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Abstract

Count data are most commonly modeled using the Poisson model, or by one of its many ex-
tensions. Such extensions are needed for a variety of reasons: (1) a hierarchical structure in the
data, e.g., due to clustering, the collection of repeated measurements of the outcome, etc.; (2)
the occurrence of overdispersion (or underdispersion), meaning that the variability encountered
in the data is not equal to the mean, as prescribed by the Poisson distribution; and (3) the occur-
rence of extra zeros beyond what a Poisson model allows. The first issue is often accommodated
through the inclusion of random subject-specific effects. Though not always, one convention-
ally assumes such random effects to be normally distributed. Overdispersion is often dealt with
through a model developed for this purpose, such as, for example, the negative-binomial model
for count data. This can be conceived through a random Poisson parameter. Excess zeros are
regularly accounted for using so-called zero-inflated models, which combine either a Poisson or
negative-binomial model with an atom at zero. The novelty of this paper is that it combines
all these features. The work builds upon the modeling framework defined by Molenberghs et al.
(2010) in which clustering and overdispersion are accommodated for through two separate sets
of random effects in a generalized linear model.

Some Keywords: Poisson model, Clustering, Overdispersion, Zero-inflation

1 Introduction

Count data are encountered in a wide range of applications, including medical and biomedical re-

search. As we will now explain, they may exhibit a variety of features that somehow need to be

taken into account in the modeling process: zero-inflation, overdispersion, and correlation. In this

contribution, we will accommodate them all at once, within a likelihood framework, allowing for easy

implementation in standard statistical software.

Univariate count data is typically modeled within the class of generalized linear models (GLM, Nelder
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and Wedderburn 1972, McCullagh and Nelder 1989, Agresti 2002) and the exponential family is

used to formulate distributional assumptions (McCullagh and Nelder 1989). In this regard, Poisson

regression models provide a standard basis for the analysis of count data. Nevertheless, it has been

clear for several decades that a key feature of the GLM framework and many of the exponential family

members, the so-called mean-variance relationship, may be overly restrictive. By this relationship, we

indicate that the variance is a deterministic function of the mean; for the Poisson model v(µ) = µ.

In several cases, one can expect that the Poisson assumption, however, is not satisfied: (1) when

the data are hierarchically structured, as happens in longitudinal studies or when individuals are

grouped into clusters; (2) when overdispersion is present in the data, for example, due to unobserved

confounding; (3) when an excess of zeros is present in the data. The novelty of our work is that it

combines these three features in into a single, flexible framework. As such, it goes beyond what is

available in the literature. A general model framework for counts will be presented in which hierarchy,

overdispersion, and zero-inflation can be modeled, extending the work by Molenberghs et al. (2010).

While a relatively straightforward extension given earlier work, it has practical relevance as our data

analysis will illustrate. It will be investigated whether the different components are conveniently and

jointly estimable. Indeed, zero-inflation is a special case of overdispersion, but then it is of a very

particular kind. We will also examine how failure to account for at least one of the features affects

the results.

There is a lot of literature on Poisson-model extensions. Breslow (1984) targets overdispersion in the

Poisson model. One of the important models in this respect is the negative-binomial model , where

the natural parameter is assumed to follow a gamma distribution, which has the effect of relaxing

the mean-variance relationship. Lawless (1987) also contributed to this class of extensions.

When focusing on hierarchical data, the so-called generalized linear mixed model (GLMM, Engel and

Keen 1994, Breslow and Clayton 1993, Wolfinger and O’Connell 1993) has gained popularity as a

tool to accommodate overdispersion and/or hierarchy-induced association for outcomes that are not

necessarily of a Gaussian type. Booth et al. (2003) extended the negative binomial log-linear model

to the case of dependent counts, where dependence among the counts is handled by including linear

combinations of random effects.

Overdispersion and excess zeros for cross-sectional count data are studied by, for example, Lambert

(1992) and Greene (1994). Multi-level zero-inflated Poisson regression is considered by Lee et al.

(2006). Zero-inflated count models provide a way of modeling the excess zeros in addition to allowing
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for overdispersion by using two simultaneously operating data generation processes; one generates

only zeros and the other is either a Poisson or negative-binomial data generating process. The hurdle

model, which is a two-part model, is also available to model excess zeros (Mullahy 1986). One part

is a binary model for whether the response outcome is zero or positive. Conditional on a positive

outcome, the second part uses a truncated Poisson or negative-binomial that modifies an ordinary

distribution by conditioning on the positive outcomes. For zero-inflated correlated data, the hurdle

model has been studied by Min and Agresti (2005).

The paper is organized as follows. In Section 2, two motivating case studies with count outcomes

are described, with analyses reported in Section 7. In Section 3, a review is given of the so-called

combined model, the general modeling framework proposed by Molenberghs et al. (2010) to model

overdispersed hierarchical data. Section 4 proposes an extension of this modeling framework to

also deal with zero-inflation. Avenues for parameter estimation and ensuing inferences are explored

in Section 5, with particular emphasis on so-called partial marginalization. Section 6 deals with a

simulation study to investigate the importance of accounting for clustering, overdispersion, and a

preponderance of zero counts. The case studies are analyzed in Section 7.

2 Motivating Case Studies

2.1 The Jimma Infant Growth Study

The Jimma Infants Survival Differential Longitudinal Growth Study is a survey to study infant sur-

vival in Ethiopia. Risk factors, including socio-economic, maternal, and infant-rearing factors, were

recorded to be able to study their relationship with the child’s early survival. The study is described

in detail by Asefa and Tessema (2002). Children born in Jimma, Keffa, and the Illubabor Zones,

Southwestern Ethiopia were examined for their first-year growth characteristics. At baseline, there

were a total of 7969 infants whereby 4317, 1494, and 2158 were from rural, urban, and semi-urban

areas, respectively. The children were visited every two months starting from birth until the age of

one year (Table 1).

One of the questions of interest in the survey is to assess the diarrheal disease burden. In this paper,

it is investigated whether the number of days of diarrheal illness in the two-month period prior to each

visit, changes over time (i.e., age), whether the evolution differs for gender (male or female), place

of residence (urban or rural), medical care (medical help given or not) and breast feeding behavior

3



Table 1: Jimma Infant Growth Study. The mean number of days of illness and standard deviation

at each of the seven follow-up times.

Time (months) Mean Std. Dev.

0 0.01 0.19

2 0.91 4.21

4 1.28 4.62

6 1.56 4.87

8 2.14 5.93

10 2.63 6.66

12 2.67 6.95

(breast or artificial feeding). Of the 49,000 observations in total, only about 8000 observations are

non-zero, indicating that there is a non-negligible dominance of zero counts.

2.2 A Clinical Trial in Epileptic Patients

These data are obtained from a randomized, double-blind, parallel group multi-center study for the

comparison of placebo with a new anti-epileptic drug (AED), in combination with one or two other

AED’s. The study is described in full detail in Faught et al. (1996) and Molenberghs and Verbeke

(2005). In this study, 45 patients were randomized to the placebo group and 44 to the new treatment

group. The number of epileptic seizures was recorded on a weekly basis during a 16-week period.

Thereafter, patients were entered into a long-term open-extension study, which contains follow-up

measurements of patients up to 27 weeks. The key research question is whether or not the additional

new treatment reduces the number of epileptic seizures.

Zero counts represent 33% of the measurements; the sample average and standard deviation are 3.18

and 6.14, respectively. Thus, there is a large proportion of zeros, as well as evidence of overdispersion

and correlation stemming from the longitudinal aspect of the data.
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3 Review of the Combined Model

Molenberghs et al. (2010) proposed a unified modeling framework for the analysis of overdispersed

and hierarchical non-Gaussian data by bringing together normal random effects and conjugate random

effects within the generalized linear model framework. On the one hand, the generalized linear mixed

model (Engel and Keen 1994, Breslow and Clayton 1993, Wolfinger and O’Connell 1993, GLMM)

with normally distributed subject-specific random effects is likely the most frequently used model

in the context of non-Gaussian repeated measurements. On the other hand, an elegant way to

accommodate overdispersion is through a two-stage approach, in which a conjugate measurement-

specific random effect on the scale of the natural parameter is used, leading to models such as the

negative-binomial model for count data. These two features are brought together.

We apply the following notational convention. The model that brings both features together, i.e.,

the combined mode, is denoted as (PNG), where the first symbol ‘P’ refers to basic Poisson model,

the second symbol ‘N’ is for normal random effects and the final one for gamma random effects.

Three special cases follow by leaving out one or more of the random-effects structures: (P--) for the

Poisson model, (PN-) for the Poisson-normal GLMM, and (P-G) for the negative-binomial model.

Let Yij be the jth outcome measured for subject i, with i = 1, . . . , N and j = 1, . . . , ni. In general,

the combined family is given by

fi(yij|ξ, θij, φ) = exp
{

φ−1[yijηij − ψ(ηij)] + c(yij, φ)
}

,

with η and φ the natural and dispersion parameter, respectively, and ψ(·) and c(·) known functions

specifying a particular member of the exponential family. The conditional mean is modeled as

E(Yij|bi, ξ, θij) = θijκij with κij = g(x′
ijξ + z′

ijbi) for a known inverse-link function g(·), xij

and zij p-dimensional and q-dimensional vectors of known covariate values, respectively, and ξ a

p-dimensional vector of unknown fixed regression coefficients. The measurement-specific parameters

θij follow a conjugate distribution θij ∼ Gij(ϑij, σ
2
ij) and the subject-specific parameters κij follow

a normal distribution bi ∼ N (0, D), with D a variance-covariance matrix reflecting the structure

assumed for the random effects.

It is computationally convenient, but not strictly necessary, to assume that the two sets of random

effects, θi and bi, are independent of each other. The components θij of θi can be independent

on the one end, identical on the other, or different but correlated as a compromise in between these

extremes. In line with Molenberghs et al. (2010) we take the first of these three routes.
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For count data, we assume that

Yij ∼ Poi(λij = θijκij), (1)

κij = exp
(

x′
ijξ + z′

ijbi

)

, (2)

bi ∼ N (0, D), and θij ∼ Gamma(α, β). Further, α and β are shape and scale parameters, respec-

tively. For identifiability reasons it is assumed that β = 1/α. The measurement-specific gamma

random effect θij is used to accommodate overdispersion, while the subject-specific normal random

effect bi is used to model the correlation coming from the hierarchy in the data. This model is

denoted by (PNG), in line with our aforementioned notational conventions.

4 Zero-inflated Models

In zero-inflated count models, it is assumed that there are two processes that can generate zeros:

zeros may come from both a point mass (process 1) as well as from the count component (process

2). It is assumed that for observation i at time j, process 1 is chosen with probability πij and

process 2 with probability 1 − πij (Hinde and Demétrio 1998ab). Process 1 generates only zeros,

whereas process 2, fi(yij|b1i, ξ, θij), generates counts from a Poisson, a negative-binomial model, a

Poisson-normal GLMM, or a Poisson-gamma-normal combined model. In its most general form, the

zero-inflated Poisson-gamma-normal model is given as the following mixture:

Yij ∼















0 with probability πij,

fi(yij|b1i, ξ, θij) with probability 1 − πij,

(3)

leading to the probabilities p(Yij = yij|b1i, ξ, θij, πij) given by

p(Yij = yij|b1i, ξ, θij, πij) =















πij + (1− πij)fi(0|b1i, ξ, θij) if yij = 0,

(1 − πij)fi(yij|b1i, ξ, θij) if yij > 0.

(4)

The zero-inflation component πij = π(x′
2ijγ + z′

2ijb2i) is modeled using a Bernouilli model: in the

simplest case with only an intercept, but potentially containing known regressors x2ij and z2ij, a

vector of zero-inflation coefficients γ to be estimated, as well as random effects b2i. Common link

functions, such as the logit or probit, can be used. Note that xij, zij, and bi in Section 3 are now

replaced by x1ij, z1ij, and b2i, respectively, for the non-zero count part. The regressors in the count

and zero-inflation component can either be overlapping, a subset of the regressors can be used for
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the zero-inflation, or entirely different regressors for the two parts can be used. In many cases, but

of course not always, a simple random-intercept model is adequate, where b1i = b1i, b2i = b2i, and

z1ij = z2ij = 1. Assuming that the random effects are normally distributed and possibly correlated

with correlation parameter ρ, the variance-covariance matrix is

D =









d1 ρ
√
d1

√
d2)

ρ
√
d1

√
d2 d2









.

The model is denoted as ZI(PNG), as an obvious extension with earlier notational conventions. Three

obvious special cases are ZI(PN-), ZI(P-G), and ZI(P--). Also, all four models without zero inflation

are special cases as well. The conditional mean and variance of the ZI(PNG) are:

E(Yij|b1i, ξ, θij) = θijκij(1 − πij), (5)

Var(Yij|b1i, ξ, θij) = θijκij(1 − πij)[1 + θijκij(πij + 1/α)]. (6)

It can be seen that the conditional variance is inflated as a result of either overdispersion in the data

(parameter α), or as a result of zero-inflation (parameter πij), or both.

5 Estimation

Likelihood estimation of the (PNG) is done by integrating over the random effects, assembling the

marginal likelihood, and maximizing it in the usual way. Molenberghs, Verbeke, and Demétrio (2007)

and Molenberghs et al. (2010) marginalized analytically over the gamma random effect, with then

further numerical integration over the normal random effects. This enables the use of a flexible

normal random-effects tool such as the SAS procedure NLMIXED. Example code can be found in

the Appendix The partially marginalized (PNG) takes the form:

f(yij|b1i, ξ) =

∫

f(yij |b1i, ξ, θij)f(θij|αj, βj)dθij (7)

=









αj + yij − 1

αj − 1









·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij . (8)

This idea extends in a straightforward fashion to the ZI(PNG):

f(yij|b1i, ξ, b2i, γ) = I(yij = 0)πij

+(1− πij)









αj + yij − 1

αj − 1









·
(

βj

1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,
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with πij = π(x′
2ijγ + z′

2ijb2i).

6 Simulation Study

In this section, we report on a simulation study set up to examine the bias in estimating the re-

gression parameters when dealing with overdispersed, longitudinal count data with excess zeros. For

such data, the bias is likely to result from not appropriately accounting for the excess zero counts,

misspecification of the overdispersion, which is a very common situation for count data in a way that

the prescribed mean-variance link is violated and misspecification of the correlation results from the

repeated-measurements nature of the data.

6.1 Simulation Setting

Data are generated along a design inspired by the Jimma Infant Study. Age in months, status of

getting medical help, and breast feeding behavior were among the covariates of interest in the study,

and are used in the simulation study as well.

We randomly generated 200 data sets from the zero-inflated combined model for 2000 subjects

with 10 measurements per subject. The response vector yi for the ith subject was generated as

a correlated and overdispersed count from a negative-binomial process subject to zero-inflation.

That is, for each subject, Yij ∼ NB(ψij, θ), where θ = 1 with ψij = (1 + κij/θ)
−1 and where

κij = exp {ξ0 + bi + ξ1tij + ξ2Hij} for i = 1, . . . , 2000 and j = 1, . . . , 10. Further, tij represents

the time point at which the jth measurement is recorded for the ith subject and Hij denotes whether

or not the ith subject is given any medication help at the jth measurement occasion, generated from

a Bernoulli process with p = 0.9. Correlation is induced via a subject-specific random intercept bi

generated from a normal distribution with mean 0 and variance 0.8. Then, zero inflation is added

by defining the final response vector Y ∗
i to have components Yij

∗ = (1− uij)Yij , where the uij are

Bernoulli random variables with parameters πij and logit(πij) = γ0 + γ1tij .

Three different scenarios were considered for data generation: S1: without excess zeros; S2: with

an excess of zeros of around 20%; S3: with an excess of zeros of roughly 40%. The corresponding

total zero percentages are 48%, 68%, and 88%, respectively. This was achieved, for each scenario,

by appropriately choosing the zero-inflation coefficients. The true parameter values used to generate

the data were ξ = (1.12, 0.13,−1.89)T . Similarly, for the zero-inflation part, γ = (−1,−1)T ,
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γ = (1,−0.25)T and γ = (1.8,−0.1)T were used for S1, S2, and S3, respectively.

6.2 Simulation Results

The simulated data are analyzed by the ZI(PNG), ZI(P-G), ZI(PN-), and ZI(P--), as well as by their

non-zero-inflated counterparts. Mean, relative bias (rbias) and predicted probabilities of zero counts

are summarized for the three scenarios in Tables 2–4, respectively.

Parameter estimates of the ZI(PNG) were in agreement with their true model in all scenarios. This

shows that the different components: zero-inflation, overdispersion, and correlation, can be well

separated in practice, in settings like the ones considered here. The zero-inflated model converged

for almost all simulated sets of data, apart from one perhaps idiosyncratic failure to do so.

Under S1, as shown in Table 2, the ZI(PNG) and the (PNG) performed well and fairly similar in terms

of relative bias, except for the intercept ξ0 for which a larger bias is observed in the (PNG). The

percentage of zero counts (48%) is nearly equally predicted in both cases. But, severe impact starts to

emerge in the non zero-inflation models when excess zero counts are present, but not accounted for,

as evidenced in Tables 3 and 4. The predicted number of zero counts is largely underestimated in the

non-zero-inflated models. When many zeros are allowed for, as in S3, the effect is more pronounced

in the intercept term and the negative-binomial parameter α as compared to S2. Moreover, the bias

in the standard deviation of the random-effects, for instance, in the ‘true’ model tends to increase

in S3, which gets substantially higher for models with neglected zero-inflation component, such as

the (PNG) and (PN-).

The impact of omitting the overdispersion is remarkable. This can be clearly observed, for example,

from the considerable increment in the relative bias of the ZI(PN-). When overdispersion is omitted,

the zero-inflation component will try to recover part of the overdispersion.

When the correlation stemming from the repeated measurements is misspecified, substantial impact

appears in inferences of the ZI(P-G), which gets even worse in the (P-G), as evidenced quite clearly

from the larger relative bias of the intercept term. When correlation is omitted from the model, the

overdispersion term will try to recover for this misspecification.

Unlike in S1, the ZI(PNG) significantly beats the (PNG), confirming the importance of accounting

for the excess zeros in addition to the repeated measures nature and the overdispersion.

We conclude that failure to account for excess zeros, overdispersion, and/or correlation has a substan-
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tial impact on bias and predicted probabilities. This was clearly shown on such key model parameters

as the intercept term, the overdispersion parameter, and the variance of the random effects. All

scenarios suggest that the zero-inflated combined model is the preferred one in terms of relative bias

and predicted probabilities of zeros.

7 Analysis of Case Studies

7.1 The Jimma Infant Growth Study

We will fit the ZI(PNG) to the data, introduced in Section 2.1, and compare it to its special cases:

(P--), (P-G), (PN-) (PNG), ZI(P--), ZI(PN-), and ZI(P-G). We model κij as

ln(κij) = ξ0 + b1i + ξ1Ri + ξ2Ui + ξ3Tij + ξ4Gi + ξ5Bij + ξ6Hij + ξ7RiTij

+ξ8UiTij + ξ9GiTij + ξ10BijTij + ξ11HijTij

and the zero-inflation probability (πij) as

logit(πij) = γ0 + b2i + γ1Ri + γ2Ui + γ3Tij + γ4Gi + γ5Bij + γ6Hij,

with Ri an indicator for rural residence and Ui for urban residence. The semi-urban residence category

is taken as the reference. Further, Gi is a gender indicator and Tij is the time point at which the jth

measurement is taken for the ith subject; Bij and Hij denote, respectively, whether or not the ith

infant is breastfed and given any medication between the (j−1)st and jth measurement occasions.

Clearly, as can be observed from Tables 5 and 6, the zero-inflated models performed much better than

their respective non-zero-inflated counterparts, resulting in a substantial improvement in fit, thence

implying that the extra zeros need to be accommodated, which is expected given the excessive zero

counts in these data as shown in Section 2.1.

The ZI(PN-) model is an important improvement, in terms of likelihood, relative to the ZI(P--),

while much more improvement is gained in the case of the ZI(P-G) relative to the ZI(P–). Moreover,

considering the ZI(PNG), there is a strong improvement in fit when the gamma and normal random

effects, in addition to zero-inflation, are simultaneously included. A similar observation can be made

for the non-zero-inflated models.

There is a very strong improvement in fit of the ZI(P-G), when compared to the ZI(PN-). It points

to the fact that overdispersion is more important an effect than the repeated-measures nature, hence
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Table 2: Simulation study under scenario S1. Mean, standard error, and relative bias of the parameter estimates in ZI(PNG), ZI(P-G),

ZI(PN-), ZI(P--), and its non-zero-inflated counterparts.

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.068(0.003) 0.046 0.991(0.004) 0.115 1.277(0.003) 0.139 2.404(0.005) 1.147

Time ξ1 0.13 0.125(0.001) 0.040 0.136(0.001) 0.046 0.125(0.001) 0.040 0.133(0.001) 0.026

Help ξ2 −1.89 −1.794(0.002) 0.051 −1.796(0.002) 0.049 −1.705(0.002) 0.098 −1.708(0.002) 0.096

Negative-binomial parameter α 1.00 0.953(0.002) 0.047 0.995(0.002) 0.005 1.774(0.003) 0.774 0.552(0.001) 0.448

Std. dev random effect
√

d 0.80 0.780(0.001) 0.025 0.779(0.001) 0.026 − − − −

Inflation intercept γ0 −1.00 −0.856(0.099) 0.104 − − −0.265(0.123) 0.725 − −

Inflation time γ1 −1.00 −1.049(0.098) 0.049 − − −1.698(0.122) 0.687 − −

Predicted prob. zeros 0.48 0.493 0.481 0.359 0.291

Frequency of convergence 199 200 200 200

ZI(PN-) (PN-) ZI(P--) (P--)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.216(0.003) 0.086 0.892(0.003) 0.204 1.661(0.003) 0.483 1.250(0.003) 0.116

Time ξ1 0.13 0.101(0.001) 0.225 0.127(0.001) 0.026 0.089(0.001) 0.318 0.124(0.001) 0.043

Help ξ2 −1.89 −1.467(0.002) 0.224 −1.693(0.002) 0.104 −1.275(0.002) 0.326 −1.682(0.002) 0.109

Std. dev random effect
√

d 0.80 0.796(0.001) 0.005 0.861(0.001) 0.076 − − − −

Inflation intercept γ0 −1.00 −0.386(0.005) 0.614 − − 0.247(0.003) 1.247 − −

Inflation time γ1 −.00 −0.094(0.001) 0.906 − − −0.094(0.001) 0.906 − −

Predicted prob. zeros 0.48 0.473 0.365 0.483 0.255

Frequency of convergence 200 200 200 200

1
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Table 3: Simulation study under scenario S2. Mean, standard error, and relative bias of the parameter estimates in ZI(PNG), ZI(P-G),

ZI(PN-), ZI(P--), and its non-zero-inflated counterparts.

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.079(0.004) 0.037 1.833(0.005) 0.637 1.089(0.005) 0.027 2.796(0.006) 1.497

Time ξ1 0.13 0.123(0.001) 0.052 0.239(0.001) 0.839 0.125(0.001) 0.040 0.225(0.001) 0.730

Help ξ2 −1.89 −1.766(0.003) 0.066 −1.776(0.003) 0.060 −1.671(0.003) 0.116 −1.703(0.003) 0.099

Negative-binomial parameter α 1.00 0.908(0.004) 0.093 0.372(0.001) 0.628 2.379(0.008) 1.379 0.266(0.001) 0.734

Std. dev random effect
√

d 0.80 0.772(0.002) 0.035 0.754(0.002) 0.058 − − − −

Inflation intercept γ0 1.00 1.056(0.005) 0.056 − − 0.993(0.006) 0.003 − −

Inflation time γ1 −0.25 −0.246(0.001) 0.014 − − −0.354(0.001) 0.416 − −

Predicted prob. zeros 0.68 0.696 0.398 0.549 0.367

Frequency of convergence 200 200 200 200

ZI(PN-) (P-N) ZI(P--) (P--)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.183(0.004) 0.056 −0.235(0.004) 1.210 1.666(0.004) 0.488 0.215(0.004) 0.808

Time ξ1 0.13 0.099(0.001) 0.235 0.212(0.001) 0.633 0.087(0.001) 0.329 0.210(0.001) 0.613

Help ξ2 −1.89 −1.444(0.003) 0.236 −1.679(0.003) 0.112 −1.261(0.002) 0.420 −1.664(0.003) 0.120

Std. dev random effect
√

d 0.80 0.834(0.001) 0.042 0.976(0.001) 0.220 − − − −

Inflation intercept γ0 1.00 1.473(0.004) 0.473 − − 1.816(0.003) 0.816 − −

Inflation time γ1 −0.25 −0.209(0.001) 0.163 − − −0.202(0.001) 0.193 − −

Predicted prob. zeros 0.68 0.677 0.520 0.682 0.422

Frequency of convergence 200 200 200 200
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Table 4: Simulation study under scenario S3. Mean, standard error, and relative bias of the parameter estimates in ZI(PNG), ZI(P-G),

ZI(PN-), ZI(P--), and its non-zero-inflated counterparts.

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.076(0.007) 0.039 4.005(0.009) 2.828 0.980(0.009) 0.125 4.494(0.008) 3.012

Time ξ1 0.13 0.125(0.001) 0.042 0.216(0.001) 0.658 0.121(0.001) 0.070 0.202(0.001) 0.554

Help ξ2 −1.89 −1.757(0.005) 0.070 −1.765(0.005) 0.067 −1.676(0.005) 0.113 −1.701(0.005) 0.100

Negative-binomial parameter α 1.00 0.887(0.007) 0.112 0.088(0.001) 0.912 3.041(0.034) 2.041 0.076(0.001) 0.924

Std. dev random effect
√

d 0.80 0.765(0.003) 0.043 0.609(0.004) 0.239 − − − −

Inflation intercept γ0 1.80 1.862(0.006) 0.034 − − 1.487(0.009) 0.174 − −

Inflation time γ1 −0.10 −0.102(0.001) 0.017 − − −0.118(0.001) 0.177 − −

Predicted prob. zeros 0.88 0.884 0.590 0.807 0.604

Frequency of convergence 200 200 200 200

ZI(PN-) (P-N) ZI(P--) (P--)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.051(0.008) 0.061 −1.515(0.007) 2.353 1.660(0.006) 0.482 −0.631(0.007) 1.563

Time ξ1 0.13 0.104(0.001) 0.203 0.195(0.001) 0.502 0.088(0.001) 0.323 0.193(0.001) 0.487

Help ξ2 −1.89 −1.473(0.005) 0.221 −1.669(0.005) 0.117 −1.257(0.004) 0.335 −1.661(0.005) 0.121

Std. dev random effect
√

d 0.80 0.941(0.002) 0.176 1.416(0.002) 0.769 − − − −

Inflation intercept γ0 1.80 2.205(0.005) 0.225 − − 2.629(0.004) 0.382 − −

Inflation time γ1 −0.10 −0.112(0.001) 0.122 − − −0.127(0.001) 0.271 − −

Predicted prob. zeros 0.88 0.876 0.756 0.877 0.675

Frequency of convergence 200 200 200 200
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the ZI(P-G) is able to perform better from the start. It underscores, once more, that overdispersion

with count data is a very common situation. Eventually, both are needed.

The zero-inflation regression coefficients are similar in all models, statistically significant, and can be

interpreted as model coefficients for the proportion of extra zeros.

ZI(PNG) and ZI(P-G) exhibit similar fits, not only in terms of parameter estimates but also in

inference, except that gender is significant in the former (p = 0.0311) while this is not the case for

the latter (p = 0.0922). Both models suggest that medical help, breast feeding, main effect of rural

place of residence are significant; the same is true for time interactions with breast feeding and urban

place of residence.

7.2 Epilepsy Data

We analyze the epilepsy data, introduced in Section 2.2. Let Yij represent the number of epileptic

seizures that patient i experiences during week j of the follow-up period. Also, let tij be the time-

point at which Yij has been recorded. Consider the combined model (1)–(4), with parameterization

similar to the one in Molenberghs et al. (2010), but now accounting for zero inflation, assuming that

counts are generated from a (PN-) process with mean λij:

ln(λij) =















(ξ00 + b1i) + ξ01tij if placebo,

(ξ10 + b1i) + ξ11tij if treated,

(9)

or from a (PNG) process with mean λij = θijκij:

ln(κij) =















(ξ00 + b1i) + ξ01tij if placebo,

(ξ10 + b1i) + ξ11tij if treated,

(10)

The zero-inflation probability (πij) is modeled as logit(πij) = γ0 +b2i +γ1tij . The data are analyzed

with the ZI(PNG), ZI(P-G), ZI(PN-), ZI(P--). For the sake of comparison, also the non-zero-inflated

counterparts are fitted. Parameter estimates and predicted probabilities of zeros are presented in

Table 7. Clearly, in terms of likelihood comparison, the zero-inflated versions performed much better,

resulting in a substantial improvement in fit.

The ZI(P-G) is an important improvement relative to the ZI(P--), while much more improvement

is gained in the case of the ZI(PN-). Moreover, the ZI(PNG) leads to a substantially improved
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fit. Further, we observe that, omitting either the overdispersion or the correlation underestimates

the predicted probability of zeros, which becomes worse when both are omitted at the same time.

The ZI(PNG), fitted without random effects in the zero-inflation part, results in -2log-likelihood of

5386.8, and predicted probability of zeros equal to 0.3271. This implies that inclusion of random

effects in the zero-inflation part tends to have little impact on the predicted probability of zeros.

However, based on likelihood comparison, model fit improves considerably. This same phenomenon

is also evident in the ZI(PN-) fitted with random effects included only in the non-zero count part

(-2log-likelihood is 5971.9, and predicted probability of zeros 0.3112).

None of the zero-inflated models suggests evidence of significance in slope difference and slope ra-

tio, except for the ZI(P--), where significance is maintained for the slope difference (p = 0.0004).

However, the latter, unrealistically, omits correlation and overdispersion. The zero-inflation regres-

sion coefficients can be interpreted as model coefficients for the proportion of extra zeros, and are

statistically significant in all ZI models.

8 Concluding Remarks

There is quite a bit of research on longitudinal count data, with or without overdispersion, and

with or without excess zeros. In particular, the combined model by Molenberghs, Verbeke, and

Demétrio (2007) and Molenberghs et al. (2010) uses normal random effects to capture the hierarchy

in the count data and some overdispersion, with gamma random effects to more flexibly capture

overdispersion. Also, zero inflation has been studied in the literature. The novelty of our work is that

all these features are combined into one model, with more conventional models following as special

cases.

In terms of estimation, we have focused on maximum likelihood estimation, in such a way that

standard statistical software, such as the SAS procedure NLMIXED, can be used. An example of

such code is given in the Appendix.

Of course, with the considerations of not only one but multiple sets of random effects, comes the

obligation to reflect on the precise nature of such latent structures. As underscored by Verbeke and

Molenberghs (2010), full verification of the adequacy of a random-effects structure is not possible

based on statistical considerations alone, because there is a many-to-one map from hierarchical

models to the implied marginal model. Of course, this should not stop the user from considering
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such models, but rather issues a word of caution.

In this sense, it would be of interest to study extensions of or alternative formulations for the normal

random effects. For example, normal mixtures for the normal random effects could be used. Such

mixtures can be generated by assuming normality conditional on the mean vector, which itself is

assumed to be sampled from a discrete distribution with as many support points as the number of

mixture components (see, for example, Verbeke and Molenberghs 2000, Ch. 12).
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Table 5: Jimma Infant Growth Study. Parameter estimates and standard errors for the regression coefficients in (P--), (P-G), (PN-), and

(PNG).

(P--) (PN-) (P-G) (PNG)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 3.4198(0.0648) 2.0652(0.0744) 3.6443(0.3573) 5.7541(0.4567)

Rural ξ1 0.2209(0.0229) 0.2209(0.0291) 0.1674(0.0906) −0.0733(0.1231)

Urban ξ2 −0.1850(0.0331) −0.5266(0.0399) −0.1185(0.1157) −0.3000(0.1600)

Time ξ3 −0.1477(0.0073) −0.1307(0.0078) −0.1870(0.0425) −0.3287(0.0506)

Gender ξ4 0.1681(0.0182) 0.2478(0.0241) 0.2351(0.0767) 0.2444(0.1041)

Breast feeding ξ5 −1.5710(0.0614) −1.4554(0.0664) −1.8120(0.3066) −3.1539(0.4151)

Help ξ6 −3.2198(0.0196) −2.9870(0.0230) −3.7025(0.1784) −6.1493(0.1896)

Slope Rural ξ7 −0.0085(0.0027) −0.0090(0.0029) −0.0033(0.0139) 0.0182(0.0158)

Slope Urban ξ8 0.0461(0.0037) 0.0542(0.0039) 0.0397(0.0174) 0.0797(0.0202)

Slope Gender ξ9 −0.0011(0.0021) −0.0061(0.0023) −0.0033(0.0114) 0.0063(0.0129)

Slope Breast feeding ξ10 0.1583(0.0069) 0.1441(0.0072) 0.1988(0.0359) 0.3213(0.0453)

Slope Help ξ11 0.1641(0.0023) 0.1324(0.0081) 0.2326(0.0221) 0.3448(0.0219)

Std. dev random effect
√

d — 1.9612(0.0267) — 1.6847(0.0433)

Negative-binomial parameter α — — 0.0641(0.0009) 0.1045(0.0021)

−2log-likelihood 281,126 203,981 91,370 90,274
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Table 6: Jimma Infant Growth Study. Parameter estimates and standard errors for the regression coefficients in ZI(P--), ZI(P-G), ZI(PN-),

and ZI(PNG).

ZI(P--) ZI(PN-) ZI(P-G) ZI(PNG)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 2.2148(0.0636) 1.3877(0.1205) 2.2200(0.1571) 2.0388(0.1616)

Rural ξ1 0.2610(0.0252) 0.3880(0.0400) 0.2536(0.0577) 0.2804(0.0586)

Urban ξ2 −0.1049(0.0364) −0.0945(0.0549) −0.1096(0.0842) −0.1301(0.0858)

Time ξ3 −0.0289(0.0072) 0.0331(0.0119) −0.0302(0.0176) −0.0213(0.0178)

Gender ξ4 0.0835(0.0199) 0.1338(0.0321) 0.0797(0.0473) 0.1027(0.0477)

Breast feeding ξ5 −0.3430(0.0593) 0.0644(0.1138) −0.3370(0.1481) −0.3384(0.1528)

Help ξ6 0.2378(0.0211) 0.3312(0.0298) 0.2028(0.0498) 0.2225(0.0507)

Slope Rural ξ7 −0.0047(0.0030) −0.0202(0.0042) −0.0043(0.0071) − 0.0060(0.0070)

Slope Urban ξ8 0.0222(0.0041) 0.0178(0.0059) 0.0223(0.0096) 0.0227(0.0096)

Slope Gender ξ9 −0.0010(0.0023) −0.0100(0.0032) −0.0003(0.0056) − 0.0035(0.0054)

Slope Breast feeding ξ10 0.0372(0.0066) − 0.0011(0.0113) 0.0375(0.0164) 0.0345(0.0167)

Slope Help ξ11 0.0087(0.0059) 0.0019(0.0035) 0.0087(0.0059) 0.0084(0.0058)

Std. dev. non-zero part random effect
√

d1 — 0.5856(0.0075) — 0.4311(0.0112)

Negative-binomial parameter α — — 0.4797(0.0099) 0.2807(0.0086)

Inflation intercept γ0 −6.0412(0.6933) −6.0163(0.5759) −6.0608(0.6255) −6.0241(0.5656)

Inflation Rural γ1 0.1231(0.0396) 0.1222(0.0467) 0.1331(0.0398) 0.1306(0.0469)

Inflation Urban γ2 −0.1380(0.0475) −0.1578(0.0569) −0.1368(0.0478) −0.1578(0.0571)

Inflation Time γ3 −0.1835(0.0045) −0.1941(0.0048) −0.1834(0.0045) −0.1942(0.0048)

Inflation Gender γ4 −0.1606(0.0328) −0.1658(0.0388) −0.1582(0.0329) −0.1675(0.0389)

Inflation Breast feeding γ5 0.2056(0.0814) 0.2394(0.0940) 0.1960(0.0821) 0.2285(0.0945)

Inflation Help γ6 9.3894(0.6877) 9.6095(0.5680) 9.3833(0.6192) 9.6145(0.5576)

Std. dev. zero part random effect
√

d2 — 0.7575(0.0333) — 0.7604(0.0335)

Correlation of random effects ρ — −0.0907(0.0402) — −0.1127(0.0566)

−2log-likelihood 100,780 80,555 74,489 73,570
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Table 7: Epilepsy Study. Parameter estimates and standard error in ZI(P--), ZI(P-G), ZI(PN-), ZI(PNG), (P--), (P-G), (PN-), and (PNG).

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept placebo ξ00 0.9467(0.1665) 0.9113(0.1755) 1.2361(0.1100) 1.2594(0.1119)

Slope placebo ξ01 −0.0162(0.0075) −0.0248(0.0077) −0.0072(0.0113) −0.0126(0.0111)

Intercept treatment ξ10 0.8361(0.1716) 0.6557(0.1782) 1.3974(0.1098) 1.4750(0.1093)

Slope treatment ξ11 −0.0061(0.0074) −0.0118(0.0075) −0.0219(0.0112) −0.0352(0.0101)

Negative-binomial parameter α1 0.2449(0.0253) 2.4640(0.2113) 1.7874(0.1004) 0.5274(0.0255)

Std. dev. non-zero part random effect
√

d1 0.9974(0.0854) 1.0625(0.0871) − −

Inflation intercept γ0 −4.5813(0.6405) − −7.1064(1.3344) −

Inflation slope γ1 0.0921(0.0339) − 0.2921(0.0655) −

Std. dev. zero part random effect
√

d2 2.5327(0.4396) - − −

Correlation of random effects ρ −0.0961(0.1534) − − −

Predicted prob. zeros 0.3522 0.3206 0.1849 0.1583

−2log-likelihood 5317.9 5417.0 6318.9 6326.1

ZI(PN-) (PN-) ZI(P--) (P--)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept placebo ξ00 0.9027(0.1552) 0.8179(0.1677) 1.4205(0.0439) 1.2662(0.0424)

Slope placebo ξ01 −0.0042(0.0047) −0.0143(0.0044) 0.0061(0.0045) −0.0134(0.0043)

Intercept treatment ξ10 0.9078(0.1590) 0.6475(0.1701) 1.7608(0.0402) 1.4531(0.0383)

Slope treatment ξ11 −0.0074(0.0045) −0.0120(0.0043) −0.0153(0.0041) −0.0328(0.0038)

Std. dev. non-zero part random effect
√

d1 0.9713(0.0824) 1.0755(0.0857) − −

Inflation intercept γ0 −3.7123(0.5003) − −1.2879(0.1203) −

Inflation slope γ1 0.0952(0.0249) − 0.0593(0.0109) −

Std. dev. zero part random effect
√

d2 2.2215(0.3434) − − −

Correlation of random effects ρ −0.1541(0.1574) − − −

Predicted prob. zeros 0.3384 0.2627 0.3316 0.0459

−2log-likelihood 5845.1 6271.9 9760 11590
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Supplementary Material: SAS Procedure NLMIXED Code

A Sample PROC NLMIXED Code

/*

Analyses for the epilepsy Data

treatment 0= placebo

treatment 1= treatment

y=nseizw

time=studyweek

*/

/*(P--) Model */

proc nlmixed data=epilepsy qpoints=20;

title ’Univariate analyse’;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1;

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

loglik=-lambda+y*eta-log(fact(y));

model y~ general(loglik);

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

predict exp(-lambda) out=P;

run;

/*Average predicted probability of zeros*/

proc means data=P;
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var pred;

run;

/*ZI(P--) Model */

proc nlmixed data=epilepsy qpoints=20;

title ’Univariate analyse’;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 a0=0 a1=0;

eta_prob = a0+ a1*time ;

p_0 = exp(eta_prob) / (1 + exp(eta_prob));

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

if y = 0 then loglik = log(p_0 + (1 - p_0) * exp(-lambda));

else loglik = log(1 - p_0) + y * log(lambda)- lambda - lgamma(y+1);

model y~ general(loglik);

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

predict p_0 +(1-p_0)*exp(-lambda) out=ZIP;

run;

/*Average predicted probability of zeros*/

proc means data=ZIP;

var pred;

run;

/*(PN-) Model */

proc nlmixed data=epilepsy qpoints=20;

title ’Poisson-normal met general likelihood’;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 sigma=1;

if (trt = 0) then eta = int0 + b + slope0*time;

else if (trt = 1) then eta = int1 + b + slope1*time;

lambda = exp(eta);

loglik=-lambda+nseizw*eta-log(fact(y));

model nseizw ~ general(loglik);

random b ~ normal(0,sigma**2) subject = id;

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

predict exp(-lambda) out=PN;

run;

/*Average predicted probability of zeros*/

proc means data=PN;
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var pred;

run;

/*ZI(PN-) Model*/

proc nlmixed data=epilepsy qpoints=20;

title ’Poisson-normal met general likelihood’;

parms int0=0.8179 slope0=-0.014 int1=0.647 slope1=-0.012 d11=0.98

rho=0 d22=1.10 a0=-3 a1=0.1;

eta_prob = a0+ a1*time+b2 ;

p_0 = exp(eta_prob) / (1 + exp(eta_prob));

if (trt = 0) then eta = int0 + b1 + slope0*time;

else if (trt = 1) then eta = int1 + b1 + slope1*time;

lambda = exp(eta);

if y = 0 then loglik = log(p_0 + (1 - p_0) * exp(-lambda));

else loglik = log(1 - p_0) + y * log(lambda) - lambda - log(fact(y));

random b1 b2 ~ normal([0,0], [d11**2,rho*d11*d22,d22**2]) subject = id;

model y ~ general(loglik);

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

predict p_0+(1-p_0)*exp(-lambda) out=ZIPN;

run;

/*Average predicted probability of zeros*/

proc means data=ZIPN;

var pred;

run;

/*(P-G) Model*/

proc nlmixed data=epilepsy qpoints=20;

title ’Poisson-gamma == negative-binomial - alpha*beta=1’;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 alpha=2;

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

beta=1/alpha;

loglik=lgamma(alpha+y)-lgamma(alpha)+y*log(beta)-(y+alpha)*log(1+beta*lambda)

+y*eta-lgamma(y+1);

model y ~ general(loglik);

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

estimate ’beta=1/alpha’ 1/alpha;

predict (1/(1+lambda/beta))**beta out=PG;

run;
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/*Average predicted probability of zeros*/

proc means data=PG;

var pred;

run;

/*ZI(P-G) Model*/

proc nlmixed data=epilepsy qpoints=20;

title ’Poisson-gamma == negative-binomial - alpha*beta=1’;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 alpha=0.05 a0=-1 a1=0.1;

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

eta_prob=a0+a1*time;

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*lambda);

if y=0 then

ll = log(p_0+ (1-p_0)*(p**m));

else ll = log(1-p_0) + log(gamma(m + y)) - log(gamma(y + 1))

- log(gamma(m)) + m*log(p) + y*log(1-p);

model y ~ general(ll);

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

estimate ’beta=1/alpha’ 1/alpha;

predict p_0 +(1-p_0)*(1/(1+lambda/alpha))**alpha out=ZIPG ;

run;

/*Average predicted probability of zeros*/

proc means data=ZIPG;

var pred;

run;

/*(PNG) Model*/

proc nlmixed data=epilepsy qpoints=20;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 sigma=1 alpha=1 ;

if (trt = 0) then eta = int0 + b + slope0*time;

else if (trt = 1) then eta = int1 + b + slope1*time;

lambda = exp(eta);

beta=1/alpha;

loglik=lgamma(alpha+y)-lgamma(alpha)+y*log(beta)-(y+alpha)*log(1+beta*lambda)

+y*eta-lgamma(y+1);

random b ~ normal(0,sigma**2) subject = id ;
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model y~ general(loglik);

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

estimate ’beta=1/alpha’ 1/alpha;

predict (1/(1+lambda/alpha))**alpha out=PNG;

run;

/*Average predicted probability of zeros*/

proc means data=PNG;

var pred;

run;

/*ZI(PNG) Model*/

proc nlmixed data=epilepsy qpoints=20;

title ’Poisson-combined - alpha*beta=1’;

parms int0= 0.8511 slope0=-0.01048 int1=0.8165 slope1=-0.008 alpha=0.2937

d11=1.0810 rho=0 d22=3.19 a0=-1.78 a1=0.052;

if (trt = 0) then eta = int0 + b1 + slope0*time;

else if (trt = 1) then eta = int1 + b1 + slope1*time;

lambda = exp(eta);

eta_prob = a0+a1*time+b2 ;

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*lambda);

if y=0 then

ll = log(p_0 + (1-p_0)*(p**m));

else ll = log(1-p_0) + log(gamma(m + y)) - log(gamma(y + 1))

- log(gamma(m)) + m*log(p) + y*log(1-p);

model y ~ general(ll);

random b1 b2 ~ normal([0,0], [d11**2,rho*d11*d22,d22**2]) subject = id;

estimate ’difference in slope’ slope1-slope0;

estimate ’ratio of slopes’ slope1/slope0;

estimate ’beta=1/alpha’ 1/alpha;

predict p_0+(1-p_0)*(1/(1+lambda/m))**m out=ZIPNG;

run;

/*Average predicted probability of zeros*/

proc means data=ZIPNG;

var pred;

run;
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