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A Zero-Overhead Self-Timed 160-ns 54-b

CMOS Divider
Ted E. Williams, Student Member, IEEE, and Mark A. Horowitz, Member, IEEE

Abstroct—This paper describes the design of a custom inte-

grated circuit for the arithmetic operation of division. The chip

uses self-timing to avoid the need for high-speed clocks, and

directly concatenates precharged fnnctiou blocks without latches.

Internal stages form a ring that cycles without any external

signaling. The self-timed control introduces no serial overhead,

making the total chip latency equal to just the combinational

logic delays of the data elements. The ring’s data path uses

embedded completion encoding and generates the mantissa of a

54-b (floating-point IEEE double-precision) result. Fabricated

in 1.2-pm CMOS, the ring occupies 7 mmz and generates a

quotient and done indication in 45 to 160 ns, depending on the

particular data operands.

I. INTRODUCTION

T
RADITIONAl, synchronous circuits separate blocks

of combinational logic with clocked latches or regis-

ters. As technology improves and logic gets faster, the full

utilization of clock periods requires higher clock speeds

or the packing of more logic into each clock cycle. How-

ever, higher clock speeds introduce additional costs and

the need for wider relative margins for clock skew, and

computational applications that are sequential in nature

may not be as able to take advantage of increased logic

complexity within each clock cycle.

The direct algorithms for implementing the arithmetic

operation of division exemplify a sequential task. Previous

approaches at increasing the performance of division have

concentrated on increasing the complexity of the logic

function performed in each clock cycle [4], [14]. Higher

radix arithmetic can utilize this additional complexity to

reduce the number of clock cycles required for a given

problem. An alterni~te approach to avoid constraints from

clock speed limitations is to use self-timing [13] to control

a sequence of function blocks. Self-timing can attain high

performance because sequences of simple steps can be

performed without waiting for data to be desynchronized

with a global clock at each latch.

The method for self-timing presented in this paper

differs from other “self-timed” circuits that are based on

matched delays or tuned races [3], [12]. Matching delay
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elements requires specific process knowledge and exten-

sive engineering and simulation to ensure the designed

circuits function correctly over the envisioned ranges of

process variance and environmental conditions. In con-

trast, the method of self-timing demonstrated in this

paper constructs circuits that are primarily “speed-inde-

pendent,” meaning that they work correctly for any values

of gate delays. The control logic for speed-independent

circuits senses when operations are complete, based on

information embedded in the data path. But unlike other

speed-independent circuits [7], the control logic used here

does not enter into the normal critical paths and there-

fore adds zero overhead to the total delay. The perfor-

mance obtained is dependent solely on the delays through

the combinational data path elements.

Section 11 of this paper defines the division algorithm

that we chose to implement using self-timing. The arithm-

etic steps required for this algorithm are constructed

using the precharged function blocks described in Section

III. The design groups these blocks into stages in a

configuration, discussed in Section IV, that overlaps the

execution of neighboring stages. We arranged the stages

in a ring so that the iterative division computation cycles

under self-timed control. Like a ring oscillator, this “self-

timed ring” operates without external control after initial-

ization with the data operands for a given computation

[5]. Section V characterizes, as a function of their local

parameters, the performance of the stages when they are

connected in an iterating self-timed ring [20]. The data for

the division computation must loop around the ring

enough times to determine the desired number of quo-

tient digits. As the ring calculates quotient digits, they are

captured and accumulated in shift registers. These quo-

tient shift registers are also self-timed and Section VI

discusses their structure and a mechanism that can termi-

nate the iterations early and provide a final result sooner

in the case of a repeating quotient. Measurements and

test results are presented in Section VII from fabricated

chips implementing the self-timed divider design. Section

VIII compares these results with estimates of other possi-

ble self-timed design alternatives and with other pub-

lished division implementations. Section IX summarizes

the performance enhancements for division discussed in

this article and the benefits of using a self-timed ring with

no latches and zero overhead.
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Fig. 1. Radix-2 SRT division diagram.

II. DIVISIONALGORITHM

Floating-point operations require the computation of

both an exponent and mantissa. For division, the expo-

nent of the quotient is just the exponent of the dividend

minus the exponent of the divisor, minus one if the

mantissa of the dividend is less than the mantissa of the

divisor. Since the computation of the exponent is so

simple and can be performed in parallel with the mantissa

computation, this paper discusses only the mantissa com-

ponents.

Conventional direct division algorithms determine quo-

tient digits sequentially. A nonrestoring algorithm must

choose a valid quotient digit at each stage and update the

partial remainder according to the equation:

Pi~l = rPi – Dqi (1)

where r is the radix of the algorithm, D is the divisor, Pi

is the partial remainder at stage i, and qi is the quotient

digit selected by that stage. The iterations are initialized

by setting rPO equal to the dividend. Each quotient digit

must then be selected so that the next partial remainder

stays within specific bounds dependent on the radix [1].

The use of both positive and negative partial remain-

ders and signed quotient digits has become known as SRT

division [9]. Signed digits mean a value can be repre-

sented in multiple ways, and the arithmetic results are

called redundant. Fig. 1 illustrates graphically a stage of a

radix-2 SRT division algorithm, which uses quotient digits

in the set {– 1,0, + 1}. The key advantage of this scheme is

that each stage can select a quotient digit that is valid for

a range of values around each possible remainder value.

This allows the quotient digit selection to be based on an

approximation of the partial remainder in each stage. The

approximation can be formed by the most significant bits

of the partial remainder, and thus all of the less signifi-

cant bits can be computed using a carry-save adder (CSA)

instead of a full carry-propagate adder (CPA) in each

stage. Only a short CPA is needed to combine the sum

and carry bits actually examined by the quotient selection
logic. The number of bits is dependent on the radix and

[15] tabulates several options including the possibility of

propagating a different number of sum bits and carry bits

from the CSA.

Our estimates for self-timed division designs suggested

a radix-2 approach obtains the best performance because

its simplicity allows fast stages’ in a reasonable area. We

Fig. 2. Simple data flow required for each SRT division stage.

chose therefore to implement a radix-2 algorithm, but

Section VIII will compare in more detail our measured

results with other possibilities using higher radixes.

For radix-2 division [6], the CPA must normally exam-

ine 4 b even though the constraints of Fig. 1 mean the

result is always representable in 3 b. This anomaly occurs

because the top bit is needed only due to the possibility

that either the sum term or the carry term from the CSA

may individually represent a number just slightly more

negative than the left boundary of Fig. 1, even though

their sum must lie within the boundaries, However, for

radix 2, the partial remainder only takes on such an

extreme value in the cases for which it was also possible

for the preceding stage to select two – 1 quotient digits in

advance [19]. Therefore, we can narrow the data path by

1 b everywhere, and use only a 3-b CPA, by modifying the

standard quotient selection logic equations to

qi=+l if~i>Oand Fi_l=O (2)

qi=o if~i=–land Fi_l=O (3)

qi=–l if?i<–20r Fi_l=l (4)

or (Fi_l= 1 and [~i_l]n,~ = O) (5)

where pi is the approximated partial remainder in

{-4,..., +3} at stage i, and Fi is a flag that is set to force

the next quotient digit to be – 1. Even when the top sign

bit is trimmed away and the remainder “aliases” into a

positive number, the quotient selection logic in (2)-(4)

always chooses a correct quotient digit. Equation (5) sets

the force-next-digit flag when the most negative quotient

digit occurs or if the flag was set before and the remain-

der is already aliased.

Fig. 2 summarizes the hardware requirements for an

SRT division stage that uses (2)-(5). Compared with a

standard radix-2 algorithm, the reduction in the required

size of the remainder data path and adder widths from

4 b to only 3 b improves the total performance by about

570.

III. DUAL-MONOTONICFUNCTIONBLOCKSAND

COMPLETIONINDICATION

Circuits can achieve self-timed operation by carefully

matching delays between components or by operating

control logic with completion information encoded within

data signals. Our chip design demonstrates the latter

method by using local completion detectors and hand-
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TABLE I

ENCODINGS CINA DUAL-MONOTONIC WIRE PAIR

Wire AT wire AF Signal A

o 0 Reset = Not Ready

o 1 Evaluated FALSE

1 0 Evaluated TRUE
1 1 Not used = Never occurs
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Fig. 3. Precharged dual-rail carry-save adder function block with
merged pull- down tree and completion detector.

shaking between fully asynchronous blocks. This approach

allows the design to function correctly for any values of

gate delays. This insensitivity to component delays makes

the design robust because its proper operation is not

dependent on detail,ed process-specific delay information

or calculations.

Completion infclrmation is embedded in the data

throughout the design by using a pair of wires for each

bit. Called a “dual-monotonic pair,” the wires transmit

both a value and a timing signal by using the protocol in

Table I. Precharged function blocks can conveniently use

dual-monotonic signals as inputs and generate them as

outputs. N-channel pull-down networks choose which of

the wires in each pair to set high when input data arrive.

The pull-down trees for the two output wires can be

merged together to share transistors. Fig. 3 shows an

example of a function block with a merged pull-down tree

that computes the sum bit outputs in a bit slice of an

adder used for computing partial remainders. The block

takes inputs on three dual-monotonic pairs and outputs

the sum bit on another dual-monotonic pair. When one

wire in all three inputs goes high, there is a path through

the merged pull-down network that discharges one of the

two precharged nodes, causing one of the two output

wires to rise.

The function block in Fig. 3 precharges when the

precharge input is asserted and at least one of the dual-

monotonic input pairs is reset. Alternatively, the function

block can reset without requiring an input pair to be reset

if the transistor stacks are ratioed or if a series n-channel

transistor is added to the pull-down network and con-

nected to the precharge input.

A completion signal for a block producing a dual-

monotonic pair output can be generated by an OR gate on

the output wires, as also shown in Fig. 3. For a fully

speed-independent circuit, the individual completion sig-

nals from all the bits in a data path must be combined

together using a tree of C-elements (a C-element is a gate

that sets its output equal to its inputs when the inputs are

the same, and otherwise holds its output unchanged). The

tree of C-elements can optionally be reduced or omitted

in specific cases where it is reasonable to assume that the

skew between bits is less than the delay of the OR gate

used to detect the completion of each bit. Such an as-

sumption is justified in the portions, or fields, of a data

path where the bit slices are all computed in parallel by

circuits that do not have a serial dependency and, because

of their symmetry, have similar delays for both transition

polarities. The assumption is therefore quite valid for the

dual-monotonic pairs in a CSA (as in Fig. 3), but a CPA

would require the instantiation of a complete tree of

C-elements that examines all of the adder’s output bits.

An appropriate completion signal can be used by con-

trol logic to generate precharge signals for other function

blocks. For example, in a simple “domino chain” of

blocks, the precharge control signal for each block can be

the completion signal from the following block. This corl-

nection will precharge each block only after its outputs

have been consumed by the following block. Since a block

can evaluate only when its precharge signal is removed,

the control connection also enforces the symmetric condi-

tion that each block can only evaluate when its successor

is reset. This control connection therefore checks for the

completion of both evaluation and reset operations and

ensures that data do not race ahead to corrupt other data

values. Other control connections are also possible, with

differing performance characteristics [17], [20].

The control logic can also use completion signals to

determine when a sequence of operations is finished. The

division chip asserts a chip Done signal when it completes

an entire division computation. This signal can be used by

the environment in which the chip is embedded. If the

chip is connected to other asynchronous components, the

Done signal can be used as a Go request to the compo-

nent using the results. If the chip is embedded in a

synchronous system, the chip Done signal can be used to

indicate on which clock cycle the system may take the

outputs from the self-timed chip, or to stretch clock cycles

as in [21].

IV. DYNAMIC OVERLAPPED EXECUTION STAGES

Our design grotips the precharged function blocks im-

plementing the different steps of the division algorithm

into stages. Stages having a purely sequential data flow

could just directly assemble the full CSA, short CPA, and

quotient selection logic (QSL), as shown in Fig. 2. How-

ever, the execution of adjacent stages can be overlapped

by modifying the stages to allow some parallelism in the

data flow. Replicating the CPA’s for each possible quLo-

tient digit allows each CPA to begin operation before the

actual quotient digit arrives at a multiplexer to choose the
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Fig. 4. Data flow through a pair of stages with overlapped execution, showing the two symmetric critical paths.
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Fig. 5. Comparison of critical paths through a pair of stages, with and without overlapped execution.
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Fig. 6. Model for overlapped execution data flow in each stage.

correct branch. For our radix-2 implementation, we there-

fore use three CPA’s in each stage and a multiplexer

(RMUX) to choose between their outputs. Fig. 4 shows
the concatenation of the data elements for any two ad-

joining stages. Two of the three CPA’s in each stage are

also preceded by CSA’S to combine the remainder, re-

spectively, with the divisor and the negation of the divisor.

Actually, these two CSAS share the logic for the sum

terms because the dual-monotonic data convention al-

ready provides both the true and complement of each bit.

The CSAS cannot share the carry terms. Even though the

arm for a zero quotient digit still requires a CPA to

combine the sum and carry terms of the redundant repre-

sentation of the partial remainder, the zero arm requires

no preceding CSA.

The overlapping of execution between neighboring

stages allows the delay through a stage to be the average

rather than the sum of the propagation delays through

the remainder and quotient digit selection paths. This

effect is illustrated by the paths through pairs of stages

highlighted with the dashed and dotted lines in Fig. 4.

The timing through these two paths is compared with the

normal case without overlapped execution in Fig. 5. In

order to quantitatively express the benefit of overlapped

execution, the arrangement of blocks in the division stages

can be abstracted to the model shown in Fig. 6. When

these blocks are self-timed and therefore operate as soon

as their required operands arrive, the average delay per

stagel in a chain of identical stages of the overlapped

arrangement is

~{P+Q+R+S+max[O, abs(R-Q)-(P+ S)]} (6)

where P, Q, R, and S are the abstracted delays of the

blocks. The last term is usually negative and drops out,

giving a performance increase due to the factor of 1/2 in

front. In the overlapping of the stages for SRT division,

the delay of block P in the quotient selection path is the

largest because it contains the CPAS. The overlapping

reduces by one-half the effect of the delay in block P on

the total delay. When the added RMUX delays and

lAn exact analysis using induction on the delays of Fig. 6 shows
the time the rzth R block finishes in a chain of identical stages is

[
Rn=~(F’+Q+R+S)+max S+~(R– S–P– Q),

();–1 (Q– P–R– S)>; (Q– P–R– S),

W–Q+; (Q+ P- R+S) 1
when the chain’s inputs start at RO= QO= O and where

‘={::::::)

Symmetrically, the nth Q block finishes at time

[
Q.=~(P+Q+R+S)+max P+~(Q-P-R-S),

();-1 (R- S- P- Q),; (R- S–P-Q),

1Q- R- S+; (R+ S+ P-Q)

the

that
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increased fan-out tc~the replicated adders are taken into

account, the overlapping of the stages in a radix-2 divider

design increases performance by 40% over a standard

sequential arrangement of the same blocks.

The structure of our overlapping scheme results in a

data wavefront thalt leapfrogs down the succession of

stages. If the critical path goes through the quotient

selection path in one stage, it will likely go through the

partial remainder path in the next stage, and vice-versa.

However, data-dependent variances in delays make it

possible for the overall minimal critical path to go through

the same path in two adjacent stages. Delay variances

arise because of the varying number of bits propagated in

the carry chains, the occurrence of some zero quotient

digits, and the cases in which a negative quotient digit can

be selected in advance when a single stage can determine

two quotient digits. The self-timing of the data path

dynamically ensures data always flow through the minimal

critical path.

The probabilistic distribution of quotient digits in SRT

division is not unifcmm due to the asymmetry of the two’s

complement number system [19]. The asymmetric distri-

bution of quotient digits makes it beneficial to speed up

the more frequently used circuit paths since a self-timed

implementation can take advantage of the improvement.

Our circuit design therefore used different sized transis-

tors in the replicated short CPAS. We designed the

qi = – 1 adder arm with larger transistors because the

critical path goes through it most frequently. We did not

use larger transistors in the less frequently chosen qi = + 1

arm because the iidditional loading on the wires also

going to the qi = – 1 arm would have actually decreased

the total performance. The effect of this transistor opti-

mization decreases the probabilistic expected value of the

delay of driving these adder inputs by about 30%, result-

ing in an additional 4% improvement in the total divider

performance.

V. SELF-TIMED RING STRUCTURE

The lowest possible latency for an algorithm can be

defined as the deli]y of the combinational array of stages

that implements the algorithm. However, a full combina-

tional array has a large area and poor transistor utiliza-

tion because only a small number of transistors are active

at any instant. For an algorithm like SRT division that is

repetitive in structure, iterating the computation around a

partial array allows the stages to be reused. Previous

partial array implementations have required the addition

of latches that increased the total latency. However, if the

reset signal for each precharged function block is con-

trolled in such a way that the block does not precharge

until its results halVebeen consumed and are no longer

needed, then it is not necessary to add any explicit latches.

Our chip design implements this new idea in order to

make an iterating ring that has the same minimal latency

as a full array, but occupies only the area of a much

smaller partial array.

Remainderi-

Reset i-l

.,,,1.....

Quotient

Digit
;. f

+Divisor 55b

CSA

o
L--_l;

,,.,,,,,,,,,,,,,,,,, ............. . ...!,,,,.

Sel

-D

1655

Remainder.

=====&@’

Reset i
. . . 4

_

I 1 4. 3

Fig. 7. Internal structure of each stage in the ring implementing an
SRT division step with overlapped execution and self-timed reset (pre-
charge) control. Dotted lines show control signals; shaded lines are
dual-montonic data paths.

Fig. 8. Block diagram for the division circuit using a ring of domino
stages that iterates using self-timing.

The self-timed control logic shown in Fig. 7 precharges

a stage’s output blocks when their successors have used

the data and enables blocks for evaluation when their

successors have reset. The control logic uses C-elements

to combine the completion-detector outputs from the

individual blocks. Using a C-element verifies both the

completion of evaluation and the completion of resetting

of each block. When stages with this control structure are

connected together into a ring as suggested in Fig. 8, the

local handshaking allows execution to flow around the

ring without being limited by any external signals. The

pattern of execution for a five-stage ring is illustrated in

Fig. 9.

The self-timed ring also includes some initialization

logic and a multiplexer, shown at the left of Fig. 8, that

introduces the dividend as the first partial remainder.

Control logic switches the multiplexer to close the loop

around the ring once a computation has been “launched”

into the ring. At the completion of a given problem,

initialization logic switches the multiplexer to accept a

new dividend for the next computation. Since the divisor

remains unchanged throughout each computation, it is

held in static registers not shown in the figure.

The performance in a ring can be limited either by the
rate at which data elements flow forward or the rate at
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Fig. 9. Progression of actions through the stages in a self-timed domino ring with five stages. The edges are only
approximate since the local handshaking signals are not synchronous to a common clock.
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Fig. 10. Performance versus the number of stages.

which control signals flow backward through the hand-

shaking connections [20]. These two effects can be charac-

terized as local parameters of each stage, which we call

the “forward latency” Lf and the “reverse latency” L,.

The forward latency is the time between the transitioning

of one stage’s outputs and the transitioning of the follow-

ing stage’s outputs. The reverse latency is the average

delay between the control acknowledgment output of one

stage and the control acknowledgment output of the

preceding stage. The reverse latency can also be de-

scribed as the rate at which gaps, or “bubbles,” in a data

stream flow backward. The control logic in the particular

stage configuration in Fig. 7 only influences the reverse

latency, which means the forward latency is composed

solely of the propagation delays through the combina-

tional logic in the main data path. A key reason that the

control logic does not increase the delay of the forward

path is because the use of dual-monotonic signaling al-

lows the precharge signal for a function block to be

removed, enabling the block’s evaluation, before data

arrive at the inputs to the block. A precharge signal for a

block that had single-ended data inputs could not have

been removed until valid data stabilized on its inputs.

The overall performance of a ring can be either

“evaluation limited” by the forward latency, or “control

limited” by the reverse latency. Fig. 10 illustrates these

two possibilities in terms of the number N of stages in the

ring and the total number of stage evaluations G required

to solve a given division problem. For radix-2 division, G

is equal to the number of quotient bits required, which is

54. Fig. 10 is a special case of the more general analysis of

self-timed rings derived in [20], which also considers rings

that contain extra explicit latches and rings that can

circulate multiple data tokens simultaneously. Rings com-

posed of stages without any explicit latches must use at

least three stages for data to circulate at all because there

must be room for one data element, one reset spacer, and

one bubble. For the particular stage configuration shown

in Fig. 7, the ratio of the reverse latency to the forward

latency is about 1.1, meaning that a ring of those stages

requires at least 4.2 stages to avoid having precharge or

control logic limit its performance. We therefore chose to

use five stages to make sure the ring is evaluation limited

and not control limited. The difference,

()N–21+; ,

f

(7)

is the “delay margin,” the amount by which delays could

change before any control logic entered into the critical

path. If delays changed by more than this margin, which is

equal to about 0.8 stage delays in our design, the circuit

would still work correctly, but control logic would enter

serially into the overall critical path.

For actual values of delay near the nominal values, no

control logic enters into the critical path. Data flow

forward continually at the same rate they would flow

through an “unwrapped” combinational array implement-

ing the same functions. While previous asynchronous ap-

proaches [8], [16] have suffered significant delays due to

handshaking control, this method of self-timing operates
in the region that adds zero serial control overhead [18] to

the latency of the raw function computation. Although

there is some small additional loading on the signals that

the completion detectors examine, this effect is insignifi-

cant compared to the delay that would be introduced if

any gates or latches serially lengthened a critical path.

The primary performance benefit of using self-timing to

control a chain of directly concatenated precharged stages

is that the total latency is not increased by the propaga-

tion delays of latches or the propagation and setup delays

of synchronously clocked registers. If registers were placed

between every pair of stages, the added propagation delay

would be about 15% of the logic delays in the stages.

Moreover, the required setup time and an allowance to

tolerate clock skew would add about another 5’% to the

achievable clock period.
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Fig. 11. A cell of the asynchronous shift registers for capturing quo-
tient digits on a triple-monotonic wire set. Each quotient digit arrives
when one of the three input wires is set high, and is followed by a

“spacer,” where all three are again low, A static C-element is defined at
right.
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Fig. 12. The asynchronous quotient shift registers pack the digits as
they are input, rather than waiting for a fixed number of clocks.

The explicit latch-free self-timed design is also signifi-

cant in attaining the full benefit of overlapped execution.

In the current self-timed design, the different logic delays

of the functional blocks skew the remainder and quotient

digits passed between the stages by about 10% of the

delay through a pa~ir of stages. If any latch or register

were inserted between pairs of stages, it would have to

wait for the later of the data signals, meaning another

10?ZOdegradation would occur because of the data skew.

Together, the degradations of 15%, 5970, and 10%

caused by additional propagation delays, clock skew, and

data skew, respectively, would add together to produce a

total increase in delay of about 3090 if latches or registers

were placed into the design.

VI. QUOTIENTACCUMULATIONANDEARLY-DONE

DETECTION

As the QSL in the five stages of the self-timed ring

generates quotient digits, the digits are collected by five

separate asynchronous shift registers composed of the

cells shown in Fi,g. 11. Each quotient digit propagates

down a chain of shift-register cells to the position from

which it will be later read out in parallel, without waiting

for a fixed number of clocks as would a synchronous shift

register. Fig. 12 illustrates how each digit fills all of the

cells through which it @opagates with its value. Between

each quotient digit sent into a shift register, a reset spacer

is sent to separate the digits and to prepare the shift

register to accept the next digit. As the reset spacer

propagates down the chain, it erases all of the extra.

copies of the previous quotient digit.

Since the mantissas from floating-point operands are

already normalized, the first quotient digit, QO,is always

+1. The division ring loops a maximum of 11 times to fill.

the five shift registers with the rest of the quotient digits

up to the total of 54 b required for a double-precision

result that will be rounded. On each ring iteration, the

remainder comparison on the right side of Fig. 8 deter-

mines if the partial remainder has remained unchanged

during the last iteration:

~.+5 = q (8]1

where j is the stage at which the partial remainders begin

to repeat. If the remainder repeats, then subsequent

remainders and quotient digits will also repeat:

Pj+10=Pj+5=Pj

~j+lrl = ~j+s = Qj. (9)

Since there is no need to compute the repeating digits

again, the iterations terminate and the OR gate at the

right of Fig. 8 generates the division Done signal early.

Even when the iterations terminate early, the full quo-

tient is immediately available from the asynchronous shift

registers because the repeated digits are already present.

This is possible because the reset spacers between quo-

tient digits are only sent into the shift registers to wipe

out the repeated digits after the remainder comparison

determines more iterations will be needed. This interlock-

ing of the reset spacers does not add any delay to the

overall computation because it occurs in parallel with the

evaluation of other quotient digits in the main ring.

The effect on performance of detecting repeating quo-

tients and finishing early is dependent upon the distribut-

ion of input operands. Data from some algorithmic appli-

cations may be likely to have more round numbers, and

data from an external input, like a sensor, may be uni-

formly distributed only within a limited precision. For

example, the early done detection will speed up 12’% of

the cases in a uniform distribution of 8-b input operands,

for a total performance improvement of 9%.

The final quotient can be rounded correctly even when

the iterations terminate early. In both the early done and

the normal case requiring all of the iterations, the remairl-

der at the stage where the iterations stopped can be sent

through a carry-lookahead adder (CLA) to determine its

sign. If the remainder is negative, the quotient must be

decremented at the least-significant bit position to which

the remainder corresponds. This operation and the con-

version of the redundant quotient into a standard bina~

form can be performed by a carry-select adder with multi-

ple carry chains operating in parallel. The different

rounding possibilities and the remainder sign select the

correct CLA output. Thus, after the iterations terminate,

only the delays of a single CLA and multiplexer are

required to resolve both the final remainder and rounded

quotient.
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Fig. 13. Micrograph of the zero-overhead self-timed 54-b divider in 1.2-~m CMOS technology.

: ,o~
3.5 4.0 4.5 5.0 5.5 &o 6.5 7.0

Power Supply Voltage (V)

Fig. 14. Measured performance per quotient digit at various voltages
and temperatures.

VII. TEST RESULTS

We implemented the self-timed divider design using

full-custom CMOS circuits. It was important to take spe-

cial care to minimize charge sharing in the layout of the

precharged function blocks by concentrating on minimiz-

ing the capacitance of the internal nodes in transistor

stacks. We verified the design with IRSIM, a fast event-

driven simulator developed at Stanford [11]. This simula-

tor has models accurate enough to allow a designer to

Fig. 15. The top traces show the total latency varies from 45 to 160 ns
depending on the data. Below is the self-timed precharge signal for one
of the internal stages.

predict and correct possible charge sharing hazards. The

45K-transistor chip design was fabricated in 1.2-~m tech-

nology at HP through MOSIS, and worked correctly on

first silicon.

Our design implements the five stages of the self-timed

ring in columns that are mirrored appropriately to weave
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Fig. 16. Superposition of the precharge signal for a domino block with
its data input. The precharge signal leads by 2 ns, verifying that it
introduces no control overhead.

the data path and achieve equal path lengths. The die

photo shown in Fig. 13 shows an active area of 9.7 mm2,

which contains test registers surrounding a core iterating

ring in the central 6.8 mm2. By careful cell design and

over-cell routing, the additional area cost occupied by

using two wires for each bit was only about 209%of the

area required for the transistors. So, even if only single-

ended data had been used throughout the design instead

of dual-monotonic pairs, the total area would not have

decreased by more than about 15%.

The chips generate the correct data outputs over a wide

range of operating conditions. The actual operating con-

ditions determine the actual performance, and Fig. 14

shows measured speeds for various voltages and tempera-

tures. For operation at 5 V and 35°C ambient tempera-

ture, the ring produces quotient bits internally every 2.8

ns, which is thus the nominal forward latency per stage.

Fig. 15 shows that the measured total latency for a 54-b

quotient is 160 ns for worst-case data, and 45 ns for

best-case data requiring only two ring iterations. This

large data dependency in timing shows the effect of the

early-done detection.

Since exponent logic could operate in parallel, a com-

plete floating-point division operation could be formed by

adding the measured delays for the mantissa operation to

only the time required for the single additional 55-b CLA

to round and convert the redundant representation into

standard binary. In the same technology, this delay would

likely be 4 to 8 ns.

Fig. 16 verifies that the design operates without any

delay overhead from control logic. It shows that the

control logic removes the precharge signals for a block,

enabling the block’s evacuation, about 2 ns before data

circulating around the ring arrive at the block’s inputs.

This delay margin corresponds to (7) and the choice of

using five stages that was suggested by Fig. 10.

VIII. COMPARISONTO OTHERALTERNATIVES

This section compares the performance of the fabri-

cated design with other possible algorithm options using

the same self-timed ring approach, and then concludes

with a comparison to commercially available chips for

division. Self-timing provides a useful means of compar-

ing the performance of different architectures without

constraints from fixed clock cycles, or delays from latches

or input/output considerations.

We based estimates for self-timed ring implementations

of SRT radix-2 and radix-4 design choices on circuit

simulations that have been updated and calibrated with

the measurements from the fabricated chips presented in

the last section. Table II summarizes the comparisons of

these implementation choices, with and without over-

lapped execution. The delays stated for blocks are speci-

fied as multiples of a gate with unity fan-in and fan-out,

and include the delays due to buffers on inputs and due

to the loading of outputs. The table does not include the

fina~ CLA required for rounding and converting the re-

dundant representations back to standard binary. The

right two columns contain numbers specific to the CMOS

fabrication technology available.

Table 11shows that radix 2 is slightly better than radix 4

when neither have overlapped execution. This is because

the additional complexity of the radix-4 quotient selection

does not quite justify the use of radix 4 when clocking

does not need to be considered. However, the difficulty of

supplying a clock for a radix-2 design at almost twice the

frequency might make radix 4 preferable for clocked

designs. Overlapped execution in either radix 2 or radix 4

gives a significant performance increase, about 4096 for

radix 2 and 55% for radix 4. The key advantage of the

self-timed overlapped execution style here is that the

average critical path per stage has a factor of 1/2 times

the delay from the CPA’s and QSL. Since, for higher

radixes, these components occupy bigger proportions of

the total delay, the effect of overlapped execution is more

significant for radix 4. So, although radix 4 is faster than

radix 2 when both have overlapped execution, we chose

not to implement radix 4 because its area cost in a

self..timed ring is much higher due to the replication of

the CPA’S. Not only are five adders required instead of

only three, but they are also larger. Still higher radixes,

such as radix 8, would accentuate these trade-off effects.

Overlapped execution would have an even greater per-

centage reduction in delay, but at a formidable cost in

area.
The self-timed division design presented in this article

is faster than recent commercially available designs. Both

the MIPS R301OB chip [10] and the Weitek 3364 chip [2]

were built using a 1.2-Km CMtX technology similar to

the one available for the self-timed disign. Both of these

commercial chips use a synchronously clocked radix-4

division algorithm. The speed for the mantissa portion of

a double-precision division is 375 ns for the R301OB chip

and 675 ns for the 3364 chip. To be fair, these numbers

should be compared to the speed of the self-timed divider

chip at the voltage and temperature for which the syn-
chronous chips are specified, even though the self-timed

chip indeed can produce its results faster when the actual

conditions are not at worst case. From Fig. 9, the self-

timed chip’s applicable derated speed is 190 ns for a

double-precision result, which is still a factor of 2 to 3.5

better than the commercial chips.



1660 lEEEJOURNALOFSOLID-STATECIRCUITS>VOL.26,NO.11,NOVEMBER1991

TABLEII
TRADE-OFFSINSPEEDANDAREAFORSELF-TIMEDRINGIMPLEMENTATIONSOFDIFFERENTALGORITHMS

Radix & Style Average Critical Path

(OverExec =

Unity Fan- Latency for Silicon Area

per Pair of Stages in/out Gate 54 b with in 1.2-pm

Overlapped in Unity Fan-in, Unity Fan-out, Delays per 250-Ps Unit Technology

Execution) Gate Delays Quot Bit Gate Delays

Radix 2 2(CPA3 + QSL3 + DMUX3 + CSA55) 16.8 225 ns 7 mm2

2(5.7+3.8+2.8+4.5) = 33.6

Radix 2, CSA3 + CPA3 + RMUX3 + QSL3 + DMUX3 + CSA55 11.8 160 ns 10 mmz

OverExec 3.9+ 4.9+3.5+3.8+2.8+4.7 = 23.6

Radix 4 2(CPA7 + QSL5 + DMUX5 + CSA56) 17.5 235 ns 12 mmz

2(11 + 16+3.5+4.5)= 70.0

Radix 4 CSA7 + CPA7 + RMUX5 + QSL5 + DMUX5 + CSA56 11.2 150 ns 18 mmz

OverExec 3.9+ 10+5.0+ 16+3.5 +6.2 = 44.6

IX. SUMMARY

Self-timed components avoid the need of distributing

global clocks and degradations caused by clock skew in

synchronous systems. Self-timed circuits that are speed-

independent use completion detectors that sense when

operations become finished, and use this information to

trigger other operations. This approach allows them to

work correctly for any values of gate delays. Variances

and data dependencies in delays can be used advanta-

geously because each component can begin when its re-

quired operands actually arrive rather than always waiting

for worst-case timing. Speed-independent circuits are ro-

bust because they will continue to function correctly over

wide ranges of power supply voltage, die temperature,

and fabrication spread.

This paper has presented a novel method of using

self-timing to control precharged function blocks that are

concatenated together without latches. When the blocks

are composed into stages and the stages are arranged in a

self-timed ring, the ring can iterate under self-timed con-

trol without being limited by the rate of any external

signal. For nominal delay values, the control logic never

enters into the critical path and the performance is the

same as a combinational array implementing the same

algorithm, but “wrapped” into a much smaller area.

The performance possible with a latch-free self-timed

ring has been demonstrated in a circuit implementing the

mantissa computation for floating-point division. The de-

sign also has several other performance enhancements,

including a symmetric overlapped execution of the stages

that allows a dynamically adjusting data-dependent mini-

mal critical path. When fabricated in 1.2-~m CMOS, the

chips’ measured performance is 160 ns for worst-case

data, and 45 ns for round fractions that produce a repeat-

ing quotient. Since the design produces a done indication,

the outputs can be used as soon as they are available

without waiting for worst-case derated specifications.

Self-timed rings can compute iterative functions with-

out limitations from the rate of external signals and

without any overhead above the delays of the data ele-

ments. The concept is applicable not only to division, but

also to square-root, COR131C algorithms, and other com-

putations in computer arithmetic and signal processing.
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