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This paper presents a consistent and arbitrage-free multifactor model of the term structure of interest 
rates in which yields at selected fixed maturities follow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa parametric multivariate Markov diffusion 
process with “stochastic volatility.” The yield of any zero-coupon bond is taken to be a maturity- 
dependent affine combination of the selected “basis” set of yields. We provide necessary and sufficient 
conditions on the stochastic model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor this affine representation. We include numerical techniques 
for solving the model, as wcll as numerical techniques for calculating the prices of term-structure 
derivative prices. The case of jump diffusions i \  also considered. 

I .  INTRODUCTION 

This paper defines and analyzes a simple multifactor model of the term structure of interest 
rates. The factors of the model are the yields X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X I ,  Xz, . . . , X , l )  of zero-coupon 
bonds of n various fixed maturities, I t l ,  r2. . , . , t,,}. For example, one could think of 
the current five-year (zero-coupon) yield as a factor. The yield factors form a Markov 
process, to be described below, that can be thought of as a multivariate version of the 
single-factor model of Cox, Ingersoll, and Ross ( 1  98%). As opposed to most multifactor 
term structure models, the factors (Markov state variables) are observable from the current 
yield curve and their increments can have an arbitrarily specified correlation matrix. The 
model includes stochastic volatility factors that are specified linear combinations of yield 
factors. Discount bond prices at any maturity are given as solutions to Ricatti (ordinary 
differential) equations, and path-independent derivative prices can be solved by, among 
other methods, an alternating-direction implicit finite-difference solution of the “usual” 
partial differential equation (PDE). Fully workcd examples of solutions to these Ricatti 
equations and PDEs are included. 

Our yield model is “affine” in the sense that there is, for each maturity t, an affine function 
Y,: R” + R such that, at any time t ,  the yield of any zero-coupon bond of maturity t is 
Y , ( X , ) .  Indeed, ruling out singularities, cssentially any n yields would serve as the factors, 
and given the imperfections of any model, it is an empirical issue as to which IZ yields will 
serve best as such. Likewise, because of linearity, the Markov state variables can be taken 
to be forward rates at given maturities, so that the model can be viewed as a multifactor 
Markov parameterization of the Heath, Jarrow, and Morton (HJM) (1992) model. In fact, 
Frachot and Lesne (1993) have extended our model to the HJM setting. One could also take 

‘We are gruteful fordiscussions with Ken Singleton, Boh Litterman, Antoine Conre, Nicole El Karoui. Vincent 
Lacoste. Jeremy Evnine, Antoine Frachot, Henri P a g k  Jean-Philippe Lesne, Fischer Black, Ayman Hindy. George 
Pennnchi, Rob Bliss, Prasad Nannisetty, Stan Pliska, Chri\ Rogers. Oldrich Vasicek,and especially to a referee for 
pointing out an error in an earlier version. 

Mamrsi~ript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArc.cc,ii,eti S r , p t e d w r ;  IYW; f i i i o l  w ~ \ i o t 7  ri,c,eiw(l Air,girst I905. 

@ 1996 Blackwell Publisher\, 238 Main Street. Camhridgc. MA 02142, USA, and 108 Cowley Road, Oxford, 
OX4 IJF. UK. 



380 DARRELL DUFFIE AND RUI KAN 

specified linear combinations of zero-coupon yields, such as the slope of the yield curve, 
or even derivatives of the yield curve with respect to maturity at a given point.’ 

Special cases of our model are those of Chen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1995), Chen and Scott ( I  992), Cox, 
Ingersoll, and Ross (CIR) (198%) (in its multivariate form), Heston (1991), El Karoui and 
Rochet (1989), Jamshidian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  989, 199 I ,  I992), Langetieg (1 980), Longstaff and Schwartz 
( 1  992), and Pennachi (1  99 1 ). In all of these other earlier models, the state-variable processes 
are treated as “shocks” of various kinds that are not necessarily designed to be observable 
from the current yield curve. After solving the models for the term structure, however, the 
yield at any given maturity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr can be seen to be a t-dependent affine function of the underlying 
state variables. Given a set of maturities equal in  number with the underlying factors, one 
can therefore typically (that is, when the coefficient vectors defining the corresponding 
affine forms are linearly independent) perform a change of basis under which the state 
variables are yields at these various fixed maturities, as in our model. This idea has been 
pursued by Pearson and Sun (1994) and by Chen and Scott (l993a), who have recently and 
independently estimated a special case, based on a multifactor version of Cox. Ingersoll, 
and Ross (198Sa), by performing just such a change of variables. Our model unifies and 
strictly extends these affine models to the maximum possible degree, and fully exploits the 
idea of using yields as state variables. 

Empirical studies of multifactor models in our “aftine yield” setting include those of 
Brown and Schaefer (1993), Chen and Scott (1992, 1993b), Duffie and Singleton (1995), 
Frachot, Janci, and Lacoste ( 1  992), Frachot and Lesne ( 1  993), Heston ( 1  99 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ) ,  Pearson 
and Sun (1994), Pennachi (1991), and Stambaugh (1988). In such parametric special 
cases, depending on the model specification and regularity conditions, one can generally 
identify the parameters of /A, (5, and R, to the extent that they affect bond prices, from 
cross-sectional observations of the yield curve. For example, in the one-factor CIR model, 
for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, = X I  evolves according to the stochastic differential equation d X ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( H  - 
X I )  d t  + y f i  d W,,  one can identify X I ,  K ,  0, and y from essentially any four distinct bond 
prices at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  assuming a correct specification without measurement error. (Given the 
likely misspecification of this model, this identification is not relied on in practice. Instead, 
it is common to use time series data and to assume fewer bond price observations at a given 
time than parameters, or to assume measurement error, or both.) In order to estimate the 
behavior of the state process X under the original probability measure P ,  one generally 
must resort to time-series observations, so as to capture the implied restrictions on the drift 
process u .  In this paper, although one of our goals is to classify a family of models that 
is convenient for empirical work, we are not directly concerned with estimation issues. 
We refer readers to the empirical studies cited above for such issues. We will restrict our 
attention to behavior under one particular equivalent martingale measure Q. (There may 
be a multiplicity of such measures in some cases, for example the case of jump diffusions 
considered in Section I 1 .) 

As with all multifactor models, solving for all but a few types of derivative security 
prices is computationally intensive. We present a practical finite-difference algorithm for 
this purpose. 

In short, we have a model specifiying simple relationships among yields and providing 
term structure derivative prices, that is both computationally tractable and consistent with the 
absence of arbitrage. While we have not described an economy whose general equilibrium 

’Vincent Lacoste developed this point of view at a lecture at the Newton Institute at Cambridge University. i n  
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implies the behavior of the term structure appearing in our model, that is easily done along 
the lines of Cox, Ingersoll, and Ross (1985a,b) or Heston (1991) and adds little to what we 
offer. 

In the model of Heath, Jarrow, and Morton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1992), as placed in a Markovian setting by 
Musiela (1994), the state variable is, in essence, the entire current yield curve. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs such, any 
initial yield curve is, under regularity, consistent with the HJM model. Being in a finite- 
dimensional state-space setting, our model has the disadvantage that not every initial yield 
curve is consistent with a given paramaterization of the model. (In industry practice, this is 
often handled by “calibration,” meaning the addition of time dependence to the coefficients 
of the model in such a way as to match the given initial yield curve. That procedure has 
obvious disadvantages.) The disadvantage of the finite-dimensional state-space setting can 
also be one of its merits, for example in terms of numerical tractability. In any case, our 
approach of taking yields as affine factors was independently accomplished within the HJM 
setting by El Karoui and Lacoste (1992), taking the special Gaussian (constant volatility) 
case. Their work has since been extended to the stochastic volatility case by Frachot, Janci, 
and Lacoste ( I  992). 

Other multifactor term structure models include those of Litterman and Scheinkman 
(1  988), El Karoui, Myneni, and Viswanathan ( 19921, Jamshidian (1  993), Chan ( I  992), and 
Rogers (1995). In these models one could treat an unobserved factor as a “latent” variable 
that can be filtered or otherwise calibrated from observations on the yield curve. 

The remainder of the paper is organized as follows. Section 2 discusses the general 
concepts involved in Markovian models of the yield curve. Section 3 specializes to a class 
of “affine factor models,” in which yields are aftine in some abstract state variables. It is 
shown that the yields are affine if, and essentially only if, the drift and diffusion functions of 
the stochastic differential equation for the factors are also affine. Section 4 gives conditions 
for existence and uniqueness of solutions to the associated stochastic differential equation. 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 specializes to the case in which the factors are yields at fixed maturities. Sections 
6 and 7 present examples of constant and stochastic volatility versions of the yield-factor 
model, respectively, in which one of the factors is, for simplicity, the short rate itself. 
Section 8 deals with the PDE for derivative prices, providing a change of variables that 
orthogonalizes the diffusion so as to simplify the finite-difference solution. Sections 9 and 
10 present examples of the solution to this PDE in the stochastic and deterministic volatility 
cases, respectively, showing “convergence” to the theoretical solutions. Section 1 1 sketches 
an extension to the case of jump diffusions. 

2. GENERAL FACTOR MODELS OF THE TERM STRUCTURE 

For purposes of setting up the parametric model that we have in mind, we begin with the 
general idea of a factor model for the yield curve. Under a given complete probability space 
(Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP )  and the augmented filtration’ [TI: t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp O} generated by a standard Brownian 
motion W* in R”, we suppose that there is a time-homogeneous Markov process X valued in 
some open subset D of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR” such that, for any times t and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, the market value P , , ~  at time t of a 
zero-coupon bondmaturing at time t + t  is given by f ( X , ,  T), where f E C 2 - ’ ( D  x [0, 00)). 
The short-rate process r is assumed to be defined by continuity, in that there is a measurable 

‘See. for example, Protter (1990) for definition5 involving the theory of stochastic processes. 
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function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR:  D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ JR defined as the limit of yields as maturity goes to zero, or 

As is well understood from Harrison and Kreps (1979) and Harrison and Pliska (198 I ) ,  
as well as others to follow, such as Ansel and Stricker (1991), only technical regularity 
is required for the equivalence between the absence of arbitrage and the existence of an 
equivalent martingale measure; that is, a probability measure Q equivalent to P under which 
the price process of any security is a Q-martingale after normalization at each time t by the 
value exp(&I R(X , , )  d s )  of continual reinvestment of interest from one unit of account held 
from time zero at the short rate. 

Suppose that X satisfies a stochastic differential equation of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu :  D + R” anda :  D --+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR“”” are regular enough for (2.2) to have a unique (strong) 
solution. Additional technical regularity implies that there is a standard Brownian motion 
W in Iw” under Q such that 

(2.3) d X ,  = p ( X , ) d t  + o ( X , ) d W , ,  

where p: D -+ R” is a function that can be calculated in terms of u ,  a ,  and ,f. General equi- 
librium models of this form of asset pricing behavior are given by Cox, Ingersoll, and Ross 
(198%) and Huang (1987). The models in these papers are actually finite-horizon models 
with time-dependent coefficients, but can be extended to time-homogeneous models i n  an 
infinite-horizon setting. Our work here could be extended to time-dependent coefficients 
merely by notational changes and minor technical regularity. Such time dependency, by 
“calibration,” is standard operating procedure in trading implementations of term structure 
models. See, for example, Ho and Lee ( I  986) or Black, Derman, and Toy ( 1  990). 

Here, we are interested in choices for ( , f ,  p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr) that are compatible, in the sense that we 
indeed have 

(2.4) f ( X , ,  T - t )  = E [ exp (- lT R ( X , ) d . s )  1 X , ]  as., 0 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 5 T < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcy7, 

where E denotes expectation under Q. Expression (2.4) is merely the definition of Q as an 
equivalent martingale measure, applied to zero-coupon bonds. 

Of course, it is relatively easy to construct compatible (,f, F ,  cr). 
For example, let p, cr, and R be defined arbitrarily so that (2.3) and the right-hand side 

of (2.4) are well defined, and then let ,f be defined by (2.4). This is the “usual” approach 
in arbitrage-based term structure models, as in Dothan (1978), Vasicek (1977), Richard 
(1978), Black, Derman, and Toy (1990), and Hull and White (l990), among many other 
such models in which X is the short rate itself and R is the identity. For multivariate models, 
we have such examples as El Karoui, Myneni, and Viswanathan, (1992), Jamshidinn ( I  993), 
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Beaglehole and Tenney (1991), and Rogers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  9951, in  which X is Gauss-Markov (constant 
a, affine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is a linear-quadratic form. (By “affine” p we mean, as usual, that there is 
a constant matrix u and a vector b such that p ( x )  = ux  + h.) Constantinides (1992) gives a 
general equilibrium (representative agent) parametric model that implies this sort of linear- 
quadratic-Gaussian behavior for short rates. There are also similar general equilibrium 
models, such as those of Cox, Ingersoll, and Ross (1985b), Heston (1991), Longstaff and 
Schwartz ( I  992), Nielsen and Sai-Requejo (1 992), and others in which one quickly arrives 
at an expression such as (2.4) in which we can write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi, where the component 
processes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX(”, X”), . . . , X(“) are univariate processes satisfying the CIR equation 

for scalar coefficients u; , bi , c, , and d, . These latter models are a special case of the model 
presented later in this paper. 

In any case, given any candidate for the short-rate process r satisfying mild regularity, 
i t  is easy to support r in a general equilibrium model based on a representative agent with, 
say, HARA utility and a consumption process constructed in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr .  (See, for example, 
Heston 1991 and Duffie 1996, Exercise 10.3.) The available equilibrium models provide 
useful theoretical relationships between the term structure, preferences, technology, and 
macrovariables such as consumption, but have yet to add much to the practical day-to-day 
problems of pricing and managing the risk of fixed-income instruments. For our purposes we 
will follow the lead of others mentioned earlier by beginning directly with some compatible 
model ( , f ,  p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). We are particularly interested in a class of models that is likely to be 
numerically and empirically tractable, and eventually in models in which the state vector 
X ,  can be treated as an observation on the term structure itself, such as intended in the first 
model of this sort due to Brennan and Schwartz ( 1979), in which the proposed factors are 
the short rate and the yield on a consol. (The yield on a consol is the reciprocal of its price. 
If one computes the price of a consol in  the Brennan-Schwartz model, there is no reason to 
expect the result to be the reciprocal of their state variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC .  which is labeled the “consol 
rate” by Brennan and Schwartz for expositional reasons. See Duffie, Ma, and Yong 1995 
for an analysis of this issue.) 

3. AFFINE FACTOR MODELS 

We consider a class of compatible models ( f ,  p ,  n )  with 

for which, by virtue of the maintained assumption that ,f E C’.’(D x [0, co)), we know 
that A and B are C’ functions on [0, 00). This parametric class of models, which we call 
exponenfial-ufine in light of the affine relationship between yields and factors, is relatively 
tractable and offers some empirical advantages. In explaining the model, we use the fact 
that if an affine relationship of the form (Y + f i  . .r = 0 holds for all x in some nonempty 
open Euclidean set, then a = O and ,B = 0. We call this the “matching principle.” 

Since f ( x ,  0) = 1 for all x in D ,  which is an open set, (3.1) and the matching principle 
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imply the boundary conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(3.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, B ( 0 )  = 0. 

Since R is assumed to be well defined by (2.1 ), we also know that R is an affine function 
on D .  

Consider, for a fixed maturity date T ,  the zero-coupon bond price process p ,  = F ( X ,  , t )  = 
f ( X , .  T - l ) ,  t 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. By 110’s lemma, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l z 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ = l  

By (2.4), we also know that D F ( X , ,  t )  - R ( X , ) F ( X , ,  t )  = 0. Since F is strictly positive- 
valued, from (3.4) we have 

This equation applies for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT < 00 since T is arbitrary. 

on D.  In order to see this, we can rewrite (3 .5)  as 
Under a mild nondegeneracy condition, (3.5) implies that p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@aT are affine functions 

where a(x, t) = R ( x )  + A’(T)  + B ‘ ( t ) .  x and where yi,(x) = ~ ; ( x ) a ~ ( x ) ~ .  Since R is 
known to be affine, for each fixed t the function a ( .  , t) is affine. We let H be the function 
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on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARN, for N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2n + (n2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ) / 2 ,  defined by 

where only the upper-triangular y l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x), those with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 j ,  are included. We want to show 
that each element of H is affine in x. 

We can now view (3.6) as a system of equations in r and x of the form 

(3.7) ~ ( x ,  t) = ~ ( t ) ~ H ( x ) ,  (x. t) E D x [0, OO), 

where c: [O, m) + RN. For example, C I  (5) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL31 ( t )  (the coefficient of H l ( x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl (x)) 

while c,,+I (t) = B I  ( t ) ’ / 2  (the coefficient of y~ I (x)). 
We can repeat (3.7) for each of any N maturities m I ,  . . . , m~ to get 

whereC(rn1,. . . , m ~ ) i s t h e N x N m a t r i x w h o s e i t h r o w i s c ( m ; ) ~ .  I fC(ml, . . . ,  nz,)can 
be chosen to be nonsingular, then H must be affine, as stated and proved in the following 
proposition, which generalizes a one-dimensional result of Brown and Schaefer ( 1993). 
Of course, for arbitrary distinct nonzero times i n ! ,  . . . , n z ~ ,  the matrix C(rn1, . . . , m ~ )  is 
nonsingular except for ( B ( m l ) ,  . . . , B ( r n ~ ) )  in a closed subset of measure zero of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR’”, 
which means that the affine characterization given below for (p ,  anT) is both sufficient 
and generically necessary for the affine yield-relationship (3.1). 

Now, suppose indeed that p ( x )  and a ( x ) a ( . ~ ) ~  are affine in x .  For any fixed i, we can 
collect all terms in xi from (3.5) into an expression of the form [ - B l ( t )  + B i ( B ( t ) ) ] x , ,  

where f?;(B(s))  is of the form a + c,, bj B ; ( r )  + cik d , ~  B j ( s ) B k ( s )  for fixed coefficients 
a ,  b,;, and djk. That is, B; is “linear quadratic.” By the matching principle, since (3.5) holds 
for x in an open set, we must have - B l ! ( t )  + B , ( B ( s ) )  = 0. This is true for all i and t, 
giving us the differential equation 

(3.9) B ’ ( r )  = B ( B ( t ) ) ,  B(O) = 0,  

where 8: R’l += R” is linear quadratic. The ordinary differential equation (3.9) is sometimes 
known as a Ricatti equation. 

Now,thetermin(3S)notinvolvingx isoftheform - A ’ ( t ) + A ( B ( t ) ) ,  whered: W” -+ 
R is also linear quadratic. This term must also be identically zero in order for (3.5) to be 
satisfied, again by the matching principle. This implies the equation 
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to be solved for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  with the unique solution 

(3.1 I )  A ( T )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA((B(.s)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd , ~ ,  .I' 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB solves (3.9). 

There is a nontrivial issue of existence of finite solutions to Ricatti equations, since the 
coefficients are not Lipschitz. Solutions exist on the whole time domain for special cases 
such as that of Cox-Ingersoll-Ross, and, for any given particular case, they exist up to some 
time ;f: > 0, since (3.9) is locally Lipschitz. We implicitly assume that r = fcc  in  the 
following proposition, but the results apply more generally by restricting r. 

PROPOSITION. Suppose ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, /* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis ( I  compatible term .strii~ture$ict~r model and there 

is ci,finitr solution to thLJ ortlinrrry differential equcrtiori (3.9). I f  p, o ( T ~ ,  and R are ufine, 
theii J' is e.pizential afine. Conversely, $,f is exponential ufine and there e.sist iiiutiiritie.~ 

m ~ ,  . . . , n i ~  such that C(m1, . . . , I R N )  is nor~singiilar; theti p ,  (TO'> urid R ure uflne. 

Proof: First, suppose that p, uuT, and R are affine. Consider the candidate solution 
for .f' given by (3.1) for some A and B .  If we can choose A and B so that (3 .5)  is satisfied, 
then the first part of the result follows. Since (3.9) has a unique solution, so does (3.10), 
and there is indeed a solution A and B to (3 .5) ,  implying (since ,f is uniquely defined) that 
,f is exponential affine. 

Conversely, suppose that ,f is exponential aftine. Then R is affine. I f ,  moreover, there 
exists wz 1 ,  . . . , m~ such that C ( m  I ,  . . . ~  in^). as defined above, is nonsingular, then there 
is a unique solution H ( . ) to (3.8), which is a linear combination of affine functions, and is 

0 therefore affine. This completes the proof. 

Note that the solution for ( A ,  B) is not uniquely detined by the coefficients of the affine 
forms p and o m T ;  it also depends on the coefficients defining R .  Although there are few 
closed-form solutions for Ricatti equations, the solutions can be quickly computed numer- 
ically; an example is given later in  the paper. For the one-dimensional cases considered 
by Vasicek (1977) and Cox, Ingersoll, and Ross (198Sa), there is an explicit solution for 
( A ,  B ) .  Likewise, for the previous extensions of the CIR model in the literature, there is an 
explicit solution for B by virtue of the fact that .f' is of the forin of a product n, , j ;  (X"', 5). 

where f, is of the form of the CIR discount bond-price function. Chen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  995) provides a 
three-factor special case, distinct from the three-fdctor CIR model, for which closed-form 
solutions are also available. For the case of p and 00' that are affine but time-dependent, 
the same affine yield model (3.1) applies, with ( A ,  B )  the solution of Ricatti equations with 
time-dependent coefficients. 

4. THE AFFINE STOCHASTIC DIFFERENTIAL EQUATION 

As indicated by the last theorem, the affine class of term structure models seems to be 
well behaved and offers reasonable tractability, via (3.9) and (3.10). Now we address the 
conditions on the domain D and the coefficients of the affine forms p and a m T  under which 
there is indeed a unique (strong) solution to the SDE (2.3). 

Without loss of generality for our purposes. we take (r to be symmetric, because for 
empirical issues or asset-pricing purposes therc is no effect of replacing a(x) with a matrix 
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square root zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x by x) of a ( ~ ) a ( x ) ~ .  The appendix shows that, if aaT is affine in x, then, 
under nondegeneracy conditions and a possible reordering of indices, we can take (2.3) to 
be of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dWl,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE D ,  

m 0  . . .  

0 JiqxJ ’ ‘ _  0 

. . .  0 

d X ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ax, + b) d t  + C 

(4.1) 
where a E R“”“, b E R“, and C E R““”, and 

where, for each i ,  ai is a scalar and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi E R” . For existence of unique solutions, coefficient 
restrictions apply, as indicated below. 

The coefficient vectors P I ,  . . . , Bn generate “stochastic volatility” unless they are all 
zero, in which case (4.1) defines a Gauss-Markov process. The Gauss-Markov (constant 
volatility) case, originally treated by Vasicek ( 1977) and Langetieg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  980), is reconsidered 
by El Karoui and Lacoste (1992) in independent work in the framework of Heath, Jarrow, 
and Morton (1992). This Gaussian case certainly presents no difficulty in terms of existence 
and uniqueness of solutions to (4. l ) ,  provided D = R”. With stochastic volatility, however, 
there is an existence issue to consider. 

There are actually two delicate issues to overcome in order to ensure strong solutions to 
(4.1). First, the diffusion function a is not Lipschitz. Second, the volatility process ui ( X , )  
clearly must be nonnegative for all i and t .  The open domain D implied by nonnegative 
volatilities is 

(4.3) D = { x  E R”: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu , ( . x )  > 0, i E ( I ,  . . . ,  n ) } .  

We must ensure that there is a unique solution to (4.1) that remains in D .  For a solution 
X to exist, we will therefore need to assume, in  effect, that for each i the volatility process 
u , ( X , )  has a sufficiently strong positive drift on the ith boundary segment 8 D ;  = (x E 
D :  U j ( X )  = 0). 
- 

CONDITION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. For all i: 

(a)  
(b)  

For all x such that u, (x) = 0, ,8: (ax + h )  > /3: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC C TBL /2. 
For all j ,  if (BT C), # 0, rhen u, = u,. 

Both parts of Condition A are designed to ensure strictly positive volatility, and they are 
both effectively necessary for this purpose. Part (b) ensures that the ith volatility term, when 
at zero, cannot be driven “negative” by dependence on other nonzero volatilities. (This part 
(b) can be relaxed to replace ‘ ‘ui = u,,” with “u, = kuj  for some positive scalar k,” but 
that scalar k can be absorbed into the constant matrix C and treated as 1 without loss of 
generality.) Condition A is not generically satisfied and is a significant restriction on the 
model. An example satisfying Condition A (beyond the obvious Gaussian case of = 0 
for all i )  is given later. The “stacked’ univariate “square-root’’ processes appearing in Cox, 
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Ingersoll, and Ross (1  985a), Heston (1 99 1), Longstaff and Schwartz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 992), and Chen and 
Scott (1993b) all satisfy Condition A. Part (b) allows for (and goes beyond) the stacking of 
multivariate versions of the CIR model, each component of which is a multivarate process 
of the form in (4.1) with identical stochastic volatility term in each dimension. 

Regarding part (a) of Condition A, Ikeda and Watanabe (1981) show that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABTb > 
B;CCTB,/2 is necessary and sufficient for zero to be an entrance boundary (that is, never 
hit) for a univariate process V defined by dV,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABI . h d t  + C dW, with Vo > 0. The 
proof, found in the appendix, of the following theorem extends this idea to the multivariate 
case, using part (a) of Condition A. Again, the intuition is that a sufficiently positive drift for 
the process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, ( X , )  near the boundary where its own “volatility” is zero will ensure that this 
boundary is never hit. The proof is somewhat complicated by the fact that the square-root 
function appearing in the diffusion has a derivative that approaches infinity as the stochastic 
volatility term u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) goes to zero. The reader uninterested in the details can easily skip the 
proof, found in the appendix, at no cost to what follows. 

THEOREM. Under ConditionA there is a unique (strong) solution X in D to the stochastic 

differential equation (4.1)-(4.3). Moreoever; ,for this solution X ,  and for  all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, we have 

ui ( X , )  > Ofor all t almost surely. 

It is worth remarking that for the state process X given by this theorem, there is always 
a strictly positive nonconstant short rate process R ( X , ) .  This follows from the separating 
hyperplane theorem and the fact that D ,  as an intersection of open half-spaces, is a convex 
open set. For example, one could take R ( x )  = xi y; u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x )  for nonnegative y, . 

5 .  THE AFFINE YIELD-FACTOR MODELS 

The previous sections presented a relatively general theory of affine term structure models 
with abstract factors. At this point we would like to consider situations in which, for fixed 
maturities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA51, . . . , tn, for each i and t ,  we can view X i ,  as the yield at time t on a zero- 
coupon bond of maturity t i .  The practical advantages of choosing factors that are yields 
at fixed maturities seem evident. In order for ( . f ,  p, a)  to be an affine factor model with 
f (x, t) = exp(A(t) + B ( t )  . x ) ,  and 

- I  

t i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, = -log f ( x , t , ) ,  x E D ,  i E 11 , . . . ,  n ] ,  

we need not only the initial conditions A ( 0 )  = 0 and B(0)  = 0 for (3.9) and (3.10) but also. 
for all i .  

We call a compatible factor model (f, p, a) satisfying (3.1) and (5.2) an u 6 n e  yie1d:factor 

model. 

There are two possible ways to construct an affine yield-factor model. One is to suppose 
from the beginning that the factors are yields, and to ensure that the coeffcients defining 
(f, p,  a) are chosen so that (5.2) is satisfied. We will get to this direct approach a bit later. 

The other, indirect, approach is to allow X to be the state process for an arbitrary affine 
factor model ( , f ,  p, a), and to attempt a change of variables from the original state vector 
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X, to a new yield state vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR“ defined by 

Provided the matrix K ,  whose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, j)-element is - B , ( t ; ) / t , ,  is nonsingular, we know that 
X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= K-‘ (Y ,  + k ) ,  where ki = A(s,)/ t , ,  making the change of variables possible. In this 
case, we can write 

(5.4) dY,  = p * ( Y , ) d t  + a*(Y t )dW, ,  

where 

(5 .5)  

which is well defined in the domain D* = { K x  - k :  x E D } .  The equivalent term structure 
model is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f*, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp*, a*), where 

p * ( y )  = K p ( K - ’ ( y  + k ) ) ,  O * ( Y )  = K d K - Y y  + k ) ) ,  

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA * ( s )  = A ( t )  + B ( T ) ~ K - ’ ~  and B * ( T ) ~  = B ( T ) ~ K - ’ .  Clearly, ( f * ,  p*,  a*) is an 
affine yield-factor model. 

While we have accomplished our goal indirectly, via this change of variables, for practical 
purposes the “covariance” function a*(. )a*(. )T defined by (5.5) may be cumbersome to 
“calibrate” to observed volatilities or correlations, say from current or historical option- 
related price data, since the matrix K depends, via a solution of the Ricatti equation (3.9) 
and (3.10), on the original parameters defining p and a. There may be some practical 
reasons, then, to begin with an affine factor model ( f ,  p,  a) for which the state vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  
is already treated as a vector of yields at fixed maturities tl , . . . , r,. The matrix C and 
the volatility-related coefficients al and jl, could be chosen directly from calibration or 
econometric estimation, or both. There remains, however, the question of consistency with 
the definition of X,, as the zero-coupon yield for maturity s,, that is, with the boundary 
condition (5.2). Only by adjusting the coefficients in p or a can we expect the solution to 
(3.9)-(3.10) to satisfy both the initial (zero) boundary conditions as well as the boundary 
conditions in (5.2). At the same time, we need to respect Condition A of Section 4, which 
guarantees the existence of a solution to the stochastic differential equation defined by 
(p ,  a). We do not have theoretical results describing how certain coefficients can be fixed 
in advance and others can be adjusted SO as to achieve consistency with these various 
conditions. In practice, however, we have encountered no problem in fixing the coefficients 
in a and then adjusting the drift coefficients so as to obtain consistency, at least in two- 
factor implementations. Certainly, by counting the number of equations and the number of 
unknowns, this success is not surprising. In the next sections we explain how to do this for 
two-factor versions of the model. 

6. SIMPLE EXAMPLES 

As an example to illustrate our method, we give more explicit treatment for special cases 
involving a single volatility factor or the nonstochastic volatility case: = 0. In the latter 
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case, the solution of the stochastic differential equation for the factors is Gaussian. The 
independent work of El Karoui and Lacoste zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  992) is in this Gaussian setting, although 
they work with forward-rate models in the Heath-Jarrow-Morton framework. That is, they 
actually take the factors to be the forward rates at certain maturities, in the sense of Heath, 
Jarrow, and Morton ( 1  992). Since the yield at any maturity is affine in the factors, yield- 
factor and forward-rate-factor models are mathematically equivalent in our setting, but HJM 
goes beyond this by allowing any initial term structure. El Karoui and Lacoste also provide 
extensive discussion of the choice of factors. (See also Frachot, Janci, and Lacoste 1992 as 
well as Frachot and Lesne 1993 for factor representations of the model.) 

From this point, for simplicity, we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( X O , ,  X I , ,  . . . , X, l - l , r ) ,  with R ( X , )  = Xor. 

That is, we take one of the factors to be the short rate itself. The slight changes in notation 
occasioned by this should be apparent without further comment. We also take a single 
stochastic volatility term, namely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu i ( x )  = u j ( x )  = a + ,!3 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx for all i ,  j ,  and x. 

While it is traditional to take one of the factors to be the short rate, there is no need for 
this. In fact, taking the short rate itself as a state variable can cause empirical difficulties, at 
least if the model is fitted to “short-rate” data, which tend to have idiosyncrasies. Indeed, 
one may argue that the short rate itself is literally unobservable, as it is a limit of yields, 
rather than a yield itself. 

In this special case, (3.9) to (3.10) can be written zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A’ ( t )  = b B ( t )  + - q ( t ) ,  
2 

(6.1) 

Bo 
BA(t) = a0 ’ B(r)  + -q( t )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,  

2 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=0 J=o 

For the case of deterministic volatility, defined by B = 0, the last II equations form a 
simple linear system and have the standard solution 

where { $ i J )  are constants that can be easily computed and (11, . . . , k,,} are the n roots 
(assuming no multiplicity) of the characteristic equation 
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This solution for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB is then put into the first equation of(6.1) to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA by easy integration. 
If we use only first the two factors, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxg and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I ,  we have 

(6.4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = - 2 (a00 + U I  I f 
1 

where A = a(:() + 
written as constraints on the drift coefficients of the form 

+ 4aolalo - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2aooml1. The constraints in (5.2) can then be explicitly 

This deterministic volatility example is extended in Section 10, where we offer explicit 
and numerical solutions for bond option prices by adapting to our model the results of 
Jamshidian (1989, 1991), El Karoui and Rochet (1989), and others. 

7. TWO-FACTOR STOCHASTIC-VOLATILITY MODEL 

We now concentrate on the two-factor case. First, we consider the coefficient restriction 
required for nonnegativity of volatility. In this case, the “hyperplane” defining zero volatility 
is given by 

(7.1) 

Without loss of generality if 
On H ,  the drift function for V, = (Y + BoXo, + 

H = ( ( ~ 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI): + Box0 + Pixi = 0). 

# 0, we take = 1, so that on H we havexl = -(cr+Boxo). 
X I ,  is therefore 

where 

In this case, an affine yield-factor model calls for b, a ,  and C in a manifold satisfying (6.1), 
(5.2), and 

(7.2) ko > 0 and k l  = 0. 

We give an example in Section 9. 
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8. FINITE-DIFFERENCE SOLUTION OF DERIVATIVE ASSET PRICES 

By the definition of an equivalent martingale measure, an asset defined by a payoff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu at 
time T has a price at any time t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT given by 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is a random variable that is a measurable function of the term structure at time T ,  then 
(since the term structure is itself a measurable function of the state variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXr), we can 
write u = g ( x T )  and express the price in the form 

Under mild regularity conditions (see, for example, Friedman 1975), the unique solution 
to (8.1) satisfies the PDE 

where D F ( x ,  t )  is as defined by (3.3), with boundary condition 

There are well-known finite-difference algorithms for solving a parabolic PDE of this 
form. In order to simplify the numerical solution in the two-factor case described in the 
previous section, it is convenient to make the change of variables 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 = BICIC: + ,&COC~ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABoCoC: + /J~C,IC;. It is easy to see that 
0 5 y 5 I and -n/2 5 z 5 n / 2 .  

The inverse of this transformation is given by 

(8.5) 
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where 

Then (8.2) is written, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ( y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ,  t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F(xo ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX I ,  r ) ,  in  the form 

where 

Pf = k2y2(1 - y) cos(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pz = 

with 

The reduction of (8.2) to (8.6) has two main advantages. First, we have converted the 
coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo and XI, which in general take any real values, to coordinates y and z that 
take values in compact sets. An evenly spaced grid over these compact sets implies a 
concentration of grid points in the original variables that can be controlled for accuracy of 
the solution, placing greater grid density near more frequently encountered rates. Second, 
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we have orthogonalized the system so that an alternating-direction finite-difference method 
can be applied, given the absence in (8.6) of cross partial derivatives in the two new space 
variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and z .  For the alternating-direction implicit method, see Ames (1977) and Press 
et al. (1988). 

9. STOCHASTIC VOLATILITY EXAMPLE 

In this section, we give an example of the two-factor model discussed in last section. 
We first solve the two-dimensional ODE 

where 

(9.2) 

subject to the initial conditions Bo(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= B I  (0) = 0, using the fourth-order Runge-Kutta 
method. The resulting solution (Bo,  B I )  depends on the parameter vector ( a ,  C). Then, 
fixing C, we use a Newton-Raphson algorithm to solve for a so as to match the consistency 
conditions Bo(s1) = 0 and B I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(tl) = - t l  of (5.2). As is well known, the success of the 
Newton-Raphson method in several dimensions depends critically on the accuracy of the 
first guess. We suggest that one finds the solution to the deterministic volatility case, and 
use that as the first guess here. For the fourth-order Runge-Kutta ODE solution method and 
Newton-Raphson search method, please see Press et al. (1988). 

Given the solution of (9.1) for B ,  we numerically integrate 

q ( t )  = CoC;B;(t) + C ,  C;B:( t )  + 2CoCI’Bo(t)B1(t), 

to obtain A, and then choose bo and bl so as to match the consistency condition A ( t 1 )  = 0. 
As an example, we fix the parameters: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbo = -0. I ,  a01 = 0.76, CoC; = CI  CT = 0.9, 

CI C i  = 0.7, a = 0.05, = -1.08 and BI = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. We use the Newton-Raphson method 
to find aoo and all satisfying the consistency conditions. The rule used to terminate the 
Newton-Raphson iteration is to stop when both IBo(rt)l < 0.0001 and IBl(tl) + 51 I < 
0.0001. Table 9.1 presents an example of the results. The grid size is the reciprocal of the 
step size used to numerically solve the ODE. The coefficient a10 is calculated by setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kl = 0 in (7.2), while bl is calculated by setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( t 1 )  = 0. The resulting set of parameters 
satisfies Condition A for the existence and uniqueness of solutions to the SDE (4.1)-(4.3). 

Using the parameters obtained above, we use the alternating-direction implicit (ADI) 
method to solve the PDE (8.2) in the form of (8.6). In relative terms, solving for the 
parameters b and a is a much faster procedure than solving this PDE for given parameters. As 
is well known, there is no general theory guaranteeing the convergence of the AD1 algorithm 
when applied to a specific problem. In our case, this method is in fact divergent near some 
boundaries, perhaps due to the rapid change of the value of F near those boundaries. 
(Indeed, k is infinite along some boundaries because xo and XI  can be negative in this 
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TABLE 9.1 
Example Parameter Solution 

10001 -0.6419 3.7377 -3.900 0.1278 
20001 -0.6418 3.7374 -3.900 0.1278 

TABLE 9.2 

(bond option prices in parentheses) 
Example Finite-Difference PDE Solution of Bond and Bond Option Prices 

Grid size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN Exact 

Short rate (XO) Long rate (XI )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I 1  22 1 33 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 

0.1070 0.1584 0.8464 0.8531 0.8532 0.8535 

0.0336 0.079 1 0.9 179 0.925 1 0.9246 0.9240 

0.07 10 0.0593 0.941 1 0.9420 0.9421 0.9424 

(0.0578) (0.0610) (0.0606) 

(0.0888) (0.0926) (0.0922) 

(0.0879) (0.0886) (0.0883) 

parameterization of our model.) In order to restore convergence, we apply the AD1 algorithm 
on the domain y E [SI, 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA821 and z E [-n/2 + 83, n/2 - 841, where 61, 82, 8 3  and 84 are 
small nonnegative numbers. By appropriately choosing these small numbers, we indeed 
obtain convergence as shown below. The computation time can in principle be improved 
by “hopscotch” methods, which alternate implicit and explicit steps4 

In order to examine the precision of this method, Table 9.2 shows numerical results for 
the price of a zero-coupon bond with 1 unit of time to maturity. The exact result is given by 
exp(-xl). In parentheses, we also give the numerical solution to the PDE for the price for 
an American call on this bond maturing at time 0.5, with strike price 0.9. We have chosen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h = k = 12.5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI = 0.01, a2 = 87 = 0, and 84 = 0.01. 

10. DETERMINISTIC VOLATILITY BOND OPTION PRICING EXAMPLE 

In the case of a short rate process that can be viewed as a component of a multivariate 
Gauss-Markov process, Jamshidian (1989, 1991), El Karoui and Rochet (1989), and others 
have computed the prices of bond options explicitly. In this setting, we can use our results 
to restrict the coefficients of the Gauss-Markov process so that the state variables can be 
taken to be yields. We thereby obtain a convenient example in which bond option prices can 
be computed in terms of the yields at the basis maturities, and can thus verify the accuracy 
of our numerical solution for option prices against the explicit solution. 

‘We have subsequently found that a variation of the AD1 method, which averages the short rate between grid 
points associated with transitions, performs substantially faster. For the one-dimensional case, see Chapter I 1 of 
Duffie ( I  996). 
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For our example, we take the two-factor deterministic volatility yield-factor model, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 and #lo = = 0. Under the variable transformation 

(10.1) y = arctan(kxo), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = arctan[h(CoC:xl - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC06:xo)], 

the PDE (5.2) can be written in the form of (8.6), with 

k3hCoC,T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cry = coss (y) cos(z),  

For the sake of convergence, we restrict ourself to the domain y E [ - n / 2  + 61, n / 2  - 621 

and z E [-n/2 + 83, n/2 - 641. 

By applying the results of Jamshidian (1 989, 199 1 ), it can be shown that the price at time 
r of a European call option on a zero-coupon bond that pays $1 at time T ,  with strike price 
K and expiration time t* < T ,  is given by 

where 

N (  . ) denotes the cumulative standard normal distribution, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT* is the function on [O, t*] 
given by cr*(t)2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf* H ( s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAds, where 

with Bo(.  ) and B I (  . )  as given in (6.2). The option pricing formula (10.2) is a version of 
the Black-Scholes (1973) formula. 
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TABLE 10.1 
Bond and Bond Option Prices with Deterministic Volatility 

(bond option prices in parentheses) 

Grid size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn Exact 

Short rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X O )  Long rate ( X I )  

0.1 106 0.175 1 

0.05849 0.03509 

0.02635 0.07344 

1 1 1  

0.8490 
(0.1 158) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 .ooo 1 
(0.1761) 

0.9493 
(0.1520) 

22 1 

0.8376 
(0.1060) 

0.9671 
(0.1677) 

0.928 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
(0.14 15) 

33 1 

0.8403 
(0.1065) 

0.9668 
(0.1681) 

0.9309 
(0.1424) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

co 

0.8394 
(0.1065) 

0.9655 
(0.1679) 

0.9292 
(0.142 1 ) 

For our numerical example, we take bo = -0.1, bl = 0.6453, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAam = -0.9651, a01 = 
0.59, = -3.21, all = 3.5802, EoXd = XiCT = 1.0, XoET = 0.6, k = h = 12.5, 
J 1  = & = 0.01, and 82 = S4 = 0. 

option expiration time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt* = 0.5, and bond maturity T = 1 .O. 
Table 10.1 shows the computed prices of a European call with strike price K = 0.9, 

1 1. JUMP-DUFFUSION STATE PROCESS 

Because of the possibility of sudden changes in perceptions of future interest rates, one may 
wish to allow for “surprise” jumps in the state vector X. For example, one can maintain 
the affine yield-factor model with a standard jump-diffusion model for X based on the 
infinitesimal generator V* defined by 

(11 .1)  D * F ( x ,  t )  = D F ( x ,  t )  + h ( ~ )  [ F ( x  + Z ,  t )  - F ( x ,  t ) ] d u ( z ) ,  

where D is the diffusion generator defined by (3.3), h: D -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE+ is an affine function 
determining the arrival intensity h ( X , )  of jumps in X at time t ,  and where u is a fixed 
probability measure on R” defining the distribution of jumps. As before the zero-coupon 
bond price with maturity T has a price F ( X , ,  t )  at time r ,  where, under technical regularity, 
F solves the PDE 

(11.2) D * F ( x ,  t )  - R ( x ) F ( x ,  t )  = 0 

with boundary condition 

(11.3) F ( X ,  T )  = 1 

With p, uoT, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  and h all affine functions on the state-space D ,  the PDE (1 1.2)-( 1 1.3) 
is, under regularity, solved by usual exponential affine form 

(11.4) F ( x ,  t )  = exp [a(T - t )  + b(T - 1 ) .  X I ,  



398 DARRELL DUFFIE AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARUI KAN 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa :  [0, TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh: [0, TI + R” are solutions of ODES that are easily computed 
numerically in many cases. It is convenient, as one can see from substituting ( I  1.4) into 
( I  1.2) in order to derive the ODE for h, to choose a distribution u whose Laplace transform 
H ( .  ) is known explicitly, so as to avoid a numerical computation of the term 8(b(T  - 
t ) ) .  Combinations of exponential, binomial, degenerate (fixed jump size), and Gaussian 
distributions are convenient, although one must take care to choose a distribution that 
ensures that the state process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  jumping from any point in the state space D ,  remains in 
the state-space. For a Gaussian special case (in which o m T  is constant and u is a Gaussian 
distribution on D = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARn), closed-form solutions are given by Das (1993). Closed-form 
solutions are also available when one chooses ’D to be the generator associated with the 
multifactor CIR model, and takes u to be a product of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn exponential distributions. 

By changing the boundary condition ( 1  1.3) to one appropriate for a given derivative 
payoff, one can also value the derivative security. Numerical solution of the PDE by 
finite difference is relatively straightforward, although the usual staircase algorithm for 
inverting the implicit difference step is not directly applicable with nondegenerate jump 
distributions. We have successfully implemented a numerical algorithm for option valuation 
with exponential jump distributions in two-dimensional special cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Also, with jumps, it may be impossible to perfectly hedge a given claim with fewer 
positions in other claims than the cardinality of the support of the jump distribution u .  

APPENDIX: SDE RESULTS 

This appendix addresses the form and existence of “affine stochastic differential equations,” 
those in some state-space D c R”, of the form 

where p: D --f R” and m u T :  D --f M,T are affine, taking M to denote the space of real 
n x n matrices, and M ,  c M to denote the subset of symmetric matrices. 

Since 0 = uoT is affine, for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j we have Oi;(x) = ui,, + bi; . x, for some u;,, in 
R and bi, in R“. For each i in L = {i: bii # 0}, the affine space A ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc R” of roots to the 
equation ai, + b,, . x = 0 is an (n - 1)-dimensional manifold defining points that, if in the 
state space, would be associated with zero “instantaneous” variance of the changes in the 
state process X .  

We will fix a particular “canonical” state-space S c R f f .  Since the diagonal elements of 
O(x) must be nonnegative for211 x, and are affine in x, we know that S is contained by 
the intersection of half-spaces S i  (x: O;i(x) 2 0, i E L ] .  In fact, up to closure, it is 
reasonable to suppose that S = S, since a point x in the boundary of S that is not in the 
boundary of F is in the interior of 5. At such a starting point (barring degeneracies) the 
state process X would exit from S .  We therefore take the canonical state-space S to be 5;. 

Allowing for the possibility that A;  = Aj for some i # j ,  we can always choose some 
minimal subset K c L such that 5; = (x: Oi i (x )  L 0, i E K ) .  

NONDEGENERACY OF 0. The set (b,i: i E K ]  c R” is  linearly independent. 

For example, nondegeneracy rules out parallel boundaries for the state-space S, which is 
ruled out in any case by consideration of existence of solutions to the SDE for X ,  unless two 
of the coordinate processes Xi and X ,  are scalings of each other, Under nondegeneracy, 
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A 

the submanifold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, n S is also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n  - 1)-dimensional. The boundary of S is U I E K  A , .  
A strip is a set of the form (x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR”: c 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ( x )  5 d )  c R“, for some c E R, d E R, and 

linearu: R” + R. 

LEMMA A. 1. I f  0 is nondegenerate then S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis nor contained by a strip. 

Proof Suppose not. Then there exists some linear u :  R“ + R such that c 5 u ( x )  5 d 

for all x in S. Let y be a nonsingular linear transformation of x with y1 = u ( x ) .  (That is, we 
pick some invertible linear Y :  R“ --+ R” such that Y I  (x) = u ( x ) ,  x E R“. Throughout, we 
write “y” for “Y(x ) , ”  for any typical point x in W.) For each i E K ,  we have b,, . x = b, . y 

for some 6, in R”. It follows from nondegeneracy that { G I :  i E K }  is linearly independent. 
There exists some i E K and some # 0 such that GJ . j = 0 for all j # i 
and 6, . j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. Hence, for any y E Y ( S ) ,  y + j E Y ( S ) .  Then, in order to have yl 2 c ,  j l  

must be positive. But in order to have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy1 5 d ,  0 

- 

E Iw” with 

must be negative, a contradiction. 

We will say that a result applies to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 “up to a reordering of indices” if the result 
applies after replacing 0 with the function x H ( @ ( ~ ) . ~ ~ , , . ~ j , ) ,  for some permutation 
r :  ( 1 ,  . . . ,  n }  --+ ( I ,  . . . ,  n ) .  

Since we can, without loss of generality for our purposes, replace (T with any measurable 
“square root” of 0, it is without loss of generality that we suppose CT (x) to be symmetric 
for all x. 

LEMMA A.2. If0 is nondegenerate, then, up to a reordering of indices, 

where 1 5 M 5 n,  and for  i E ( 1,2 ,  . . . , M I ,  B, is an N, x N ,  positive semidefinite 

symmetric matrix, with N, = n,  and where u 1, . . . , u~ are afine on R” into R, with 

linear components that are painvise linearly independent. 

Proof Because (T (x) is symmetric, we have 

Especially, 

n 

Hence, for x such that O,, (x) = 0, we must have CT, ’~ (x) = 0 for all k and thus Of, (x) = 0 
for all j .  From this, we will show that 8,, ( .  ) is proportional to O,, ( A), proving the result. 
There are two possible cases. 
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(1) Suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO i l ( .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) is not a constant. By the 5bove reasoning and nondegeneracy, 
both C9ii and Oij are zero everywhere on Ai ,  which is a relatively open subset 
of an (n - 1)-dimensional affine space, A i .  We can treat Ai  as a translation 
by some (possibly zero) scaling of bii of the linear subspace gi orthogonal to 
bi,. Since Ai is relatively open and O i ;  is zero everywhere on Ai, bij must also 
be orthogonal to Mi, and thus bij = ki;b,,for some constant kij . We now have 
al i+bi,  .x = 0 =aij+k,;b; i .xforal lxinAi. Thiscanonlybetrueifai; = ki;uii. 
Thus, for some constant scalar kij (possibly zero), we have 0,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk , ,  O i i .  

Suppose @ i t (  . )  is constant. In this case, @il(x) must also be a constant. If not, 
the submatrix 

( 2 )  

1 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0;; (x) oj; (x) 
Oij (x) oi; (x) 

cannot be semipositive definite, shown as follows. There are two subcases to 
consider. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,i.i is constant, and Oi, is not, the fact that S is not contained by a 
strip implies failure of positive-semidefiniteness. If Oil is not constant, then, from 
case ( I ) ,  Oi, (x) = 0,; (x) can be written as kli O;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) for some constant scalar k;, . 
The determinant of the above submatrix is then Oii(x)Oj,(x) - k;iC3;j(x). This 
determinant can be arbitrarily negative because S is not contained by a strip. This, 
however, contradicts the positive-semidefinite nature of O ( x ) .  

PROPOSITION A. I .  Suppose 0 is nondegenerute, and there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis  some X E S such that 0 ( X )  
is positive-definite. Then there exists a nonsingulur constant matrix Q such thut 

where, for euch i ,  Vi: R" + R is afine. 

Proot We can always write O ( x )  = A + A ( x )  where A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE M,y and A is of the form 
(A .2) ,  for linear ui .  There exists some nonsingular constant matrix P such that P A  PT is 
diagonal. Since P A ( x )  PT is symmetric and linear in x, it must have the form given by the 
right-hand side of (A.2), for linear u i .  Therefore, up to a reordering of indices, we have the 
block-diagonal form 
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where, for each block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, is diagonal and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, is symmetric. Consider a particular diagonal 
block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi .  For some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, as assumed, A,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,u,(X) is positive-definite. By a result found in 
Hohn (1964), there exists some nonsingular matrix Q, of the dimensions of A, and B, such 
that Ql (A,  + B,u, (X)) QT is the identity matrix and Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, Q,' is diagonal. Noticing that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ai + B;u, ( x )  = A, + B,u,(~) + B~(u,(x) - u,(X)), 

we can let 

Since a diagonal matrix is diagonal even after a reordering of indices, we have the result. 0 

COROLLARY A. 1. Under the assumptions c f l  Proposition A. 1, 

\ 
0 0 ' .  

. 0  
' 0  

where C is a nonsingular matrix and uI , . . . , u, are afine functions. 

Proot From Proposition A. 1 ,  there exists a nonsingular matrix Q such that Q @ ( x )  Q' = 
Q ( x )  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, where e ( x )  is diagonal for all x and affine in x .  Let u,(x) = Q,,(x) and 

0 C = Q-' . The conclusion follows immediately. 

This implies another characterization, as follows. 

COROLLARY A.2. 0 has the properties assumed in Proposition A. l  i f  and only i f  

n 

O ( x )  = c v, V,TW,(x), 
r = I  

where the vectors V,  , . . . , Vn are lineurlv independent in R" , the functions Wl , . . . , ZU,, are 

afine on R" and nonnegative on S ,  and the set {x: 2zIi > 0 ,  i E ( 1 , .  . . , n } )  has an 
interior point. 

We have by now characterized 0 and o ( . ) under the implicit assumption that the state- 
space D is of the form taken for S,  that is, a closed intersection of half-spaces. In fact, we 
can and do take D to be the interior of S and apply conditions (Condition A of Section 4) 
that prevent the boundary of S from being hit. This is the focus of the remainder of this 
appendix. 
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In order to state the comparison lemma used in the proof of the theorem in Section 4, we 
record the following property of a diffusion function. 

YAMADA CONDITION. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+ + R satisfies the Yamada condition ij'bounded 

and measurable, and ifthere exists a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp:  E%+ + R,, strictly increasing, continuous, 

with p(0)  = 0, so+ p(u ) -2du  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+00, and l a ( u )  - o ( u ) l  5 p ( ( u  - u1)forall u and 2'. 
I 

For example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACJ satisfies the Yamada condition if ~ ( u )  = min(f i ,  k )  for some constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k .  

LEMMA A.3. Suppose that Z is a standard Brownian motion, (T satisjies the Yurnudu 

condition, and p:  R -+ R is Lipschitz. Then there is a unique (strong) solution to the SDE 

Suppose, moreover; that Y * is a process satisfiing 

where q is a progressively measurable process such that 

fiw all t alnzost surely. 

> p (Y,  ),for all t .  Then Y;" > Y, 

Proo$ The proof shown in Ikeda and Watanabe (1981, pp. 168-170) implies existence 
and uniqueness of the solution to (A.6). For the second assertion, we can extend a standard 
SDE comparison result (for example, as in Protter 1990). An extension is called for since the 
usual (Gronwall-inequality-based) proof relies on a Lipschitz condition for the diffusion. 
It is enough to show that E [ ( Y ,  - Y,*)+] = 0 for any time t ,  which we will do with a slight 
variation of the Ikeda-Watanabe uniqueness proof. Let 

where I/J~ is defined exactly as in Ikeda and Watanabe (1981, pp. 168-169), in terms of the 
function p satisfying the properties specified in the Yamada condition. Almost exactly as 
in Ikeda and Watanabe, we have qn E C2(R), 0 5 qk(u)  5 1, and q,(u) .T u+ as n -+ 00. 

Now, 
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The equality is an application of Ito’s lemma, using the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp,; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn are bounded. 
The inequality follows from the negativity of the first expectation, the Yamada condition, 
and the fact that cp”(u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 2p-* (14) /n ,  following the calculations in Ikeda and Watanabe 
( 198 1, pp. 168-1 70). Letting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIZ pass to infinity, dominated convergence implies that 

which is the desired result. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Proof of Theorem 

First we take the case in which u ; ( x )  = u ( x )  = a + B . x for all i .  Then we generalize. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( c j l }  be a positive strictly decreasing sequence of numbers converging to zero. For 

each n ,  let X(”) be the solution of the stochastic differential equation defined by (4.1 ) for 
f 5 r,, = inf{s: u ( X ? ) )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,,} and by X ( ” ) ( t )  = X ( ” ) ( t , , )  for f 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,?. This is the process 
satisfying (4.1) that is absorbed at the boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x: u ( x )  = Since the coefficient 
functions defining (4.1) are uniformly Lipschitz on the domain ( x :  u ( x )  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc , ~ )  X”’) is 
uniquely well defined and is a strong Markov process by standard SDE results. 

With q) = 0, we can now define a unique process X on the closed time interval [O. 001 
by X, = XI”) for q-1 5 t 5 t f l ,  and by X, = xo for t 1 t = lirn,! t,,. If t = fcc almost 
surely, then X uniquely solves (4.1) on [O. m), as desired, and is strong Markov. 

We let V, = u ( X , ) ,  the “volatility” process, and write dV, = q ( X , )  d t  + G B T C  dW,, 

where q ( x )  = BT(ax+h).  Without loss ofgenerality, we can assume that el is close enough 
to 0 that, using Condition A, we have a constant ij > B T C  CTB/2 such that q ( x )  > > 0 
for all x in the strip (x: 0 5 u ( x )  5 e l ) .  We can assume that u(x0)  > el, also without loss 
of generality. We construct a strictly positive “comparison volatility” process c such that 
V, 2 for all t almost surely. With this, t,, > S,, = inf[t: el = t f l )  + +cm almost surely, 
completing the proof. 

In order to construct c,  we first construct the “excursions” of X defined by passages of 
L ~ ( X , )  from t 2  to e l .  The excursion time intervals are [ T ( i ) ,  T * ( i ) ] ,  where T*(O) = 0 and, 
for i > 1, 

T ( i )  = inf{t 2 T*( i  - I ) :  u ( X , )  = c l } ;  T * ( i )  = inf(t 2 T ( i ) :  u ( X , )  = ti). 

Fort E [ T ( i ) ,  T * ( i ) ] ,  let 

(A.8)  

where 2 = BTC W (that is, 2 is a multiple ot’a standard Brownian motion). For t in other 
(nonexcursion) intervals [ T * ( i ) ,  T ( i  + I ) ] ,  let 6, = V,. The process c is strictly positive. 
This is obvious off excursions, and during excursions i t  follows from Ikeda and Watanabe 
(1981). 

We claim that c, 5 V, for all t almost surely. Clearly this inequality is maintained off 
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excursions. During the ith excursion, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is given by 

(A.9) 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< q ( X , )  for all t E [ T ( i ) ,  T * ( i ) ] ,  the comparison lemma appearing before this 
proof shows that Qt 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, during excursions, almost surely. Thus ‘i, 5 V, for all t ,  almost 
surely. The proof is complete in the case considered, a single stochastic volatility factor. 

Now, for the general case, let 

D,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X  E D :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv , ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi E ( 1 ,  . . . , n ) )  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As before, there is a unique solution X ( ” )  to (4.1) in D,, up to the hitting time t,, = 
inf(r: mini u, (Xj”’)  = en], and we let X‘”)(t) = X ( ” ) ( T , ~ )  for t  2 T , ~ .  Again we define X as 
the limit process. The proof proceeds as before, except that there is a volatility comparison 
process qi for each i ,  defined as above. By exploiting part (b) of Condition A, essentially 
the same arguments as above show that, for all i ,  we have u, ( X , )  2 pi, > 0 for all t almost 
surely. The result then follows as in the simpler case first considered. 
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