1, the light in G13 is a whole lighting device,
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Fig. 1. The network scenario of our system.

which covers grids G7, G8, G9, G12, G13, G14, G17, G18,
and G19. A local lighting device is one such as a table lamp,
which can only provide concentrated illumination.

In our system, we assume that the location of each user
is known and each user carries a wireless sensor, which can
detect its local light intensity. Users are considered to have var-
ious illumination requirements according to their activities and
profiles. For example, in Fig. 1, user A is watching television
in G25 and user B is reading in G16. Both A and B require
sufficient background illuminations in their surroundings, and
B needs concentrated illumination for reading. In this paper,
we model an illumination requirement as the combination
of background and concentrated lighting according to the
user’s current activity. An illumination requirement consists
of an illumination interval and a coverage range. A user
is said to be satisfied if the provided light intensity is in
the specified interval for all grids in the coverage range.
We further consider a binary satisfaction and a continuous
satisfaction models. In the former, a user who is satisfied
returns a satisfaction value of one; otherwise a zero is returned.
In the latter model, a satisfaction value which is a function of
the specified illumination interval and the sensed light intensity
is returned. For the binary model, our goal is to satisfy all
users such that the total power consumption is minimized.
For the continuous model, our goal is to satisfy all users
such that the total satisfaction value is maximized. However,
in both models, it may not be possible to satisfy all users
simultaneously. In this case, we will gradually relax users’
illumination intervals until all users are satisfied. We design
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illumination decision algorithms for both models. Then the
outputs are sent to a closed-loop device control algorithm to
adjust the illuminations of lighting devices. Our prototyping
results and system demonstrations verify that our ideas are
practical and feasible.

Several works [15][16][19][21] have investigated using
WSNs in light control for energy conservation. References
[15] and [21] introduce light control using wireless sensors
to save energy for commercial buildings. Lighting devices are
adjusted according to daylight intensity. Reference [16] defines
several kinds of user requirements and their corresponding
cost functions. The goal is to adjust lights to minimize the
total cost. However, the result is mainly for media production.
The work [19] models the light control problem as a trade-
off between energy conservation and user requirements. Each
user is assigned a utility function with respect to light intensity.
The goal is to maximize the total utility. However, it does not
consider the fact that people need different illuminations under
different activities. Also, some users may suffer from very
low utilities, while others enjoy high utilities. In [16][19], it is
necessary to measure all combinations of dimmer settings of
all devices and the resulting light intensities at all locations.
If there are k interested locations, d dimmer levels, and m
lighting devices, the complexity is O(kdm). Moreover, the
above works only consider one type of lighting devices. In
real life, lighting devices can be classified as whole lighting
and local lighting ones.

The rest of this paper is organized as follows. Prelimi-
naries are given in Section II. Section III and Section IV
introduce our illumination decision algorithms under binary
and continuous satisfaction models, respectively. Section V
presents our device control algorithm. Section VI reports our
prototyping results. Section VII presents some performance
evaluation results. Finally, Section VIII concludes this paper.

II. PRELIMINARIES

In this system, there are k grids, n users, m whole lighting
devices, and m′ local lighting devices. All lighting devices
are adjustable. The k grids represent the network area and are
labeled as G1, G2, ..., and Gk. In each grid Gi, i = 1..k,
there is a fixed sensor fi, and each user uj , j = 1..n, also
carries a portable wireless sensor pj . Users can specify their
current activities to the control host via their portable devices.
We also assume that via a localization scheme (such as [9]),
users’ current grid locations are known to the control host.

The whole lighting devices are named D1, D2, ..., Dm, and
the local lighting devices are named d1, d2, ..., dm′ . The fixed
sensor that is closest to Di, i = 1..m, is denoted as fc(Di).
However, since users are mobile, we use a function bound(uj),
j = 1..n, to denote the association between users and local
lighting devices. This function restricts a local lighting device
to serve at most one user at one time. If there is no local
lighting device near user uj , bound(uj) = ∅; otherwise,
bound(uj) is the ID of the nearest local lighting device. Light
intensities sensed by fi, i = 1..k, and pj , j = 1..n, are
denoted by s(fi) and s(pj), respectively. Since the value of
s(fi) may be contributed by multiple sources, we denote by

l(Di), i = 1..m, the portion of light intensity contributed by
Di to the fixed sensor closest to Di, i.e., fc(Di). Note that
l(Di) ≤ s(fc(Di)) because s(fc(Di)) may be affected by other
whole lighting devices and sunlight. Similarly, we denote by
l(di), i = 1..m′, the portion of light intensity contributed by
di to portable sensor pj if user uj satisfies bound(uj) = i. If
there exists no uj such that bound(uj) = i, we let l(di) = 0.
Note that in reality, the values of l(Di) and l(di) can not be
directly known, unless there are no other light sources. We
will address this issue in Section II-A.

In the system, sensors periodically report their readings
to the sink. For simplicity, we define the following column
vectors:

Sf =
[
s(f1), s(f2), . . . , s(fk)

]T
,

Sp =
[
s(p1), s(p2), . . . , s(pn)

]T
,

LD =
[
l(D1), l(D2), . . . , l(Dm)

]T
,

Ld =
[
l(d1), l(d2), . . . , l(dm′)

]T
.

Note that in practice, each Di has its limitation. So we let
lmax(Di) be the upper bound of l(Di) and let

Lmax
D =

[
lmax(D1), lmax(D2), . . . , lmax(Dm)

]T
.

We make some assumptions about lighting devices. First,
we assume that a local lighting device can always satisfy a
user’s need when the user is underneath this device. Second,
we assume that there is no obstacle between whole lighting
devices and fixed sensors. Third, the illumination provided
by a local lighting device does not affect the measured light
intensity of fixed sensors.

Fig. 2 shows our system architecture. Light adjustments are
triggered by users’ movements or environment changes. First,
the illuminations of whole lighting devices are determined,
followed by those of the local lighting devices. Feedbacks
from sensors are then sent to the sink to decide further
adjustment of lighting devices so as to satisfy users’ demands.

A. Computing LD and Ld

Earlier, we mentioned that the values of LD and Ld can
not be known directly. Below, we first use an experimental
method to derive LD. Assuming no other light source existing,
Fig. 3(a) shows the measured intensities of a whole lighting
device Di by fc(Di) and other fixed sensors at different
distances from fc(Di), under different on-levels of Di. We
see that the measured intensity degrades following a similar
trend. In fact, if we further normalize the value to the intensity
measured by fc(Di), we see that the degrading trends are
almost the same, as shown in Fig. 3(b). Therefore, assuming
the impact factor of Di on fc(Di) to be wi

c(Di)
= 1, the impact

factor of Di on any other fj can be written as a weighted factor
wi

j , where 0 ≤ wi
j ≤ 1. Putting all impact factors together, we

define a weight matrix

W =

⎡
⎢⎢⎢⎣

w1
1 w2

1 · · · wm
1

w1
2 w2

2 · · · wm
i

...
... · · · ...

w1
k w2

k · · · wm
k

⎤
⎥⎥⎥⎦ .
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Fig. 2. The system architecture of our light control system.
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Fig. 3. An experiment for characterizing the degradation of light signals.

Since light intensities are additive [19], the light intensity
measured by fc(Di) is the sum of intensities from sunlight,
Di, and neighboring devices. The intensities of the sunlight to
all fixed sensors are written as a k × 1 column vector Ssun.
So we have

Sf = W · LD + Ssun. (1)

In Eq. (1), there are m unknowns in LD and k equations,
where m ≤ k. Any typical k-means algorithm [14] can solve
Eq. (1) by inducing the least mean square error. Here, we
simply construct a new m×m matrix Ŵ by keeping all c(Di)-
th rows, i = 1..m, in W and removing the other k −m rows.
So, Eq. (1) can be rewritten as

Sf − Ssun = Ŵ · LD ⇒ LD = Ŵ−1 · (Sf − Ssun). (2)

The weight matrix W can be measured at the deployment
stage, vector Ssun can be measured on-line when all lights are
off, and vector Sf can be obtained on-line. So the calibration
complexity is O(km). This is lower than those of [16][19].

The calculation of Ld is quite straightforward. Due to the
property of our approach, before a user arrives at a di, no
measurement can be obtained for l(di). At this time, l(di) = 0.
When a portable sensor, say, pk is getting close to and bounded
with di, the local lighting device di may be triggered. Here,
we simply use the reading of the fixed sensor, say, fj located
at the same grid as di as the background light intensity. We
let the light intensity provided by di to pk be

l(di) = s(pk) − s(fj).

III. SOLUTION FOR THE BINARY SATISFACTION MODEL

Each user profile consists of a number of activity-
requirement pairs. Given an activity, the system should try

to satisfy the corresponding requirement. Each requirement of
a user ui has three parts:

1) Expected illumination interval of whole lighting:
[Bl

D(ui), Bu
D(ui)] (in lux), where Bl

D(ui) and Bu
D(ui)

are the lower and the upper bounds, respectively.
2) Expected illumination interval of local lighting:

[Bl
d(ui), Bu

d (ui)], where Bl
d(ui) and Bu

d (ui) are the
lower and the upper bounds, respectively.

3) Coverage range of whole lighting: Ri =
[ri(G1), ri(G2), . . . , ri(Gk)]T , where for each
j = 1..k, ri(Gj) = 1 if grid Gj is expected to
receive a light intensity within [Bl

D(ui), Bu
D(ui)] for

user ui; otherwise, ri(Gj) = 0. This array defines the
range of grids which should meet the whole lighting
requirement.

For example, a possible requirement of a reading user
B in Fig. 1 can be [Bl

D(uB), Bu
D(uB)] = [200, 600],

[Bl
d(uB), Bu

d (uB)] = [500, 1000], and RB = [0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0]T .

Let LD and Ld be the current intensity vectors provided
by whole and local lighting devices, respectively. To facilitate
the presentation, let XK =

[
1 1 · · · 1

]
be a 1 × K row

vector, and R̄i a k × k matrix such that

R̄i =

⎡
⎢⎢⎢⎣

ri(G1) 0 · · · 0
0 ri(G2) · · · 0

0
... · · · ...

0 0 · · · ri(Gk)

⎤
⎥⎥⎥⎦ .

We formulate our problem P as a linear programming problem
with inputs Sf , Sp, LD, Ld, W , and user requirements. Our
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goal is to find the adjustment vectors

AD =
[
a(D1), a(D2), . . . , a(Dm)

]T

Ad =
[
a(d1), a(d2), . . . , a(dm′)

]T

for whole and local lighting devices, respectively, where
a(Di), i = 1..m, and a(dj), j = 1..m′, are the amounts of
adjustment required for Di and dj , respectively, such that the
following two objectives are satisfied:

min Xm(AD + LD) (3)

min Xm′(Ad + Ld) (4)

subject to:

Bl
D(ui)Ri ≤ R̄i(Sf + WAD) ≤ Bu

D(ui)Ri, ∀i ∈ [1, n] (5)

O ≤ AD + LD ≤ Lmax
D (6)

Bl
d(ui) ≤ a(dj) + s(pi) ≤ Bu

d (ui),
if bound(ui) = j, ∀i ∈ [1, n]. (7)

Eq. (3) and Eq. (4) mean that the total power consumptions
of both whole and local lighting devices after the adjustment
should be minimized. Eq. (5) imposes the whole lighting
requirement, where Sf + WAD is the light intensity vector
after adjustment and matrix R̄i is to filter out those grids not
in the coverage range of whole lighting. Eq. (6) is to confine
the adjustment result within the maximum and the minimum
capacities of devices, where O is a zero vector. Eq. (7) is
to impose the requirement of each local lighting if a user is
bounded to it. Here we assume that local lighting can always
provide extra illuminations to satisfy users’ requirements. So
we do not specify upper bounds as that in Eq. (6).

Since we assume that the illuminations of local lighting
devices do not affect the measured light intensity of fixed
sensors, the decision of whole lighting levels can be made in-
dependently of the decision of local lighting levels. (However,
the reverse is not true because the decision of whole lighting
levels does affect the decision of local lighting levels.) This
allows us to solve problem P in two stages as formulated
below.
P1: Given Sf , LD, W , and user requirements, solve AD for

Eq. (3), Eq. (5), and Eq. (6).
P2: Given Sp, Ld, and user requirements, solve Ad for Eq. (4)
and Eq. (7).

Theorem 1: Problem P is equivalent to the joint problems
P1 and P2.

Problem P1 is a linear programming problem, which can be
solved by the Simplex method [11], unless the problem itself is
infeasible, which may happen when two users have conflicting
requirements on the same grid. When no feasible solution can
be found, our system will try to eliminate some constraints to
make P1 feasible. Reference [18] already shows that finding a
feasible subsystem of a linear system by eliminating the fewest
constraints is NP-hard. Hence, we propose a heuristic below.

The idea is to gradually relax some requirements until a fea-
sible solution appears. We first define some notations. Given
the current values of Sf , LD, and Lmax

D , it is easy to compute
the minimum and maximum possible illuminations of grids

G1 G2 G3

1f 2f 3f

1D 2D

2u1u

10
6.06.0

01
W

T
fS 100100100

T
DL 00 Tmax

DL 10001000

d1 d2

1)( 1ubound 2)( 2ubound

Fig. 4. An example of illumination decision.

by Smin
f = Sf − WLD and Smax

f = Sf + W (Lmax
D − LD).

Also, consider c intervals on R (the set of reals) which define c
users’ requirements on whole lighting. We say that an interval
[a, b] ∈ R has an overlapping degree of d if for each point
p ∈ [a, b], p falls in at least d of the above c intervals. An
interval [a, b] is said to be a max-interval if there exists no
other interval [a′, b′] which has a higher overlapping degree
than [a, b] and [a′, b′] is a superset of [a, b]. It is not hard to see
that given any c intervals, there must exist a max-interval. Also
it is easy to design a polynomial-time linear search algorithm
to find a max-interval (we omit the details here). Our algorithm
works as follows.

1) For each grid Gi, i = 1..k, find the set of users Ui whose
coverage ranges contain Gi, i.e., Ui = {uj |rj(Gi) =
1,∀j ∈ [1, n]}. For each user uj ∈ Ui, check if
[Bl

D(uj), Bu
D(uj)] ∩ [Smin

f [i], Smax
f [i]] = ∅. If so, the

requirement cannot be satisfied. So we set rj(Gi) = 0
and update R̄j .

2) Again, for each grid Gi, i = 1..k, consider the set Ui.
Check if there is a common overlapping interval for
the requirements of all users in Ui. If not, find a max-
interval, say, [a, b] for the requirements of all users in
Ui. For each user uj ∈ Ui, check if [Bl

D(uj), Bu
D(uj)]∩

[a, b] = ∅. If so, we will give up the requirement of uj .
So we set rj(Gi) = 0 and update R̄j .

3) Try to solve problem P1. If there exists no feasible
solution AD, relax the whole lighting requirement of
each user ui, i = 1..n, to [Bl

D(ui) − α,Bu
D(ui) + α],

where α is a predefined constant. Then repeat this step
again.

4) After deciding AD, solve problem P2 as follows. For
each dj , j = 1..m′, check if there is a user ui such
that bound(ui) = j. If so, set a(dj) = Bl

d(ui) − s(pi);
otherwise, we can inform the system to turn dj off.

Example 1: Fig. 4 shows a scenario with three
grids, two users, two whole lighting devices, and
two local lighting devices. User u1’s requirements are
[Bl

D(u1), Bu
D(u1)] = [200, 400], [Bl

d(u1), Bu
d (u1)] = [700,

900], and R1 = [1, 0, 0]T . User u2’s requirements are
[Bl

D(u2), Bu
D(u2)] = [300, 500], [Bl

d(u2), Bu
d (u2)] = [800,

1000], and R2 = [0, 1, 0]T . Problem P1 has the objective:
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min
[
1 1

] ( [
a(D1)
a(D2)

]
+

[
0
0

] )

≡ min (a(D1) + a(D2))

subject to:

200

⎡
⎣1
0
0

⎤
⎦≤

⎡
⎣1 0 0
0 0 0
0 0 0

⎤
⎦
⎛
⎝

⎡
⎣100
100
100

⎤
⎦+

⎡
⎣ 1 0
0.6 0.6
0 1

⎤
⎦[a(D1)

a(D2)

]⎞⎠≤400

⎡
⎣1

0
0

⎤
⎦

≡
⎡
⎣200

0
0

⎤
⎦ ≤

⎡
⎣100 + a(D1)

0
0

⎤
⎦ ≤

⎡
⎣400

0
0

⎤
⎦

⎡
⎣ 0

300
0

⎤
⎦ ≤

⎡
⎣ 0

100 + 0.6a(D1) + 0.6a(D2)
0

⎤
⎦ ≤

⎡
⎣ 0

500
0

⎤
⎦

[
0
0

]
≤

[
a(D1)
a(D2)

]
+

[
0
0

]
≤

[
1000
1000

]
.

Since P1 is feasible, the results are a(D1) = 184 and a(D2) =
150.

After adjusting whole lighting devices, Sp = [s(p1), s(p2)]T

= [284, 300]T and Ld = [l(d1), l(d2)]T = [0, 0]T . So problem
P2 has the objective:

min
[
1 1

] ( [
a(d1)
a(d2)

]
+

[
284
300

] )

≡ min (a(d1) + a(d2) + 584)

subject to:

700 ≤ a(d1) + 284 ≤ 900
800 ≤ a(d2) + 300 ≤ 1000.

The adjustments of local lighting devices are as a(d1) =
Bl

d(u1) − s(p1) = 416 and a(d2) = Bl
d(u2) − s(p2) = 500.

IV. SOLUTION FOR THE CONTINUOUS SATISFACTION

MODEL

In this model, a user’s requirement on illumination is not
a fixed interval. Instead, it is a continuous value where each
value is mapped to a satisfaction level. User ui’s requirement
has four parts:

1) Satisfaction level of whole lighting, which is repre-
sented by a modified Gaussian distribution by normal-
izing the peak value to 1 with mean and variance
(μD(ui), σD(ui)). Specifically, the satisfaction level of
intensity x is cD(ui, x) = exp(−(x−μD(ui))

2

2(σD(ui)2)
).

2) Satisfaction threshold of whole lighting: t̄, 0 ≤ t̄ <
1. That is, after the adjustment, the satisfaction level
must be no less than t̄. From t̄, we can derive
the desired illumination interval of whole lighting
[Bl

D(ui, t̄), Bu
D(ui, t̄)] = [ μD(ui)− σD(ui)

√−2 ln(t̄),
μD(ui) + σD(ui)

√−2 ln(t̄)].
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3) Satisfaction level of local lighting, which is repre-
sented by a modified Gaussian distribution by normal-
izing the peak value to 1 with mean and variance
(μd(ui), σd(ui)). Specifically, the satisfaction level of
intensity x is cd(ui, x) = exp(−(x−μd(ui))

2

2(σd(ui)2)
).

4) coverage range of whole lighting: Ri.

For example, Fig. 5 shows a satisfaction level. Given t̄ = 0.3,
[Bl

D(ui), Bu
D(ui)] = [245, 555].

Our goal is to find the adjustment vectors AD and Ad such
that the total satisfaction level of all users is maximized. Here,
the satisfaction level of a user ui is sum of the satisfaction level
of ui at each grid Gj , j = 1..k, such that r(Gj) = 1. Recall
that Sf +WAD is the intensities perceived by all fixed sensors.
We define C′(ui, Sf + WAD) as the vector of satisfaction
levels of ui at all grids, i.e.,

C ′(ui, Sf + WAD)[j] = cD(ui, (Sf + WAD)[j]).

Therefore, given Sf , Sp, LD, Ld, and user requirements,
we can formulate a nonlinear programming problem with
objectives:

max
n∑

i=1

(Ri)T · C ′(ui, Sf + WAD) (8)

cd(ui, a(dj) + s(pi))=1 if bound(ui) = j, ∀i ∈ [1, n] (9)

subject to:

Bl
D(ui, t̄)Ri≤R̄i(Sf +WAD)≤Bu

D(ui, t̄)Ri,∀i∈ [1, n] (10)

O ≤ AD + LD ≤ Lmax
D (11)

Eq. (8) is to maximize the sum of satisfaction levels of all
users. Eq. (9) is so written because we assume that local
lighting devices can always maximize users’ local lighting
satisfaction levels. Eq. (10) and Eq. (11) are the same as the
ones in Section III.

Again, the above nonlinear programming problem can be
solved in two stages:
P3: Given Sf , LD, W , and user requirements, solve AD for

Eq. (8), Eq. (10), and Eq. (11).
P4: Given Sp, Ld, and user requirements, solve Ad for Eq. (9).
P3 can be solved by a sequential quadratic programming
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(SQP) method [10]. The basic idea is as follows. It first
reformulates the problem into a quadratic programming sub-
problem using an approximate solution xk. Then, it uses xk

to construct a better approximation xk+1. The process will
eventually converge to an optimal solution x∗, unless P3 is
infeasible. If so, we will gradually decrease the threshold t̄
until there is a solution can be found. Given the Smin

f and
Smax

f as defined in Section III, the detail algorithm works as
follows.

1) For each grid Gi, i = 1..k, find the set of users Ui whose
coverage ranges contain Gi, i.e., Ui = {uj |rj(Gi) =
1,∀j ∈ [1, n]}. For each user uj ∈ Ui, check if
[Bl

D(uj , t̄), Bu
D(uj , t̄)] ∩ [Smin

f [i], Smax
f [i]] = ∅. If so,

the requirement cannot be satisfied. So we set rj(Gi) =
0 and update R̄j .

2) Again, for each grid Gi, i = 1..k, consider the set Ui.
Check if there is a common overlapping interval for
the requirements of all users in Ui. If not, find a max-
interval, say, [a, b] for the desired illumination intervals
of all users in Ui. For each user uj ∈ Ui, check if
[Bl

D(uj , t̄), Bu
D(uj , t̄)] ∩ [a, b] = ∅. If so, we will give

up the requirement of uj . So we set rj(Gi) = 0 and
update R̄j .

3) Try to solve problem P3 by SQP. If there exists no
feasible solution AD, relax the t̄ to t̄ − γ, where γ is a
predefined constant. Then repeat this step again.

4) After deciding AD, solve problem P4 as follows. For
each local dj , j = 1..m′, check if there is a user ui

such that bound(ui) = j. If so, find a value of a(dj)
such that pd(ui, a(dj) + s(pi)) = 1; otherwise, we can
inform the system to turn dj off.

Example 2: Let’s use Fig. 4 again by assuming
(μD(u1), σD(u1)) = (300, 100), (μd(u1), σd(u1)) =
(800, 100), R1 = [1, 0, 0]T , (μD(u2), σD(u2)) = (400, 100),
(μd(u2), σd(u2)) = (1000, 100), and R2 = [0, 1, 0]T . Given
t̄ = 0.3, we can have [Bl

D(u1, t̄), Bu
D(u1, t̄)] = [145, 455]

and [Bl
D(u2, t̄), Bu

D(u2, t̄)] = [300, 500]. Problem P3 has the
objective.

max
[
1 0 0

]
C ′

1

⎛
⎝u1,

⎡
⎣100

100
100

⎤
⎦ +

⎡
⎣ 1 0

0.6 0.6
0 1

⎤
⎦ [

a(D1)
a(D2)

] ⎞
⎠

+
[
0 1 0

]
C ′

2

⎛
⎝u2,

⎡
⎣100

100
100

⎤
⎦ +

⎡
⎣ 1 0

0.6 0.6
0 1

⎤
⎦ [

a(D1)
a(D2)

] ⎞
⎠

≡ max
[
1 0 0

]
C ′

1

⎛
⎝u1,

⎡
⎣ 100 + a(D1)

100 + 0.6a(D1) + 0.6a(D2)
100 + a(D2)

⎤
⎦

⎞
⎠

+
[
0 1 0

]
C ′

2

⎛
⎝u2,

⎡
⎣ 100 + a(D1)

100 + 0.6a(D1) + 0.6a(D2)
100 + a(D2)

⎤
⎦

⎞
⎠

≡ max cD(u1, 100 + a(D1))
+ cD(u2, 100 + 0.6a(D1) + 0.6a(D2))

Lighting devices

Sensors

Control
host

Sink

Fig. 6. The closed-loop device control procedure.

subject to:

(300 − 100
√−2 ln 0.3)

⎡
⎣1

0
0

⎤
⎦ ≤

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦

⎛
⎝

⎡
⎣100

100
100

⎤
⎦ +

⎡
⎣ 1 0

0.6 0.6
0 1

⎤
⎦[

a(D1)
a(D2)

] ⎞
⎠

≤ (300 + 100
√−2 ln 0.3)

⎡
⎣1

0
0

⎤
⎦

≡
⎡
⎣145

0
0

⎤
⎦ ≤

⎡
⎣100 + a(D1)

0
0

⎤
⎦ ≤

⎡
⎣455

0
0

⎤
⎦

⎡
⎣ 0

245
0

⎤
⎦ ≤

⎡
⎣ 0

100 + 0.6a(D1) + 0.6a(D2)
0

⎤
⎦ ≤

⎡
⎣ 0

555
0

⎤
⎦

[
0
0

]
≤

[
a(D1)
a(D2)

]
+

[
0
0

]
≤

[
1000
1000

]

After applying SQP, the result is a(D1) = 200 and a(D2) =
300.

After adjusting whole lighting device, Sp =
[s(p1), s(p2)]T = [300, 400]T . To let cd(u1, a(d1) + s(p1)) =
cd(u1, a(d1) + 300) = 1, the adjustment of d1 is as
a(d1) = 500. Similarly, a(d2) = 600.

V. DEVICE CONTROL ALGORITHM

Given the light intensities contributed by devices to sensors,
i.e., LD and Ld, the algorithms in Section III and Section IV
will determine the target adjustment amounts, i.e., AD and
Ad. However, since what reported by sensors are accumulated
values, we have to convert these values to the actual adjustment
amounts. If the actual amounts do not match the target
amounts, we will adopt a binary search technique to gradually
approach these amounts.

Below, let L
(1)
D and L

(1)
d be the current contributed inten-

sities of whole and local lighting devices, respectively, and
L

(∗)
D = L

(1)
D + AD and L

(∗)
d = L

(1)
d + Ad be the target ones.
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Fig. 7. (a) System architecture and (b) components of our intelligent light control system.

Our algorithm contains multiple iterations. In the i-th iteration,
i ≥ 1, based on L

(i)
D and L

(i)
d , we will adjust devices leading

to new intensities L
(i+1)
D and L

(i+1)
D . This will be repeated

until the target values are reached or no further improvement
is possible. Such a closed loop control is illustrated in Fig. 6.
The binary search procedure can be explained by the following
example. Suppose that device Di’s current on-level is 40%
with contribution l(0)(Di) = 300 lux to sensor fc(Di) and
l(∗)(Di) = 200 lux. The control host will first adjust the on-
level of Di to (0 + 40)/2 = 20%. After first iteration, the
control host will collect sensors’ reports to compute L

(1)
D and

thus l(1)(Di). With l(1)(Di), the next guess will be an on-level
of 10% or 30%. The similar trial will be done for all whole
and local lighting devices.

In practice, the on-levels of dimmers are discrete and
have finite levels. The termination conditions of the above
binary search can be controlled by a threshold, say, β when
|l(i+1)(Dj) − l(i)(Dj)| ≤ β. To accelerate the decision, the
control host can even record the relationship between the
contributed light intensities and on-levels of devices (we omit
the details here).

VI. PROTOTYPING RESULTS

This section presents our implementation of the intelligent
light control system. Fig. 7 shows the system architecture and
the related protocol components. The system can be divided
into three parts: wireless sensor network, actuators, and control
host. In the following, we describe each part in details.

A. Wireless Sensor Network

Our sensor nodes are developed using Jennic JN5121 [4] as
the radio module and Si photodiode IC [6] as the photo sensor
(Fig. 8). Users can indicate their current activities to the system
by clicking the buttons on the sensor board. Fixed sensors are
used to form the backbone of the network. A portable sensor
will associate with the nearest fixed sensor. Fixed and portable
sensors periodically report aggregated light intensity values
to the sink. The sink forwards sensing data to the control

Buttons

Photo
sensor

Jennic
module

Fig. 8. The implemented sensor board.

host via an RS232 interface. Note that when a sensor finds
that its surrounding light intensity changes rapidly, it will also
report. This happens when the control host is adjusting lighting
devices. Moreover, we implement a reduced version of the
localization scheme in [9] to trace users’ locations. Once a
portable sensor decides its owner’s location, it issues a location
update to the control host.

B. Actuators

In our current implementation, whole and local lighting
devices are controlled by different ways. We implement the
UPnP Lighting Controls V1.0 standard [8] to control whole
lighting devices. The control host issues UPnP device control
commands to the UPnP control server through the Internet.
Then the UPnP control server controls some dimmer EDX-F04
dimmers [1], which are connected to whole lighting devices.
On the other hand, we use the INSTEON LampLinc dimmer
and PowerLinc controller manufactured by SmartHome [7] to
control local lighting devices. Each local lighting device is
plugged in a LampLinc dimmer. The PowerLinc controller
is connected to the control host. When receiving control
commands from the control host, the PowerLinc controller
can control dimmers through the power-line network.
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Sensors

Whole lighting
 devices

Local lighting
 devices

Fig. 9. The demonstration scenario of our intelligent light control system.

C. Control Host

The control host is implemented by Java. It consists of five
components.

• Sensor data handler: Its main task is to classify the report
data from the sink into two types: user status update
and light intensity report. Then it relays these data to the
corresponding components.

• User status handler: This component tracks the latest
locations and activities of users. When detecting any
change of users’ locations or activities, it triggers the
decision handler component to compute new illumination
requirements.

• Decision handler: This component implements the al-
gorithms in Section III, Section IV, and Section V. It
is triggered by the user status handler component or
by any change in the environment. We use Matlab to
implement our algorithms in Section III and Section IV.
The Matlab program is translated to a Java program by
the Matlab builder for Java [5]. After making device
control decisions, it sends on-level settings to the dimmer
handler.

• Dimmer handler: This component serves as the interface
between the control host and the actuators and issues
commands to the UPnP control server and the INSTEON
PowerLinc controller.

• Administrative user interface: We implement a graphical
user interface (GUI), which contains three panels: 1) The
monitor panel shows the locations of users, fixed sensors,
and lighting devices. 2) The configuration panel is for
the system manager to plan the network and set system
parameters. 3) The information panel shows the reported
sensory readings, the connection statuses of sensor nodes,
and so on.

Fig. 9 shows the demo scenario of our system. We build
the light control system in a room of size 5 m × 5 m, which
is divided into 3× 3 grids. More details and demo videos can
be found in http://wsn-research.blogspot.com/.

VII. PERFORMANCE EVALUATIONS

We use some experiments and simulations to verify our
results.

A) Verification of the estimation of LD: In Section II-A, we
show how to evaluate LD. Here we use the network scenario
in Fig. 10 with 12 grids and three whole lighting devices to

G1 G2 G3

G4 G5 G6

G7 G8 G9

G10 G11 G12

D1

D3D2

Fig. 10. The scenario to verify the measured LD .

verify the result. Here, we simply use lamps as whole lighting
devices. With different on-levels for lamps, we compute LD

and compare it against the actual measured value. Fig. 11
shows the comparison without and with sunlight effect. We
can see that the computed and the measured values are quite
close.

B) Verification of the binary satisfaction model (BSM): We
set up two scenarios, S1 and S2. Scenario S1 has 5× 5 grids
with 9 whole lighting devices as in Fig. 1. Scenario S2 has
9× 9 grids with 25 whole lighting devices. In both scenarios,
each whole lighting device can cover its nearby 9 grids. The
weighted factors of each whole lighting device Di on nearby
fixed sensors are set as follows. (1) The weighted factor of Di

on the fixed sensor at Gc(Di) is 1. (2) For fixed sensors in left,
right, up, and down grids of Gc(Di), the weights are set to 0.5.
(3) For fixed sensors in upper-left, lower-left, upper-right, and
lower-right grids of Gc(Di), the weights are 0.25. (4) For all
other fixed sensors, the weights are 0. Local lighting devices
are not simulated since they have no impact on performance.
All lighting devices are initially set to be turned off.

We define two activity-requirement pools, called AR1 and
AR2, as shown in Fig. 12. Each acti in Fig. 12 represents
an expected illumination interval of whole lighting. In our
simulations, users randomly select their activities from a pool.
The coverage range of a user’s requirement is the five nearest
grids. We compare our algorithm against a fixed adjustment
scheme (denoted by FIX), where lighting devices are set to
fixed levels. If a user’s requirement coverage range overlaps a
lighting device’s coverage range, this device is turned to that
level. Below, we use FIX-n to indicate that each device can
provide at most n lux.

We consider two performance indices. First, considering that
our algorithm may enlarge users’ illumination requirements
when conflicts occur, we define a metric GAP to represent the
difference between the provided light intensity and the original
requirement of a user. For user ui with coverage range Ri, if
grid Gj satisfies ri(Gj) = 1, we compute a gap value as

gap(ui, Gj)=
{

0 if Bl
D(ui) ≤ s(fj) ≤ Bu

D(ui)
min(|Bl

D(ui)−s(fj)|,|Bu
D(ui)−s(fj)|) o.w.,

where s(fj) is the final sensory value of fj . Then we define
GAP of ui as the average of gap(ui, Gj) for all Gj such that
ri(Gj) = 1. The second index is XmAD, which represents
the energy consumption of one control decision.
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Fig. 12. Activity-requirement pools: (a) AR1 and (b) AR2.

Fig. 13(a), Fig. 13(b), Fig. 13(c), and Fig. 13(d) show
our simulation results under different combinations of S1/S2
and AR1/AR2. In the left figure of Fig. 13(a), we see that
the average GAP of users is almost zero for BSM. This
is because the illumination intervals in AR1 have common
overlapping, which allows our algorithm to satisfy all users in
most cases. The right figure of Fig. 13(a) compares the energy
consumption of different schemes. FIX-500 has a slightly
lower value than ours because some users’ requirements are
violated. Fig. 13(b) adopts AR2. Since some requirements
are violated, we see that our scheme also induces some gaps
(note that act6 has no overlapping with others). In terms of
energy cost, BSM outperforms the other schemes. Fig. 13(c)
and Fig. 13(d) adopt S2 and the trends are similar. This
demonstrates that our scheme is quite scalable to network size.

C) Verification of the continuous satisfaction model (CSM):
We also define two activity-requirement pools, called AR3
and AR4, as shown in Fig. 14. The satisfaction threshold t̄ of
whole lighting is set to 0.3. Similarly, users’ required coverage
range of whole lighting is the five nearest grids. We compare
two performance indices: users’ average satisfaction level and
energy consumption.

Fig. 15(a), Fig. 15(b), Fig. 15(c), and Fig. 15(d) show
our simulation results under different combinations of S1/S2
and AR3/AR4. These results consistently indicates that our
scheme provides the highest satisfaction levels and outper-
forms FIX-750 and FIX-1000 in energy cost. Note that Fix-

500 may save some energy at the cost of users’ satisfaction.
Also note that AR4 has higher deviation in requirements than
AR3.

VIII. CONCLUSIONS

In this paper, we have presented a WSN-based intelligent
light control system considering user activities and profiles. In
this system, there are two types of lighting devices. We use
wireless sensors to collect light intensities in the environment.
Considering users’ activities, we model the illumination re-
quirements of users. Illumination decision algorithms and a de-
vice control algorithm are presented to meet user requirements
and to conserve energy. The proposed schemes are verified
by real implementation in an indoor environment. Future
directions could be directed to relieving the computation cost
of the non-linear programming and enhance the user interfaces
at the portable sensor nodes.
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Fig. 15. Comparison of the proposed CSM and the FIX schemes when (a) the network scenario is S1 and the user-activity is AR3, (b) the network scenario
is S1 and the user-activity is AR4, (c) the network scenario is S2 and the user-activity is AR3, and (a) the network scenario is S2 and the user-activity is
AR4.


