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A Zernike Moment Phase-Based Descriptor for Local
Image Representation and Matching

Zen Chen and Shu-Kuo Sun

Abstract—A local image descriptor robust to the common
photometric transformations (blur, illumination, noise, and JPEG
compression) and geometric transformations (rotation, scaling,
translation, and viewpoint) is crucial to many image under-
standing and computer vision applications. In this paper, the
representation and matching power of region descriptors are to
be evaluated. A common set of elliptical interest regions is used
to evaluate the performance. The elliptical regions are further
normalized to be circular with a fixed size. The normalized
circular regions will become affine invariant up to a rotational
ambiguity. Here, a new distinctive image descriptor to represent
the normalized region is proposed, which primarily comprises the
Zernike moment (ZM) phase information. An accurate and robust
estimation of the rotation angle between a pair of normalized
regions is then described and used to measure the similarity
between two matching regions. The discriminative power of the
new ZM phase descriptor is compared with five major existing
region descriptors (SIFT, GLOH, PCA-SIFT, complex moments,
and steerable filters) based on the precision-recall criterion.
The experimental results, involving more than 15 million region
pairs, indicate the proposed ZM phase descriptor has, generally
speaking, the best performance under the common photometric
and geometric transformations. Both quantitative and qualitative
analyses on the descriptor performances are given to account
for the performance discrepancy. First, the key factor for its
striking performance is due to the fact that the ZM phase has
accurate estimation accuracy of the rotation angle between two
matching regions. Second, the feature dimensionality and feature
orthogonality also affect the descriptor performance. Third, the
ZM phase is more robust under the nonuniform image intensity
fluctuation. Finally, a time complexity analysis is provided.

Index Terms—Geometric and photometric transformations,
image representation and matching, performance evaluation,
phase and magnitude components, precision and recall, region
descriptors, Zernike moments (ZM).

I. INTRODUCTION

L
OCAL features robust to common photometric trans-

formations (blur, illumination, noise, and JPEG com-

pression) and geometric transformations (rotation, scale,

translation, and viewpoint) are crucial to most image under-

standing and computer vision applications including image
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matching, camera calibration, texture classification, and image

retrieval, etc. [1]–[5]. The processing of local features involves

three tasks: feature detection, feature description, and feature

matching. The local features belong to an interest point (key-

point) or an interest region. Since a single image point carries

little information, an interest point must be associated with

its surrounding image patch. From this image patch, a second

moment matrix of image intensities reveals the characteristic

structure of the local image region. The keypoint detectors

such as Harris corner detector [6] and the SIFT detector [7],

which is based on the difference of Gaussians (DOG), utilize a

circular window to search for a possible location of a keypoint.

However, the image content in the circular window is not robust

to affine deformations. Recently, a number of local feature de-

tectors using a local elliptical window have been investigated.

Matas et al. [5] presented a maximally stable extremal region

(MSER) detector. Tuytelaars and Van Gool [8] developed an

edge-based region (EBR) detector as well as an image-based

(IBR) region detector. Mikolajczyk and Schmid [9] proposed

Harris-Affine and Hessian-Affine detectors. The performances

of the existing region detectors were evaluated [11], indicating

MSER detector and Hessian-Affine detector are the two best.

After the regions of interest are detected, a region descriptor

is needed for region representation. In the descriptor construc-

tion, the detected ellipse-shaped region is first normalized to a

circular patch of a fixed size (typically, 41 41 pixels). The

normalized circular patch can be shown to be affine invariant up

to a rotational ambiguity [10], [33]. A good feature descriptor

should have a great discriminative power. Five major types of

existing descriptors are to be briefly reviewed in the next sec-

tion to explore their capability for image representation.

After the region descriptor is determined, a matching function

is defined to measure the similarity between regions extracted

from different images of the same scene. The merits of various

region detectors, coupled with their own region descriptors, are

often judged based on the ROC (receiver operating character-

istic) curve or the PR (precision-recall) curve.

In this paper, a new descriptor, called the Zernike moment

phase-based descriptor (or ZM phase in short), is proposed.

The phase information of a signal is more informative than the

magnitude information during signal reconstruction, as demon-

strated by Oppenheim [34]. The robustness of local phase in-

formation for measuring image velocity and binocular disparity

was studied in [35], [36]. Recently, outputs of complex-valued

steerable filter quadrature pairs are taken as the separate feature

elements for the design of a local image descriptor [37], [38], in-

stead of combining the magnitudes of the quadrature pair into a

single feature element, as done in [12]. They empirically showed

that their individual local descriptors have better performance

1057-7149/$26.00 © 2009 IEEE
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than the gradient-based SIFT descriptor or differential invari-

ants under the affine geometric deformation and lighting varia-

tion. However, the feature vector containing the separate steer-

able filter quadrature pair outputs is not an orthogonal vector

itself. If the orthogonal descriptor is used instead, the features

are uncorrelated and more informative. So we shall seek a gen-

uine orthogonal feature vector to derive a novel local descriptor

with a higher descriptive power.

The discriminative power of the new ZM phase descriptor is

compared with five other major region descriptors based on the

precision-recall criterion using the set of test images given in

[12] plus some new images. To match the region pairs, a new

matching function based on the ZM phase information is de-

fined. For performance evaluation, important system parame-

ters are taken into consideration, which include 1) region scene

types, 2) region descriptor types, 3) region detector types, 4)

region overlap error, and 5) transformation types. The exper-

imental results, involving more than 15 million region pairs,

indicate the proposed ZM phase has the best overall perfor-

mance. Both quantitative and qualitative analyses on the de-

scriptor performances are provided to account for the perfor-

mance discrepancy.

Our main contributions include the following.

1) Design a new region descriptor and a new matching

function based mainly on Zernike moment (ZM) phase

information.

2) Propose an accurate estimation of the rotation angle be-

tween two matching regions.

3) Show the proposed ZM phase descriptor has the better

overall performance compared to the five popular

descriptors.

The paper is organized as follows. Section II reviews the

five major types of region descriptors. Section III introduces

the Zernike moment (ZM) transformation and the ZM basis fil-

ters. Section IV proposes the ZM phase descriptor along with a

matching function, and discusses the discriminative powers of

the ZM magnitude components and the ZM phase components.

In Section V, the discriminative power of the new descriptor

is compared with five existing region descriptors based on the

precision-recall criterion, while taking important system param-

eters into consideration. In Section VI, quantitative and qualita-

tive analyses on the descriptors are provided to account for the

descriptor performance discrepancy. The conclusion is given in

the last section.

II. REVIEW OF THE MAJOR REGION DESCRIPTORS

Here, a brief introduction of five major classes of the existing

descriptors is given to explore their strengths and weakness in

order to compare them with the proposed ZM phase-based de-

scriptor. Excellent reviews on the existing descriptors can be

found in [12] and [13].

1) Filter-based Descriptors:

This class of descriptors includes steerable filters [14] and

Gabor filters [15]. The steerable filter descriptor uses quadrature

pairs of derivatives of Gaussian and their Hilbert transforms to

synthesize any filter of a given frequency with arbitrary phase.

On the other hand, the Gabor transform uses a number of Gabor

filters tuned to various frequencies and orientations to represent

the image patterns. Both the steerable filter and the Gabor filter

descriptors need to seek a dominant orientation for image rota-

tion alignment. If the reference and transformed descriptor fea-

ture vectors are not aligned well, their matching score will be

poor. Besides, these descriptors are not totally orthogonal and

their feature vector dimensions are generally low, so their dis-

criminative powers are limited.

2) Moment-based descriptors:

The first class of moment-based descriptors is the geometric

(or regular) moments. The order moment of an intensity

or gradient image is defined as follows:

Based on the geometric moments, a set of moment invariants

can be derived from the nonlinear combinations of geometric

moments to achieve affine invariance [16], [32]. The main

problem with the geometric moments is that it is difficult to

derive a sufficient number of invariants to describe complex

shapes. Moreover, the higher-order moments are more sensitive

to image noise than the lower-order moments. Therefore, the

geometric moment invariants are usually suitable only for

describing simple images [17].

The second class of moment-based descriptors is the com-

plex moments of the form

, where is an image intensity function [18],

[19]. Any rotation of the image changes the phases of the com-

plex moments, but not the magnitudes. That is, the magnitudes

of the filter responses are rotational invariant. There are 16 fil-

ters, defined by and , available for image

patch description. This low-dimensional rotational invariant de-

scriptor generally has a poor discriminative performance [12].

3) Distribution-based descriptors:

This class of descriptors includes SIFT [7], GLOH [12],

PCA-SIFT [22], spin images and RIFT descriptors [3]. They

use the distributions of the image content to represent the

features of the image region.

The SIFT descriptor is represented by a 3-D histogram

of gradient locations and orientations. The histogram of the

gradient orientations is quantized in 8 bins and the region is

partitioned into a 4 4 location grid, resulting in a feature

vector of dimension 128. Although the gradient histogram

provides stability against deformations of the image pattern,

the grid partition of the measurement region has the boundary

effect problem. Gaussian smoothing and tri-linear interpolation

can be called to alleviate this problem. More importantly, SIFT

requires an accurate dominant (gradient) orientation for image

rotation alignment.

The PCA-SIFT descriptor is a dimension-reduced version of

SIFT (dimension reduced from 3042 to 36 or lower) based on an

eigenspace obtained by applying PCA to a collection of 21,000

image patches. On the other hand, the GLOH descriptor is also

an extension of the SIFT descriptor. Instead of sampling gra-

dient orientations in a rectangular grid, GLOH is defined in a

log-polar location grid with 17 location bins. These location

bins, together with 16 gradient orientation bins, form a feature

vector of dimension 272. With PCA, the feature dimension is
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reduced to 128 based on a training data set of 47,000 image

patches.

The SIFT and its variants depend on a dominant orientation

of the normalized patch to achieve the rotation invariance. How-

ever, according to the experience of Lazebnik et al. reported in

[3], the dominant orientation estimation tends to be unreliable,

especially for normalized Laplacian regions in which strong

edges at the center are often not available.

4) Derivative-based descriptors:

This type of descriptors uses local derivatives, called “local

jets”, to construct the differential invariants that are rotationally

invariant [23]. Schmid and Mohr [2] derive a set of differen-

tial invariants in terms of polynomials of local derivatives up to

the third order for image retrieval. The derivative-based descrip-

tors face with some problems: (a) the dimension of the rotation-

ally invariant differential invariants is generally low [12], and

(b) the differential invariants are often sensitive to image blur

or image noise if smoothing operation is not used beforehand.

(The steerable filters can be also classified as a derivative-based

descriptor.)

5) Others:

Besides the above basic descriptor types, there are other

extended descriptors including (i) color-based descriptors [21]

which utilizes the color information for feature representation,

(ii) textons [3], which are based on the responses of a texture

image to a filter bank, can categorize the large-scaled texture

images. In this paper, only the basic descriptors of the first four

classes are concerned.

III. FUNDAMENTALS OF ZERNIKE MOMENTS

Zernike moments (ZMs) have been used in object recogni-

tion and image analysis regardless of variations in position, size

and orientation [20], [24]–[28]. Basically, the Zernike moments

are the extension of the geometric moments by replacing the

conventional transform kernel with orthogonal Zernike

polynomials. The relationships between the Zernike moments

and geometric moments can be established [39]. The ZM co-

efficients are the outputs of the expansion of an image func-

tion into a complete orthogonal set of complex basis functions

. Teh and Chin [20] show that among many mo-

ment-based shape descriptors, Zernike moment magnitude com-

ponents are rotationally invariant and most suitable for shape

description.

The Zernike basis function with order and repe-

tition is defined over a unit circle in the polar coordinates as

follows:

for (1)

where is a radial polynomial in the form of

(2)

Here, is a non-negative integer and is an integer satisfying

the conditions: is even and .

Fig. 1. Plots of the real part and imaginary part of � ��� �� for a fixed �:
(a)� , (b) � , (c) � ; and for a fixed ��� ��: (d) � , (e) � , and
(f)� .

The set of basis functions is orthogonal, i.e.,

with
otherwise.

(3)

The 2-D ZMs for a continuous image function are rep-

resented by

(4)

For a digital image function, the 2-D ZMs are given as

(5)

The Zernike moments can be viewed as the responses of

the image function to a set of quadrature-pair filters

. To this end, Fig. 1 depicts some examples of

. Notice that the real and imaginary functions of each

basis function are out of phase by ; namely,

they form quadrature pairs of filters. In addition, repetition

indicates sector cycles of the function values along the

azimuth angle , while and jointly specify a different

number of annular patterns of the function.

IV. DESIGN OF A ZERNIKE MOMENT

PHASE-BASED DESCRIPTOR

We shall use the ZM phase information to design a novel re-

gion descriptor. Let the Zernike moments be sorted by and

in order. The total number of ZM moments of the same repeti-

tion is equal to . Table I gives the sorted

list of the 42 complex ZM moments for the case where the max-

imum order and maximum repetition are both equal to 12.

The sorted Zernike moments form a feature vector as

follows:

(6)
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TABLE I
LIST OF ZMS SORTED BY � AND � IN SEQUENCE

FOR THE CASE WHERE ����� � ���� ���

where is the ZM magnitude, and is the ZM phase.

Here the Zernike moments with are not

included, since they provide no information regarding the image

matching. Zernike moments with are not included either,

since they can be inferred through .

A. Image Description Power of the ZM Magnitude Components

and the ZM Phase Components

Let the Zernike moments of a reference image and its rotated

version be , , respectively. Then it is well known that

[24], [28]

(7)

where is the rotation angle. Therefore, the magni-

tudes of Zernike moments of the two images are the same, i.e.,

, but their phase difference (or phase shift) is

given by

or (8)

(9)

In the following, under a mixture of rotation, inversion, and flip-

ping operations, the Zernike moments of a reference image can

be shown to be rotationally invariant in terms of the magnitudes,

but not the phases.

Let a rotated-and-inverted (the inverted is in terms of gray

values) image version of the reference image be given

by . It can readily be shown

that the two magnitudes are equal and

their phase difference is given by

(10)

Next, let a rotated-and-mirrored version of the refer-

ence image be given by

. Then it can be shown that their magni-

tudes are also equal: and their phase

difference is given by

(11)

B. Zernike Moment Phase Descriptor and Its Similarity

Measure

From above, it can be seen that the phase information of

Zernike moments is more informative than the magnitude infor-

mation in terms of the discriminative power. Therefore, a new

image region descriptor is proposed which is mainly based on

the phase components of the feature vector, while the magnitude

components are used only as the weighting factors.

Let and as the reference and transformed

image regions with their respective ZM feature vectors

and . Here the trans-

formed image can be either a rotated version of the reference

image or a different image. If there exists a rotation angle

between and , then ,

which denotes the absolute phase difference between the two

image regions after the rotation alignment, is equal to 0; other-

wise, is a nonzero value in the interval

and is simply a putative estimate of a nonexistent

rotation angle. To derive a reliable estimate using all available

phase differences , we define a weighted and normalized

phase difference to check the existence of a rotation angle

as follows [see (12), shown at the bottom of the page], where

, is the estimated rotation

angle to be described later, and is a normalized weighting

factor of the form

(13)

such that the phase components associated with small magni-

tudes are weighted less. The weighted and normalized phase

difference lies in the interval [0, 1] and is dimension-

less since it is derived from ratios of angles.

Fig. 2(a)–(d) shows a reference coin image and its three vari-

ants: a rotated one (with a rotation angle 37.22 ), an inverted

one, and a mirrored one, as described above. Image matching

between the reference and each variant based on either the phase

components or the magnitude components of Zernike moments

are shown in Fig. 2(e)–(j), where the ZM order ranges

from (1, 1) to (10, 10). The estimated values of

are colored in blue and are connected for components with the

same values. The actual phase differences are shown in

the red color. On the other hand, the ZM magnitude components

(12)
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Fig. 2. (a) Reference coin image. (b) A rotated variant of the reference coin
image (with a rotation angle 37.22 ). (c) An inverted variant. (d) A mirrored
variant. (e)–(g) The diagrams of the ZM phase differences (h)–(j) The diagrams
of the ZM magnitude components.

for each pair of images are colored in purple. Notice that the

magnitude component diagrams are the same for all the three

pairs, but the phase component diagrams are different. There-

fore, the phase components have a better discriminative power

than the magnitude components.

C. Estimation of the Rotation Angle From a Rotated Image

In [29], Kim and Kim represented the rotation angle between

an original image and its rotated image through the use of the

Zernike moment phase shift as

(14)

They then proposed a probabilistic model

to estimate the rotation angle

where is the weighting factor proportional to

the ZM magnitude . For each possible solution

, they used a proba-

bility density function

, a convolution of

an impulse train with a scaled Gaussian kernel, to estimate

. Notice that the estimation is done in the discrete angle

steps. In order to be accurate, the estimation step size must

be as small as possible. Let the estimation step size be 0.01 .

For the case where , there are 30 gen-

erated Zernlike moments . From each fixed Zernike

moment , an estimator of the rotation angle is given by

. There are 30 such estima-

tors. To find the common solution to the rotation angle using

these 30 estimators, a common histogram with a bin size of

360 100 (assuming the estimation step size is 0.01 ) is used

to tabulate the possible rotation angle produced by each of the

30 estimators. Therefore, the total number of histogram bin

values computed is ( 1,080,000), which is

rather large. In addition, the method may face the ambiguity in

multiple peaks in the histogram constructed.

Here a new estimation method of the rotation angle is

proposed, which is implemented in the continuous angle space

rather than in the discrete space. The basic idea behind the

proposed method for estimating the rotation angle is to

avoid the ambiguities in the value of . Instead, the

rotation angle can be found from the phase difference using

any two adjacent and , , through

(15)

Since , , there are

ways to compute the rotation

angle . A more robust estimation is to weight the estimated

angles by the individual magnitude .

An iterative computation of the rotation angle using all

available Zernike moments sorted by is given below:

The ZM phase-based rotation angle estimation algorithm

Initialization: and

For

For ,

End

End

V. EXPERIMENTAL RESULTS FOR PERFORMANCE EVALUATION

We will examine the system performance with respect to im-

portant system parameters including 1) region scene types, 2) re-

gion descriptor types, 3) region detector types, 4) region overlap

error, and 5) transformation types. The region scene types under

consideration are the structured and textured scenes. The test

images available at the website [30], plus some new images, are

used in the experiments. The transformation types considered
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Fig. 3. Representative test image pairs taken from the textured and structured scenes under a specified photometric or geometric transformation. (a) Bikes (blur),
(b) tree (blur), (c) Leuven (lighting), (d) bush 1 (lighting), (e) Leuven (nonlinear lighting), (f) bush 1 (nonlinear lighting), (g) Chinese compound (noise), (h) Japanese
garden (noise), (i) UBC (JPEG), (j) garden (JPEG), (k) graffiti (viewpoint), (l) wall brick (viewpoint), (m) castle (rotation), (n) flower (rotation), (o) Pentagon
(scaling), (p) bush 2 (scaling).

here contain the common photometric transformations (blur, il-

lumination, noise, and JPEG compression) and geometric trans-

formations (rotation, scaling, translation, and viewpoint). Fig. 3

shows the representative test image pairs taken for the textured

and structured scenes.

In regard to the region descriptor types we include the pro-

posed ZM phase and five popular descriptors: SIFT, GLOH,

PCA-SIFT, steerable filters, and complex moments. In the be-

ginning of the experiment, we need to choose a region detector

in order to extract the regions of interest from the given image.

Here, we decide to choose either MSER detector or Hessian-

affine detector. Once the region detector type is decided, the

program codes available at the website [30] are used to obtain

(a) regions of interest, (b) the dominant orientation in a region

image, and (c) the descriptor feature vectors of SIFT, GLOH,

PCA-SIFT, steerable filter and complex moment for each region

of interest. Then we run our program codes to generate our ZM

phase descriptor, and to calculate the similarity measures and

generate the precision-recall curves to evaluate the descriptor

performances, as done in [12]. Totally, there are eight types of

transformations, two types of scenes, and at least four image

pairs for each transformation. On the average, one image pair

generates 250,000 region pairs for matching.

All together the experiments involve more than 15 million re-

gion pairs.

Table II lists the typical feature vector dimensions of the six

descriptors used in the experiments. Later, a discussion on the

feature dimensionality will be provided.

A. Performance Evaluation Criteria-PR Curve

For region matching, the extracted regions of the reference

and transformed images are examined for (a) their distance mea-

TABLE II
TYPICAL FEATURE VECTOR DIMENSIONS OF THE SIX DESCRIPTORS

sure and (b) their spatial overlap error under the applied trans-

formation. There are three strategies for region matching pro-

posed in [12]: (a) the threshold-based matching, (b) the nearest-

neighbor-based matching, and (c) two-nearest-neighbor-based

matching. Although these three matching methods are function-

ally different, their ranking results of the performances of the

various descriptors are virtually the same; the first one is gener-

ally recommended [12], [38]. Therefore, we adopt the threshold-

based matching strategy in which the distance measure between

a region pair is compared to a given distance threshold, .

On the other hand, the region overlap error is represented by

the overlap ratio between the region intersection area and the re-

gion union area under the known planar homography [12], [31],

that is, , where and

are the two matching regions and is the given homograph be-

tween the two region patches. A region pair is called a match if

it passes the region similarity test, namely, the distance measure

between the image pair does not exceed the distance threshold

; otherwise, no match is found. A match is said to be correct,

if the region pair also passes the region overlap test given by

for a given overlap error threshold . A match is said

to be false, if the pair fails the region overlap test. Sometimes,

with a tight overlap error threshold, say , even though

the two regions pass the region similarity test, but they fail the

region overlap test due to . It seems not very fair to
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Fig. 4. PR curve generation process with a varying distance threshold � .

call such a pair a false match when compared to a typical false

match whose region overlap error is equal to 1; namely, the

two regions do not intersect and are, therefore, not related at all.

Hereafter, a matching pair with a region overlap error in between

such that is considered as a “don’t care” pair. In

other words, the new definition of a false match is a match that

passes the region similarity test and its region overlap error

must be equal to 1.

It is important to realize a fixed distance threshold cannot

be used to evaluate the descriptor performances. Instead, a

precision-recall (PR) curve, created by varying the distance

threshold, must be used.

Recall is the ratio of the number of correct matches to the

number of corresponding region pairs satisfying the region

overlap test:

(16)

Precision is the ratio of the number of correct matches to the

total number of correct and false matches

(17)

Fig. 4 depicts a PR curve generation process. Assume there are

, regions detected in the reference and transformed im-

ages, respectively. The regions in the two images form

matching region pairs. Among these pairs let the number

of corresponding region pairs, which are each with a region

overlap error smaller than the specified bound , be .

Also, let the number of the “don’t care” pairs be . Now sort

the corresponding pairs and the noncorre-

sponding pairs, respectively, by their distance measures in

an ascending order. The range of distance measures for the set of

corresponding pairs generally overlaps with that of the set of

noncorresponding pairs. Start to increase the distance threshold

from the minimum value to the maximum value ,

as shown in Fig. 4. The recall value is initially equal to zero, so

is the value of (1-precision). As passes over , more and

more correct matches occur and the recall value is increasing,

while the (1-precision) value remains 0 since there have been no

false matches so far. When reaches the minimum distance

measure of the noncorresponding region pairs, false matching

pairs begin to appear and the value of 1-precision is increasing

from 0. Notice that the recall is always monotonically increasing

and reaches 1 when the distance threshold is equal to the max-

imum distance measure of the corresponding region pairs.

Fig. 5. Evaluation for different overlap errors. (a), (b) Detected Hessian-affine
regions and MSER regions under viewpoint change for structured graffti scene.
(c), (d) The number of correct matches versus the overlap error. Also, the top
black line shows the number of region correspondences detected. (e), (f) Recall
versus the overlap error.

At the end, when the distance threshold is equal to , the

(1-precision) value approaches 1. Be aware that the (1-preci-

sion) value is monotonically increasing when is sufficiently

large, but it may decrease at the early stage, if the relative growth

rate of false matches is smaller than that of the correct matches.

B. Effects of Region Detector Types and Region Overlap Error

As mentioned above, the best two region detectors, MSER

and Hessian-affine, are reported in [11]. We shall present the

evaluation results for these two detectors side by side.

Fig. 5 shows the region detection results and the two curves

about the relation between recall and region overlap error and

that between the number of correct matches and region overlap

error using Hessian-affine regions and MSER regions, respec-

tively. The images used are a pair of graffiti structure scene.
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Fig. 6. Examples of the detected region pairs with different overlap errors �
ranging from 0.1 to 0.6. The ellipses indicate the region boundary with blue
color and red color for reference region � and the transformed region given by
� �� , respectively. The cross symbols show the key point positions.

There are around 400 regions extracted by either detector. The

number of correct matches and the number of correspondences

for each overlap error are computed for a single section of

overlap errors ranging from the previous one to the current one.

For instance, the score for 20% is computed for the overlap

error interval from 10% to 20%. Also, the recall values are

calculated, by keeping the precision at 0.5, as done in [12].

We observe that the top black line, which shows the number

of region correspondences dictated by the given overlap error

bound , bounces back at overlap error 40%. This is due to

a natural increase in the region correspondences at the given

higher region overlap error bound, resulting in “one-to-many”

or “many-to-one” overlapped region pairs extracted from the

reference and sensed scenes. Usually these new corresponding

region pairs are less similar in comparison to those at a smaller

overlap error bound, causing a drop in the number of new cor-

rect matches. On the other hand, for a small overlap error bound

the correspondences are mostly the “one-to-one” overlapped

region pairs.

We observe that the proposed ZM phase descriptor has a

higher recall versus region overlap error curve than other de-

scriptors for the region overlap error in the interval [0.1, 0.4] for

both sets of Hessian-affine and MSER regions. The portion of

curve is less meaningful when gets larger. This is because

when gets larger, the corresponding regions are less similar,

as indicated in Fig. 6. As mentioned above, when the overlap

error bound increases over 0.4, the intersection area of these

new corresponding region pairs becomes smaller, resulting in

the drop of the number of correct matches and the decrease in

the recall value under a fixed precision level (0.5 in this case).

At a large overlap error bound the Zernike phase maintains the

same tight control on the similarity matching of the new cor-

responding pairs based on the orthogonal moment features, so

the increase in the new correct matches is rather small. On the

other hand, SIFT and GLOH have less stringent control on the

similarity measure based on the 8-gradient orientation bin tabu-

lation on the 4 4 location grid, so there are more new correct

matches when the overlap error bound increases.

We should not bother considering the corresponding region

pairs associated with a large overlap error bound, since many be-

long to “one-to-many” or “many-to-one” correspondences. The

inclusion of these less similar pairs or outliers will result in the

erroneous estimations in the later stages such as in the estima-

tions of homography, fundamental matrix and epipolar geom-

etry, etc. Therefore, we set the value to 0.3 rather than 0.5

used in [12].

From now on, only MSER regions will be considered in the

later experiments, since the descriptor performance characteris-

tics are similar for MSER and Hessian-affine regions.

C. Transformation Types

Since the elliptical region is already normalized into a circular

image, the normalized region is affine invariant. Nevertheless,

the normalized region is not necessarily invariant to rotation.

Thus, for most of the descriptors including SIFT, SIFT vari-

ants and the steerable filters, the image rotation problem must

be solved first by finding a dominant gradient orientation. Sim-

ilarly, the circular image intensity normalization has made the

region descriptor robust to intensity scaling and offset, but not

to image blur, image noise, image compression, and the illumi-

nation change.

In image registration the two images can be taken by a single

camera or different cameras, and the images can be taken during

a short period or on different days. These shooting scenarios de-

termine the type of image transformation encountered. For in-

stance, if the two images are shot by different cameras or at dif-

ferent periods, the photometric conditions of the two shootings

will be different, not to mention the possible viewpoint change.

In general, a geometric transformation is accompanied by some

sort of photometric change due to differences in the camera set-

ting and the surface reflection angles.

1) Robustness Under Photometric Transformations: To

focus on the effects of photometric transformations, we try to

avoid the effect of a geometric transformation by setting the

region overlap error threshold to a small value (0.2 0.3).

Overall speaking, the ZM phase obtains the best performance

results for all textured scenes under all type of photometric

transformations and for the structured scenes under image blur

and nonlinear lighting. The performances of the ZM phase,

SIFT, GLOH and PCA-SIFT are comparable for the structured

scenes under affine lighting change, image noise and JPEG

when the value of 1-precision is very small. The analysis on

these performance results will be given later.

a) Image blur: The performance is measured under image

blur introduced by changing the camera focus setting. Fig. 7(a)

and (b) shows the respective PR curves for the bike structured

scene [see Fig. 3(a)] and the tree textured scene [see Fig. 3(b)].

The performance ranking indicates that the best descriptor is

ZM phase for both the structured and textured scenes consid-

ered. On the other hand, SIFT performs better than its variants,

GLOH and PCA-SIFT, for the textured scene, while its variant

performs better for the structured scene, as reported in [12]. The

last ranking position is the complex moments. This is because its

low-dimensional feature vector (15 in this case) and its exclusive

use of the moment magnitudes without the phase information.

b) Illumination Change:

(i) Affine Lighting Change

To evaluate the descriptor performances under illumination

changes, a collection of images has been taken by changing the

camera iris settings. Fig. 7(c) and (d) shows the PR curves for

the Leuven structured scene and the bush 1 textured scene shown

in Fig. 3(c) and (d), respectively. The best three descriptors in

order are ZM phase, SIFT, and GLOH for the bush 1 textured
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Fig. 7. PR curves for performance evaluations under different specified photometric transformations, all with an overlap error threshold � � ���. (a) Image blur,
(b) image blur (textured), (c) lighting (structured), (d) lighting (textured), (e) overexposure (structured), (f) overexposure (textured), (g) underexposure (structured),
(h) underexposure (textured), (i) image noise (structured), (j) image noise (textured), (k) JPEG (structured), (l) JPEG (textured).

scene and the situation remains the same for the structured scene

except when the value of 1-precision is less than 0.03.

(ii) Nonlinear Lighting Change

The nonlinear lighting is quite common in practice.

Fig. 7(e)–(h) shows the PR curves under the overexposure

and underexposure lighting for the Leuven structured scene

and the bush 1 textured scene shown in Fig. 3(e) and (f). In

comparison with the PR curves in Fig. 7(c) and (d), it can

be seen that the performances of the SIFT-based descriptors

become significantly worse. To the contrary, the performance

results of the ZM phase change insignificantly, especially in the

case of the textured scene. This will be explained later.

c) Image noise: The performances are evaluated by adding

a different amount of Gaussian noise to the images. Fig. 7(i)

and (j) shows the PR curve for a Chinese compound structured

scene [see Fig. 3(g)] and a Japanese garden textured scene [see

Fig. 3(h)], respectively. The ZM phase has the best overall result

among all the descriptors for the textured scene and is compa-

rable to the SIFT-based descriptors for the structured scene.

d) JPEG Compression

Fig. 7(k) and (l) depicts the PR curves under JPEG compres-

sion for the UBC structured scene shown in Fig. 3(i) and the

garden textured scene shown in Fig. 3(j), respectively. The qual-

ities of the compressed images range from 10% to 30% of the

original one. The performance ranking is similar to that under

the noise attack.

To show the performance discrepancies between the top best

three descriptors (ZM phase, GLOH and SIFT) under image

blur, Table III shows the matching statistics for the bike struc-

tured scene and the tree textured scene with a region overlap

error of 0.3 and a recall value of 0.6. Fig. 8 depicts the cor-

rect and false region matches for the tree textured scene, when

using ZM phase, GLOH and SIFT, respectively. There are 0, 11,

and 42 false matches (shown by red lines) for ZM phase, SIFT

and GLOH, respectively. All these descriptors have 112 correct

matches (shown by green lines).

2) Robustness Under Geometric Transformations: To focus

on the effects of geometric transformations, we try intention-

ally not to change the photometric conditions. As shall be seen,

under all geometric transformations, the ZM phase performs

best for all textured scenes, but is comparable to the SIFT-based

descriptors for the structured scenes when the value of 1-preci-

sion is less than 0.05.

a) Viewpoint change: We used six images of the textured

and structured scenes taken under a viewing angle ranging from

10 to 50 degrees. Fig. 9(a) and (b) gives the PR curves for graffiti

structured scenes [see Fig. 3(k)] and the brick textured scenes

[see Fig. 3(l)], respectively. The ranking of the four best descrip-

tors remain unchanged for the specified viewing angle range

[10 , 50 ]. The ZM phase descriptor clearly overpowers the five

other descriptors for the textured scene, but not so for the struc-

tured scene.
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TABLE III
MATCHING STATISTICS FOR THE BIKE STRUCTURED SCENE AND TREE TEXTURED SCENE, ALL WITH � � ��� AND ������ � ��	

Fig. 8. Correct matches (in green) and false matches (in red) obtained by the descriptors, respectively, all with ������ � ��	 and � � ���. (a) By ZM phase,
(b) by SIFT, (c) by GLOH.

Fig. 9. PR curves under geometric transformation, all with � � ���.
(a) Viewpoint (structured), (b) viewpoint (textured), (c) rotation (structured),
(d) rotation (textured), (e) scaling (structured), (f) scaling (textured).

b) Rotation change: The images considered are taken by

rotating the camera axis from 30 to 45 . The descriptors for the

castle structured scene [Fig. 3(m)] and the flower textured scene

[Fig. 3(n)] under image rotation are evaluated. Fig. 9(c) and (d)

shows the PR curves for the scenes, respectively. The ranking of

the top three descriptors remains the same throughout the range

of rotation angle and it is similar to the case of viewpoint change.

c) Scale change: Fig. 9(e) and (f) shows the performance

measures for the descriptors under the scale change using the

Pentagon structured scene [Fig. 3(o)] and bush 2 textured scene

[Fig. 3(p)], respectively. The scaling factor is close to 2. The

performance rankings are similar to the above two cases of geo-

metric transformations.

D. Feature Dimensionality

To extend the SIFT descriptor, both GLOH and PCA-SIFT

increase the feature size and then apply PCA to reduce the fea-

ture dimensionality. The features of these descriptors are origi-

nally correlated and become orthogonal after the application of

PCA. However, their optimal dimensions are determined by the

training images in the database.

The utilization of Zernike moments up to a higher order gen-

erally leads to a more accurate estimate of the region rotation

angle and a better image representation power. Fig. 10 depicts

the PR curves for two structured scenes under two different at-

tacks where the ZM descriptor uses moments of order up to

10, 12, and 16, respectively. The corresponding feature dimen-

sions are 30, 42, and 72. It can be seen that the descriptor perfor-

mance becomes better as the feature dimension gets increased.

The selection of order is a tradeoff between the com-

putational complexity and the descriptor performance.
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TABLE IV
ROTATION ANGLE ESTIMATION ERRORS FOR ALL CORRESPONING REGION PAIRS SPECIFIED BY � � ���

Fig. 10. PR curves for ZM phase with the maximum order� � 10, 12, and 16,
together with the associated PR curves of SIFT for two structured scenes under
two different attacks, all with � � ���. (a) Graffiti scene (viewpoint change),
(b) castle scenes (rotation change).

VI. ANALYSIS ON PERFORMANCE EVALUTION RESULTS

Since the complex moments and the steerable filters never

rank in the first position throughout the experiments, they will

be excluded for further consideration. In addition, the SIFT,

GLOH, and PCA-SIFT have similar performance results under

all the transformations reported. In the following, it is sufficient

to compare the performances of SIFT and ZM phase.

A. Rotation Angle Error Statistics and Its Effect on the

Descriptor Performance

The descriptor performance discrepancy can be attributed to

the accuracy of the rotation angle estimation by the descriptors.

The dominant orientation of the SIFT descriptor relies on the

peak detection in the 36-bin histogram of the gradient directions

obtained from the region image, while the ZM phase descriptor

computes the image rotation angle via the weighted and nor-

malized phase difference. Table IV breaks down the estimated

rotation angle errors under the categories of 5, 10, 20,

and 30 degrees for both textured scenes and structured scenes

under all transformations except viewpoint change. The rotation

angle errors are evaluated by computing the estimated rotation

angle for all normalized corresponding region pairs, and fur-

ther compare them with respect to the actual angle. The actual

angle can be obtained by the ground truth homographies given

from [30], which are essentially similarity transforms. The rota-

tion angle error statistics are not available under the viewpoint

change, since the associated rotation angle between two regions

under viewpoint change is not fixed.

From Table IV the average rotation angle errors of the ZM

phase is less than those of SIFT for both structured scenes and

textured scenes when . More importantly, the cov-

erage percentage for ZM phase is more than 86% while SIFT

only has 40% to 78% coverage when . The coverage

percentage is computed as the ratio between the number of re-

gion pairs, with rotation angle estimation error less than

a specific value ( , 10 , 20 , or 30 in Table IV), and the

total number of correspondence
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Fig. 11. PR curves for the tree textured scene under image blur with the re-
moval of regions with rotation angle error not exceeding a specified level of
10 , 20 , 30 , and 360 , respectively.

The large rotation angle errors of SIFT are due to the big error

caused by ambiguity in the multiple dominant orientation peaks.

This is the main reason why the SIFT performance becomes

poor.

Lowe [7] suggested solving the multiple dominant orientation

problem by creating multiple keypoints at the same location,

each with one of the multiple dominant orientations (In this case

there is no clear rule for counting the multiple keypoints as cor-

rect or false matches when generating the PR curves). In Fig. 11,

the PR curves for the flower textured scene under image blur

is plotted where region pairs with rotation angle error no less

than 10 , 20 , 30 , and 360 are removed, respectively. The

ZM phase performs better than SIFT for rotation angle errors

not exceeding 20 , 30 , and 360 , but not for the case of rota-

tion angle errors , where SIFT does not face the multiple

dominant orientation problem, as described previously.

B. Effects of Feature Dimensionality and Feature

Orthogonality on the Descriptor Performance

Generally speaking, the high-dimensional feature vector con-

tains more descriptive information at the expense of memory

space. For example, PCA-SIFT and GLOH start with a feature

dimension of 3042 and 272, respectively. However, the com-

ponents of these feature vectors are correlated and partially re-

dundant. By the application of PCA, a subset of eigenvectors

associated with the larger eigenvalues can be extracted and the

projection of the original feature vector to the sub-eigenspace

reduces the original dimension down to 128 or even smaller.

The dimensionality reduction can be determined based on the

percentage of the sum of eigenvalues retained.

We know the ZM phase applies a set of orthogonal ZM mo-

ments to design the feature vector such that the feature compo-

nents are mutually independent and more informative. With the

same dimensionality (or the same memory space) the set of or-

thogonal features generally results in a better descriptive power

to distinguish the different image patterns embedded in the tex-

tured scenes. However, when the image patterns in the scenes

are highly similar, it requires a higher feature dimensionality in

order to reflect the subtle pattern difference, as indicated previ-

ously in Fig. 10.

C. Effect of Image Intensity Fluctuation on the Descriptor

Performance

Finally, we give a rule of thumb or a simplified explana-

tion why the ZM phase descriptor performs better than other

existing descriptors under nonuniform image intensity fluctua-

tion, since the exact analysis varies with the underlying image

and, therefore, is rather complicated. First of all, the transformed

image is obtained from the reference image in accordance with

a given photometric or geometric transform, so their image pat-

tern structures are correlated. After the affine intensity normal-

ization, their image intensity distributions become closer and

tangled. Next, the phase difference of the ZM phase descriptor

is computed as

where

with and

being the real and imaginary ZM components of

the difference image between the reference and transformed

images. Since the image structures of the transformed and

reference images are similar, so it is likely that the phase angles

of the reference and transformed images are in phase (i.e., no

phase difference after the image rotation alignment), especially

when their ZM magnitudes are both large. The weighted

sum of the absolute phase differences is, therefore, close to

zero. On the other hand, the probability that the reference and

transformed images are out of a phase (a significant phase

difference) is small. Consequently, most of the ZM moment

counterparts of the mage pair support the single majority of the

estimated rotation angle, even though there is some fluctuation

in the ZM magnitudes. This leads to the accurate rotation angle

estimation when using the ZM phase.

On the other hand, the SIFT-based methods utilize the gra-

dient information. The local gradient angles in the transformed

image remain considerably unchanged (except under image

blur which causes the gradient angles damaged), but their

gradient magnitudes change somewhat nonuniformly. Besides,

there are generally several different gradient angles found in an

image especially for the textured image. (This may not be the

case for structured scenes with a distinguished edge orienta-

tion.) Therefore, the 36-bin orientation histogram will contain

multiple candidates on the histogram ballot. When gradient

magnitudes change nonuniformly, the vote counting result of

the multiple candidates will change. This leads to a change

of the dominant orientation in the transformed image. It, in

turn, triggers further nonlinear changes in the 128-dimensional

SIFT feature vector, regardless of the unit length feature vector

renormalization at the process end. This is why the performance

of the SIFT-based methods generally degrades under a given

transformation especially for the textured scenes. We shall use

an example to justify our above reasoning.

Fig. 12 shows the result for the performance comparison be-

tween ZM phase and SIFT under nonlinear lighting change (a

power-law (gamma) transform with ). Fig. 12(a)
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Fig. 12. Performance comparison of ZM phase and SIFT under nonlinear lighting change. The detected ellipse-shaped regions are normalized to a circular patch
through the affine normalization process beforehand.

shows the region pair before and after affine intensity normal-

ization in the gray color or in the pseudo color for better visual-

ization, along with their difference images and difference inten-

sity histograms. We can observe that the image structure of the

transformed and difference images looks similar to that of the

reference image. This leads to the fact that despite a few parts,

the real and imaginary parts of the ZM moments for region pair

are nearly identical, as indicated in Fig. 12(b). Therefore, the

majority of the weighted phase differences are nearly zero, as

shown in Fig. 12(c). On the other hand, the nonuniform intensity

fluctuation causes the dominant orientation histogram and the

128-dimensional SIFT feature vectors to change nonuniformly,

resulting in an expected greater dissimilarity between the two

images shown in Fig. 12(d).

In summary, noise, lighting change, compression, and blur-

ring belong to the photometric transformation type which

causes the image intensities to vary. On the other hand, view-

point change, scaling and rotation belong to the geometric

transformation type which first relocates the positions of the

image points, and then requires some sort of intensity interpo-

lation to compute the image intensities at the new image points;

the new image intensities contain some nonuniform fluctuation

(except the rotation transformation which generally causes a

very minor intensity fluctuation). We can apply the above-men-

tioned reasoning to conclude the ZM phase descriptor is

generally more robust than the SIFT-based methods under

these transformations, especially for the textured scenes which

generally contain the complex edge orientation information.

D. Time Complexity

The computation time for evaluating the descriptor perfor-

mance consists of the region extraction time, the descriptor fea-

ture vector construction time and the region matching time. Be-

cause all descriptors use the same set of regions of interest de-

tected, so their region extraction times are the same. As for the

feature vector construction time, the numbers of multiplications
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and additions required to compute Zernike moments up to order

for a image patch are both of order [40].

However, this calculation can be accelerated by using the sym-

metrical properties of Zernike basis functions [41], or achieve in

real time performance by using special hardware accumulation

grid architecture [42]. As for the region matching including the

rotation angle estimation, the numbers of multiplications and

additions required by the ZM phase descriptor are both of order

. Theoretically speaking, the SIFT-based descriptor has

a shorter region matching time per region pair, compared to the

ZM phase descriptor. However, if desired, we can first use the

ZM moment magnitude components, which are known rotation-

ally invariant, to compute the distance between two given fea-

ture vectors. Only when the magnitude-based distance passes

the condition checking, the ZM phase descriptor needs further

calculation of the weighted and normalized phase difference

to check if there exists a rotation angle between two matching

regions.

VII. CONCLUSIONS

In this paper, a new region descriptor called the ZM phase

is presented, which is robust to common photometric and geo-

metric transformations. A method for an accurate and robust

estimation of the rotation angle between two matching regions,

implemented in the continuous angle domain without the need

of specifying a discrete angle histogram bin resolution, is

described. Then a measure for image similarity matching is

expressed by a weighted and normalized phase difference. The

proposed descriptor is compared with five popular descrip-

tors, SIFT, PCA-SIFT, GLOH, steerable filter, and complex

moments, based on the precision-recall criterion with respect

to a number of important system parameters. There are more

than 15 million region pairs analyzed. The results show that

the proposed ZM phase has the leading performance under

all photometric and geometric transformations for all textured

scenes. As for the structured scenes, the ZM phase has the

best performances under image blur and nonlinear lighting,

but is comparable to the SIFT-based descriptors under other

transformations when the values of 1-precision are small. The

analyses on the performance evaluation results are given to

account for the performance discrepancy. First, the descriptor

performance depends on the estimation accuracy of the rotation

angle between two matching regions. Table IV shows the

rotation angle estimation error of the ZM phase is better when

compared to SIFT. Second, the feature dimensionality and

feature orthogonality also affect the descriptor performance.

Third, the ZM phase is more robust than SIFT-based descriptors

under the nonuniform image intensity fluctuation.

Further investigation on the incorporation of the proposed de-

scriptor into various applications such as textured image classifi-

cation and image retrieval is currently underway. Hopefully, the

ZM phase descriptor can be better understood and improved.
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