

${ }^{\dagger}$ Present affiliation: Lamont-Doherty Geological Observatory of
Columbia University, Palisades, New York.
came possible to resolve the climate record more ac

 the energy budget at the earth's surface. In fact, much
of the paleoclimatic evidence assembled over the pas

 1. Introduction

inverse conveyor belt as an additional steady state. In total, four different stable equilibria of the coupled mode were realized.

 where deep water is formed only in the Southern Ocean. Depending on the zonality of precipitation, a feedback to anomalous freshwater input. Reversals of the deep circulation can occur in the Atlantic, leading to a statewhere deep water is formed only in the Southern Ocean. Depending on the zonality of precipitation, a feedback The climate model is applied to investigate the effect of excess freshwater discharge into the North Atlantic

 When the two components are coupled after being spun up individually, the system remains steady provided

 transports of heat and freshwater, compare well with estimates from observations when wind stress is included Latitude-depth structures of modeled temperature and salinity fields, as well as depth-integrated meridiona salt are exchanged. Under present-day conditions, the global conveyor belt is simulated: deep water is formed
in the North Atlantic and the Southern Ocean, whereas both Pacific and Indian oceans show broad upwelling coupled model is on the ocean's thermohaline circulation in the Pacific, Atlantic, and Indian oceans. Each
basin is individually resolved, and they are connected by the Southern Ocean through which mass, heat, and

 few years the thermohaline circulation of the World of heat must be revised. Consequently, over the last
 gests that there may be a missing component in our matic "events" such as the Younger Dryas. This sugages, (iii) oscillations during the cold phases of ice ages
on time scales of several thousand years, and (iv) clicycles, (ii) rapid terminations of the last several ice amples of the latter include (i) the largest signal in the
climate records of the Pleistocene, the 100000 -year other features defied straightforward explanation. Excurately, both in space and time. While much data
quantitatively corroborated Milankovitch's theory,
LOVYISAV

* YVSXN 'V GONGYMVT GNV **'LHOIצM 'D TEINVG ${ }_{+}$*'ชGYOOLS 'A SVWOHL

 models of Sellers (1969) and Budyko (1969), which models. For the atmosphere, several models have been
developed. Among the earliest are the energy balance

 Pacific basin system.

 veloped various models to investigate the dynamics of
 exhibits two stable states under identical surface forc

 (1986), who shows, using a three-dimensional BryanThe relevance of the thermohaline circulation to cli-
matic change was dramatically demonstrated by Bryan dentified relatively easily. Thus, the basic dynamics of the coupled model are
transparent, and operating feedback processes can be Thus, the basic dynamics of the coupled model are studies are feasible. We have deliberately kept the IBM 3090 for 1000 model years), extensive sensitivity eters and parameterizations. Since the climate model
is so inexpensive to run (16 min of CPU time on an of the resulting steady state on various model param-
eters and parameterizations. Since the climate model the termination of the last ice age) and the dependence discharge into the North Atlantic (as occurred during to avoid climate drift are presented in this paper. We
then examine the influence of anomalous freshwater mittent convection in the North Pacific. Two measures
to avoid climate drift are presented in this paper. We mate drift in the model is found to be linked to interstability of the present-day climate in the model. Cli-
 mosphere. The paper is therefore a step toward a com-
plete latitude-depth climate model.

 our emphasis is on very long time scales exceeding dea large number of different parameterizations. Because

 onstrate that it is possible to obtain a present-day steady

u0！

Conclusions follow in section 5 ．

 that could be removed by inhibiting intermittent con－

 ponent（section 2a），the atmosphere component（sec－ The paper is organized as follows．In section 2 we
describe the climate model；namely，the ocean com－ consistent framework．

equations of momentum, mass, heat, and salt, which

are given by | 8 |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

 the Antarctic Circumpolar Current. The east-west the much shorter circulation time scales associated with $70^{\circ} \mathrm{S}$. In the Southern Ocean, temperature and salt are
instantly mixed longitudinally to model the effect of joins the Southern Ocean at $40^{\circ} \mathrm{S}$, which extends to
$70^{\circ} \mathrm{S}$. In the Southern Ocean, temperature and salt are 65°. Each basin has a constant depth $\mathrm{H}=5000 \mathrm{~m}$ and with corresponding angular widths of $120^{\circ}, 60^{\circ}$, and oceans extend to $55^{\circ} \mathrm{N}, 80^{\circ} \mathrm{N}$, and $20^{\circ} \mathrm{N}$, respectively, averaged domain. The Pacific, Atlantic, and Indian tion, each basin is represented by an individual, zonally

 scribed by WS2, with a well-mixed surface layer and
wind stress in a three-basin geometry (Fig. 1). In order we consider the extended version of the model de-

ןарош ираэо дч.L $\quad p$
mensional models. sonable accuracy. Multiple equilibria are present, and
results compare favorably with those from three-ditent model that represents today's climate with rea
sonable accuracy. Multiple equilibria are present, and adopted this philosophy and formulated a self-consisparameterizations is kept to a minimum. We have

the available data. Other observational estimates from baroclinic mechanisms are plausible interpretations of

 Strait and assume that the Atlantic basin is entirely

 dynamics via the equation of state. In the zonal average,
we have also neglected meridional heat and salt transdynamics via the equation of state. In the zonal average, dependence is thus only present in the advection-difand rigid-lid approximations are also invoked. Time with the hydrostatic assumption in (2a), this results in
momentum equations that are diagnostic. Boussinesq with the hydrostatic assumption in (2a), this results in Time-dependent and nonlinear terms in the momenSeveral approximations are incorporated in (1)-(4) on heat and salt. The values for the different parameters
are summarized in Table 1.
 constant horizontal and vertical diffusivities, and T and S are temperature and salinity, K_{H} and K_{V} are viscosity, g is gravity, $\rho(T, S$) is density given by a
nonlinear equation of state (Gill 1982, p. 599, A3.2), is the angular width of the basin, A is a constant eddy
viscosity, g is gravity, $\rho(T, S)$ is density given by a
 f is the Coriolis parameter, ρ_{*} is a constant density, p is the radius of the earth, (u, v, w) is the velocity field where all quantities are zonal averages, (ϕ, z) are the
latitude-depth coordinates with z positive upward, a (\downarrow)
$\frac{\partial p}{\partial z}=-g \rho(T, S), \quad \frac{1}{a \cos \phi} \frac{\partial(\cos \phi v)}{\partial \phi}+\frac{\partial w}{\partial z}=0$

 where Q_{s}^{*} is a time-independent salt flux diagnosed
from the steady state obtained under (6).

mosphere and ocean. perature and salt determine exchanges between atcoupled to the atmospheric component from which
time onward flux boundary conditions on both tem-

 we spin up from rest with uniform temperature and

 equations for T and S are solved using forward differ-
encing in time and the numerical scheme of Fiadeiro lated and the time-dependent advection-diffusion tails). From (12) the velocity components are calcuThe streamfunction is determined by vertical integrals
of the meridional density gradients (see WS1 for de-

defined by

tion for the meridional overturning streamfunction Ψ

 1980) as well as direct measurements (Rago and
Rossby 1987) suggest that meridional overturnig is the Atlantic Ocean using inverse methods (Roemmich

	\ddagger (ви!!\|әмимор)
	киич!es әәиәадә
	иоп̣елоделә до дегч ұиәәеп
${ }_{1-}\left(\mathrm{X}_{2} \mathrm{z}^{-\mathrm{u}}\right)_{\text {M }} \mathrm{OL}$	деәч әq!
LS8 ${ }^{\circ} 0$	
	ұuelsuos uutuzypog-uejars
u 0zE8	дчธิ!
	кияиәр п! әәпуй

 әцL $\cdot I=\nu_{\partial}=\dot{o}_{\partial}$ su!yet Kq ($\angle \mathrm{I}$) jo wioy pay!!du!s

 1987) and e_{A} (objectively estimated in section 2 c) are

[^0]
$-\sigma e_{A} T_{A}^{4}+D\left(T-T_{A}\right)+E, \quad(17)$

кq иәл!̣я әге иоџ̣еıоделә ұиәриәdәр-әıпұе

 (Holton 1979).proximation, the depth-integrated potential energy is sistent with the fact that, under the hydrostatic ap and potential energy fluxes into a single term is con-

 latent heat, which should be part of $F^{\text {merid }}$, is directly
included in $F^{\text {ocean }}$. Thus, $F^{\text {merid }}$ comprises the merid-

 the divergence of the meridional flux of latent heat
 evaporation]. Each ocean basin with longitudinal ex$\times 10^{-2} \mathrm{~m}^{3}(\mathrm{~W} \mathrm{yr})^{-1}$, where L is the latent heat of by multiplying it with $365.25 \times 86400 /\left(L \rho_{*}\right)=1.23$ where P and E are in watts per square meter in this
formulation [this can be readily converted to $\mathrm{m}_{\mathrm{yr}}{ }^{-1}$

$$
'\left(I-d+{ }_{\vee \circ} H\right) \frac{\mu Z}{v \nabla}{ }^{\text {sulseq }} S=
$$

$$
\text { ночs } \bar{\partial}-{ }_{p}^{V} L^{\text {dao }}={ }_{\text {вои }} J
$$

q.

 where C_{0} is the specific heat capacity of water. Note
that sea surface temperature and saliinity can thus freely

$$
\cdot(\mathcal{I}-d) \frac{{ }^{*} \sigma T}{*_{S}}=\frac{z \rho}{\delta \rho} A X-
$$

$$
-K_{v} \frac{\partial T}{\partial z}=\frac{1}{\rho_{*} C_{O}} F^{\mathrm{OA}},
$$

is given by pling the buoyancy flux driving the ocean circulation by the steady state of the ocean-only model. After couheat transport in the atmosphere is determined entirely ${ }_{P}$ (19) determine both E and P. Note that, at his time, atmosphere components are first coupled, (17) and
(19) determine both E and P. Note that, at this time, over the global ocean vanishes. When the ocean and is at steady state, the integral of Q_{S}^{*}, and hence $P-E$, where S_{*} is a reference salinity. If the ocean-only model亏

salt flux Q_{S}^{*} and $P-E$ is approximated by

 I!p әчi ธิu!

 For the numerical solution of (13), centered differ-
ences in space and forward differencing in time are fluxes in the ocean. therefore mates. Due to the lack of satisfactory schemes, we
therefore decided to adopt the most straightforward
 servations is achieved (Vallis 1982; MacCracken and
 Suarez 1978; Vallis 1982) or prescribe relative humidity
from climatology (Fichefet et al. 1989). Where pretical resolution also use a swamp surface (Held and

 a swamp surface and obtains the vertical flux of latent
heat by relaxing specific humidity to the saturation surface air temperature, while Harvey (1988) considers rameterizes meridional flux of latent heat in terms of mensional energy balance models, Sellers (1969) pa ance model and present-day observations. Our ap-
proach differs from previous work. In their one-di-
 What we have proposed is the most rudimentary The hydrological cycle in the atmosphere is noto-
riously difficult to simulate properly in a climate model. reflects present-day climatic conditions). (i.e., the zonal mean meridional latent heat flux always
 zonal mean meridional latent heat transport does not
 sume that this is strictly true for perturbations (i.e. the present-day annually averaged water vapor fluxes
are predominantly in the zonal direction. Here we as(1992) using the Oort (1983) climatology suggests that itation is uniformly distributed over the ocean in a
latitude band. The analysis by Zaucker and Broecker surface is fixed everywhere. For $\eta_{z}=1$, excess precip-

 zonal average over the three basins is indicated by \langle.$\rangle .$ where η_{Z} is a constant between 0 and 1 reflecting the
zonality of the distribution of excess precipitation; the

$$
(z z) \quad \cdot\left(\frac{p e}{7 \rho}\right) z u+\frac{\nu e}{\tau \rho}(z u-1)=\frac{\nu e}{d \rho}
$$

 (ς)

$\left.{ }_{807} I\right]_{\phi}^{006-} x$

$\frac{\phi \varrho}{V^{\prime} L \varrho} \phi \operatorname{sos}^{V} \rho^{V d^{V}} H$
$z_{z^{p}}=(\phi)^{V} X$

 әш әчъ ІОу Кџ! an appropriate ice sheet model as a third component.
This will be done at a later stage.
 exclude multiple equilibria in the atmosphere (e.g., the
small ice cap instability or deep-freeze state); such ef to account for varying snow and ice cover. We thus others who considered a temperature-dependent albedo etary albedo. Here we deviate from Sellers (1969) and 4 c and (15), we obtain $Q^{\text {short }}$, which already includes
the reduction of the shortwave radiation due to plan(1983, Tables 25 a and 25 b). From Stephens et al. Table
4 c and (15), we obtain $Q^{\text {short }}$, which already includes
 emitted longwave flux from Stephens et al. (1981, Table the present climate starts with the planetary emissivity,
e_{P}, using the zonal and annual mean values of the
 ered in this paper. that might occur in the parameters (23) is not consid-

sonjes where $i \in\{A, P, I\}$ is an index denoting the Atlantic,
Pacific, or Indian basin. The procedure requires the $Q^{\text {short }}(\phi), \quad K_{A}(\phi), \quad e_{P}(\phi), \quad e_{A}(\phi, i), \quad c_{E}(\phi, i)$, dependent values of the following parameters:

c. Determination of the various parameters

 integrate the atmospheric component for 50 time steps
without updating the surface fields of the ocean. In

 a. Steady state 3. Present-day simulations

were encountered at any latitude.

 spheric diffusivities, or bulk aerodynamic coefficients, realistic or even negative emissivities, negative atmo will be poorly determined as well. However, using thedescribed procedure, no inconsistencies, such as unof the ocean model are poor, some of the coefficients that if either the observational data or the predictions in the model, a self-consistent procedure introducing
as few parameterizations as possible is preferred. Note
 cover and water vapor pressure, respectively. Since such atmosphertical stability and drag coefficients, and cloud terizations of the bulk aerodynamic coefficients c_{E} and that we do not attempt to formulate further parameThe above approach differs from previous studies in vides us with precipitation over each ocean basin as c_{E} follow from (18). Finally, the procedure also prorates L gartner and Reichel 1975, Table V). The coefficients where the right side is known using the evaporation
rates $E^{\text {obs }}$ for the three different ocean basins (Baum $\left.+\sigma e_{O} T^{4}+D\left(T-T_{A}\right)+E^{\mathrm{obs}}\right), \quad$ (27)

 parameterization (greybody radiation for the longwave

 plus any subgrid-scale contribution.
 balance the oceanic heat fluxes with the flux divergence

$$
(* L-L) \frac{\perp}{z \nabla} o \mathcal{D}^{* d}=\vee^{z} O^{H}
$$

instant of coupling, F^{OA} can be related to the
to-atmosphere steady-state heat flux in (6a) by (9Z)

Fig. 2. Latitude-depth sections in the Pacific (a: top left), Atlantic (a: top center) and Indian Ocean (a: top right) of the meridional overturning streamfunction in $10^{6} \mathrm{~m}^{3} \mathrm{~s}^{-1}$. The depthFig. 2. Latitude-depth sections (b: bottom left) of the World Ocean in petawatts ($10^{15} \mathrm{~W}$) is compared to observations by Hastenrath (1982 , H-dashed), Talley (1984 , T-dashed), Hsiung integra, S-dashed), and Carissimo et al. (1985, C-dashed). The coupled climate model is at steady state; no wind stress is applied, $K_{H}=10^{3} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and $K_{V}=10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. The global (1985, S-dashed), and Carissimo et al. (1985, C-dashed). The coupled climate model is at steady state; no wind stress is applied,

 Sc \quad 的
DEPTH [km -

DEPTH [km]

 served for the present parameters, and the global energy
imbalance at the top of the atmosphere decreases
steadily to $3 \times 10^{-3} \mathrm{~W} \mathrm{~m}^{-2}$ at 9000 years.

DEPTH [km]
DEPTH $[\mathrm{km}]$

DEPTH $[\mathrm{km}]$

 mation in the Atlantic and upwelling in the Pacific and culation is not altered, still showing deep-water for the overall structure of the global thermohaline cirfects on the salinity field are minor (Fig. 3c). However, about 20.6 Sv . Wind stress also causes the doming of enhances North Atlantic deep-water formation, now Ekman overturning substantially increases the for-
mation of North Pacific intermediate water and also South Pacific at $-10^{\circ} \mathrm{S}$ (Fig. 3a). North of the equator
Ekman overturning substantially increases the fortransport in the model at rates of about -35 Sv in the transport now produces the strongest overturning 1979), the major differences are limited to the upper
500 m (represented by five layers in the model). Ekman As expected from earlier studies (e.g., Bryan and Lewis
1979), the major differences are limited to the upper Again, a steady state of the coupled model is reached and the complete diagnosis is given in Figs. 3 to 6 The previous experiment is repeated, with the only World Ocean must be incorporated climate model, some longitudinal resolution of the the coupled climate model. Thus, even in a simplified precludes different steady states possible in a multibasin
model, but also completely changes the sensitivity of flux. Further, the single-basin approximation not only
precludes different steady states possible in a multibasin obtain the correct magnitude of the meridional hea large overturning rates of order 50 Sv are necessary to 1985a,b; Stocker et al. 1991). In such a World Ocean, investigators (Hoffert et al. 1980; Harvey and Schneider should not be taken as a justification for approximating
the World Ocean by a single basin as done by earlier should not be taken as a justification for approximating Ocean (Warren 1981), and the global thermohaline formed in the North Atlantic and in the Southern thermohaline circulation summed over the three ocean thermohaline circulation summed over the three ocean if wind stress is included. This is discussed in detail by flux divergence in the equatorial regions will increase flux is poleward in both hemispheres and in fair agree-
ment with observational estimates (Fig. 2b). The heat Ocean included. The global oceanic meridional heat
flux is poleward in both hemispheres and in fair agree-
 This situation remains unchanged in the fully coupled
 upwelling. This is consistent with SW1, where the con-
veyor belt circulation (Gordon 1986) was obtained

FIG. 4. Surface properties for the state of Fig. 3: sea surface temperature (solid) and vertical heat flux $F^{\text {OA }}$ in watts per square meter (dash-dotted) are given in (a: top row); sea surface salinity (solid), model $P-E$ (dash-dotted), and $P-E$ (dashed) from Baumgartner and Reichel (1975, Table VII) in meters per year are shown in (b: bottom row).

Fig. 5. Depth-integrated properties for the state of Fig. 3: meridional heat flux (solid) in petawatts compared to the estimates by Hastenrath (1982, H-dashed), Talley (1984, T-dashed) and Hsiung (1985, S-dashed) are shown in (a: top row). In (b: bottom row) the meridional freshwater fluxes in $10^{6} \mathrm{~m}^{3} \mathrm{~s}^{-1}$ (solid) are compared to Baumgartner and Reichel's (1975 , Table XXXV) estimates (dashed), which result from integration starting from the basin ends northward and southward, respectively.

assuming no horizontal flux there, the mode progressively toward the south. On the other
deviate proge

 pared with two estimates derived from the data of the Indian Ocean the meridional heat fux follow
closely the estimates. The freshwater fluxes are comthe Indian Ocean the meridional heat flux follows maximum value of about $1 \mathrm{PW}\left(1 \mathrm{PW}=10^{15} \mathrm{~W}\right)$ and
location of the northward Atlantic heat flux; also, in gradients of the Pacific heat flux as well as the correct
maximum value of about $1 \mathrm{PW}\left(1 \mathrm{PW}=10^{15} \mathrm{~W}\right)$ and several observational estimates are given in Figs. 5 a
and 5 b , respectively. The model reproduces the steep

 the sea surface salinity (SSS, solid) and $P-E$ (dash-
dotted); the latter compares favorably with the obser

 solid) are close to those of Levitus (1982), and the

 of $2 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2}$. This final state is essentially iden-
tical with the previous steady state with the ocean being system has reached steady state, with an energy bay iden-
of $2 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2}$. This final state is essentially idenәұеш! $\mathrm{W} \mathrm{m}{ }^{-2}$, indicating that energy was being lost to space. through the top of the atmosphere was about +1.5 the Atlantic and Pacific. During that time, the net flux overturning rates were observed in all three basins. Ini-

 then continued in the coupled mode, with the param-
eter values in (23) and $E(\phi, i)-P(\phi, i)$ held constant deviations in the individual E and P fields are found.

 flux consistent with the flux divergence at the top of mospheric and by (25) to give a total meridional heat oceanic, latent, sensible plus potential, and total at the climate model are split up in Fig. 7b showing the ature is no longer used. The meridional heat fluxes in model, the SST is now a variable that is free to evolve,

 clearly show the warm Atlantic SST and the relatively

 differs from Carissimo et al. (1985), who obtain the that are based on energy balance considerations at the
ocean's surface (e.g., Hastenrath 1982). However, it 6 b) in the ocean fits surprisingly well those observations

 The global overturning is given in Fig. 6a showing
the general two-cell structure, which now also includes the fluxes are explored in WS2.

 end, the model fluxes differ increasingly toward the

EVAPORATION - PRECIPITATION [m/yr]

MERIDIONAL HEAT FLUXES [PW]

ұиәп!

 quences for the global thermohaline circulation. This

 tistically steady. This is shown in Fig. 9a, where the
 heat and salt in experiment B decrease monotonically
 flux in B by slightly increasing T^{*} (Pacific, $50^{\circ} \mathrm{N}$) restep in the runs A1 and A2. Decreasing the buoyancy perature produces intermittent convection in the North
Pacific, reaching to $100-\mathrm{m}$ depth about every tenth time A 1 and A 2 , and $6.3^{\circ} \mathrm{C}$ for B . The cooler restoring tem-

 boundary conditions (6) without wind stress for 4000

 turbations (see also section 4b). The closer a steady used in the earlier studies. Consequently, the steady
states of the model were generally less sensitive to per-

 long enough for the salinity fields to converge
 circulation. It must be mentioned in this context that
similar mode transitions were observed even without in the model. This can modify the stability of a given

 interbasin exchange of freshwater through the atmo-

 explains un
 carry this positive salinity anomaly to $50^{\circ} \mathrm{N}$ where in equatorial regions. It takes the northward surface
flow in the Pacific (north of $5^{\circ} \mathrm{N}$) about 150 years to in equatorial regions. It takes the northward surface surface freshwater flux remains unchanged in the cou-
pled mode, and the surface waters become more saline in equatorial regions. Note that because $\eta_{Z}=0$ the net
surface freshwater flux remains unchanged in the coualso extends the residence time of the surface waters of dense water flowing north in the deep Pacific but
 Ocean diminishes first with a subsequent reduction of that the sinking in the Pacific section of the Southern and the beginning of deep-water formation. It appears previous to the increase of SSS in the North Pacific mohaline circulation reverses. The evolution is some-
what different from $\mathrm{Al}: F^{\circ \mathrm{OA}}$ decreases about 200 years
 though this initially has a stabilizing effect, after about
1300 years the transition begins, and the Pacific ther--IV su!ןdnoo jo әu! әч 1 -
 Marotzke and Willebrand (1991). and corresponds to the "Northern Sinking" state of (1988). Our final steady state shows deep-water for-
mation in both the North Pacific and North Atlantic the three-dimensional model of Manabe and Stouffer remains essentially in the same state. The climate drift
in this model is consistent with the drift observed in

 (dashed) streamfunction in the Pacific and Atlantic is

 In experiment A1 the Pacific SSS starts increasing convection was present, and the instantaneous surface
fluxes were diagnosed at the time of coupling.

bations.

 by adding positive salinity anomalies to the North Pa-cific, the region that is most sensitive to such perturstable to finite salinity perturbations. This was checked avoid an eventual transition. With the removal of in-
termittent convection, however, the state has become the surface fluxes stabilizes the mode but is unable to the present model. Time averaging before diagnosing tegration for another 12000 years. Two different prosteady. This is further confirmed by a subsequent inmode. No transitions are observed and the state is diagnosed, and integration continues in the coupled integrated ocean-to-atmosphere heat flux in Fig. 9a
(bottom). At 4000 years the instantaneous fluxes are a steady state as is seen in the decrease of the surface-

nel．Their surface forcing was identical for both basins These four equilibrium states are consistent with the
four states presented by Marotzke and Willebrand ent－day conveyor belt was not a preferred state of the
（1991）．They used the three－dimensional Bryan－Cox
OGCDel as is the case here．The important point is that
OGChly symmetric geometry with two iden－the zonally averaged model again produces results that These four equilibrium states are consistent with the and symmetric about the equator，and hence the pres－ of intermittent convection，and the state remains steady in the coupled mode． deep water is forming in both North Pacific and North Atlantic．In experiment B（bottom），
intermittent convection is removed by slightly increasing the restoring temperature at the location in the North Pacific as evident from F^{OA} ．This causes upon coupling a transition to a state where
deep water is forming in both North Pacific and North Atlantic．In experiment B（bottom）， A1 and B）or averaged over the last 500 years（for experiment A2），and integration continues in
the coupled mode．In experiments A1（top）and A2（middle），intermittent convection is present until 4000 years at which time the surface fluxes are diagnosed instantaneously（for experiment FIG．9a．Evolutic（A－solid），and the Indian（I－solid）oceans and the globally integrated heat
solid），the Atlantion
flux F^{OA} in petawatts（solid）．Restoring boundary conditions are applied in the ocean－only mode FIG．9a．Evolution of sea surface salinity in the northernmost grid boxes of the Pacific（P－
solid），the Atlantic（A－solid），and the Indian（I－solid）oceans and the globally integrated heat
日 INJWIYヨdXヨ

JOURNAL OF CLIMATE
is in the conveyor-belt mode. There is evidence from formation in the North Pacific was enhanced. The state 1986) and three-dimensional model results (Maier- was penetrating farther north than today in the Atlantic
Reimer and Mikolajewicz 1989) indicate that the ocean during the glacial. Additionally, intermediate water tion shown here. Present-day observations (Gordon isotope ratio and find that southern Ocean deep water the global-scale reversals of the thermohaline circula- (1988) reconstruct a latitude-depth section of a carbon times. Over the past several thousand years, the World deep-water formation in the North Atlantic were re
Ocean has not exhibited fundamental changes such as duced (Boyle and Keigwin 1987). Duplessy et al likely been operating in our climate system at different glacial maximum (18000 BP), vertical mixing and The first two of the three states in Fig. 10 have most geochemical analyses of deep-sea cores that during the
 MAX.MIN STREAMFUNCTION
MAX.MIN STREAMFUNCTION [Sv]

DEPTH [km]

TEMPERATURE CHANGE FROM PRESENT CLIMATE [deg Cl

Denton and Hughes (1981) estimated that during
the termination of the last ice age, about $30 \times 10^{6} \mathrm{~km}^{3}$

 ature contrast (SST- $\left.T_{A}\right)^{\text {[Southern Sinking] }}-\left(\mathrm{SST}-T_{A}\right)^{\text {[conveyor] }]}$ (solid) forthe three basins. Note that the scale must be divided by 10 for the
small differences in the Pacific and Indian oceans.

TEMPERATURE CHANGE FROM PRESENT CLIMATE [deg C] of Fig. 10 b is consistent with a number of these inter-
pretations. It is tempting to speculate about whether
or not the World Ocean was operating in the third
 Hemisphere is cooling only north of $60^{\circ} \mathrm{N}$, reflecting veyor belt are displayed in Fig. 11c. Now the Northern do not exceed $0.25^{\circ} \mathrm{C}$. The temperature differences be-
tween the reversed (Fig. 10c) and the present-day conChanges to the SST in the Pacific and Indian ocean Southern Hemisphere a warming is experienced. in the atmosphere of maximum $2.6^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{N}$. In the

 the conveyor belt is illustrated in Fig. 11 b by the tembetween the "Southern Sinking" state (Fig. 10b) and waters are cooler than the atmosphere. The comparison sphere. Except for the Indian Ocean, the equatorial Atlantic Ocean is about $7^{\circ} \mathrm{C}$ warmer and the North
Pacific is about $2^{\circ} \mathrm{C}$ cooler than the overlying atmofor the conveyor-belt circulation in Fig. 10a. The North Figure 1a shows the surface air temperature T_{A} and sea surface temperatures in all basins are free to evolve.
Figure 11 a shows the surface air temperature T_{A} and that under the full flux boundary conditions (20) the A strong motivation to consider a coupled model is ords from regions influenced by the Pacific Ocean, that
this question will be resolved. is only through the analysis of paleoclimatic proxy rec-
ords from regions influenced by the Pacific Ocean, that mode (Fig. 10c) at some time in the past. However, it
is only through the analysis of paleoclimatic proxy rec-

	\|
式忒式分示忒	$\left\lvert\, \begin{aligned} & \text { T } \\ & \text { 荷 } \end{aligned}\right.$
	${\underset{c}{3}}_{\substack{3 \\ n_{1} \\ n_{2} \\ \hline}}$
$\frac{0}{i}-\frac{i}{i}$	
	号苋
马	

 10a），the dark shading corresponds to the state of Fig．
10b（Southern Sinking），and the coarse shading stands where the white areas indicate the conveyor belt（Fig

 scribing the distribution of excess precipitation was
varied independently from 0 （local distribution）to 1 lantic for 1000 years．The zonality parameter η_{Z} de－
scribing the distribution of excess precipitation was 0.1 Sv ）of freshwater discharged at $50^{\circ} \mathrm{N}$ into the At－ termine the response to different amounts（0．02 Sv to components are coupled．For each of these six states，
30 runs were performed in the coupled mode to de－ components are coupled．For each of these six states， boundary conditions（ocean only）．At steady state the produced by spinning up from rest under restoring summary is given in Table 3．The six initial states are 41 ）and $e_{O}=0.96$（experiment 42），respectively；a

 a reversal of the Atlantic circulation． sitivity：perturbations had to exceed 0.06 Sv to cause
 roj suioj э！

 Mikolajewicz（1989）examined the sensitivity of their such an anomalous freshwater flux．Maier－Reimer and runoff．It is thus a relevant experiment to study the
sensitivity of the model＇s thermohaline circulation to of this excess water reached the Atlantic Ocean through ice melted in the Northern Hemisphere．A large portion include also a water vapor budget in the atmosphere
so as to avoid ad hoc parameterizations of these pro－
 the ocean will adjust for a given perturbation．It is thus rologeter η_{Z} ）determines to which mode of operation are influenced，and the atmospheric branch of the hy－ the conveyor belt result．However，quantitative details Figure 12 suggests that within the range of the tested
parameters no qualitative changes of the stability of Figure 12 suges that with the range of the tes tends to diminish stability in the North Pacific and can
 the parameterization（22）．A reduction of P also occurs requires an equal reduction of precipitation P due to According to the SST dependence of the evaporation the North Atlantic，causing a decrease of the SST there． sequently，less heat is transported meridionally into column and slows down deep－water formation．Con reversed conveyor belt．The anomalous freshwater in－
put to the North Atlantic tends to stabilize the water cific thermohaline circulation necessary to establish the The case $\eta_{Z} \neq 0$ allows a feedback mechanism Pa diation at the ocean surface（Fig． 12 f ）． ound when we select the more realistic parameter weak zonality of precipitation．A stabilizing effect is decreased by wind stress（Figs．12d，e），but the re－ is decreased by wind stress（Figs．12d，e），but the re－ the sensitivity of the Pacific circulation（Fig．12e，f）． established for relatively small values of η_{Z} increasing cluding wind stress，the reversed conveyor belt can be the reversed conveyor belt only occurs if the is large．In－ conveyor belt．If wind stress is absent（Figs．12a－d）， diffusivity appears to increase stability of the global the effects on the Pacific：reversals of the Pacific cir－ fluence on the stability of the conveyor belt but reduces
Decreasing vertical diffusivity has only a minor in－ three different steady states may exist under identical onstrates，depending on the choice of η_{Z} ，that at least eventually converged to the latter mode．）This dem further transitions．（Some Southern Sinking states in further transitions．（Some Southern Sinking states in we have continued integration with the flux anomaly
switched off and found that most states did not undergo cases with only 0.02 Sv ．For some parameter values
we have continued integration with the flux anomaly
Fig. 12. State of the global thermohaline circulation after 1000 years of anomalous runoff into the North Atantic as ander
freshwater flux released at $50^{\circ} \mathrm{N}$ into the Atlantic and the zonality of the precipitation parameterization (22). The parameters for the six
experiments in panels (a) to (f) are given in Table 3 . The white area indicates the conveyor belt, the dark shading shows the state where
the Atlantic thermohaline circulation is reversed (Southern Sinking), and the coarse shading marks the reversed conveyor belt.

 influenced by the presence of wind stress，different val sitivity of the present－day climate in our model is little
Duplessy，J．C．，N．J．Shackleton，R．G．Fairbanks，L．Labeyrie，D．
Oppo，and N．Kallel，1989：Deepwater source variations during
the last climatic cycle and their impact on the global deepwater
circulation．Paleoceanogr．，3，343－360．

 lation is reversed，or to the reversed conveyor，for which

 global conveyor belt is always established．Freshwate

 Immediate drift can be delayed for about 1000 years．

 mosphere．It is thus necessary to parameterize the spa－
tial distribution of precipitation changes．We assume separate water vapor budget are considered for the at－
mosphere．It is thus necessary to parameterize the spa－ are applied．In the present paper，no dynamics nor a

 and broad upwelling in the Pacific and Indian oceans．
In coupling the ocean model to an energy balance mation in the North Atlantic and the Southern Ocean present－day climate is characterized by deep－water for freshwater fluxes are in agreement with the data．The salinity，depth－integrated meridional heat fluxes，and
the divergence of the ocean－to－atmosphere heat and mosphere．Latitude－depth fields of temperature and
 tuning does not influence the ocean component，and
a coupled state is obtained that is in satisfactory agree－
 S！чL using observed surface data）and necessary observa－
 imum number and provide a self－consistent frame－ imum number and provide a self－consistent frame－
 zonally averaged energy balance model of the atmo－
sphere．The parameterizations accounting for air－sea

 Budyko，M．I．，1969：The effect of solar radiation variations on the
climate of the earth．Tellus，21，611－619．

 ，1987：Parameter sensitivity of primitive equation ocean general
 system have more than one stable mode of operation？Nature
$\mathbf{3 1 5}, 21-26$ ．
 Broecker，W．S．，and G．H．Denton，1989：The role of ocean－at－
mosphere reorganizations in glacial cycles．Geochim．Cosmo－

 Birchfield，G．E．，1989：A coupled ocean－atmosphere climate model：
Temperature versus salinity effects on the thermohaline circu－ Berger，A．，1988：Milankovitch theory and climate．Rev．Geophys．，
26，624－657． Baumgartner，A．，and E．Reichel，1975：The World Water Balance．
Elsevier， 179 pp． SヨONJZGコヨ8

号

 fully acknowledged．This work was also supported byresearch grants awarded to LAM by NSERC，AES， －әןe．8 si pue әqissod yiom s！чi әрe山 SHL of pəpieme
 scales in the climate system． present model can be used as an eficient tematically investigate various processes on long time sional models are encouraging and suggest that the

 S！ 1 L pəlet．
 tion，and precipitation parameterizations．However，the
zonality of precipitation determines to which final

 Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a cou-
pled ocean-atmosphere model. J. Climate, 1, 841-866.
 Maier-Reimer, E., and U. Mikolajewicz, 1989: Experiments with an

 Hisiung, J., 1985: Estimates of global oceanic meridional heat trans-
port. J. Phys. Oceanogr., 15, 1405-1413. Holton, J. R., 1979: An Introduction to Dynamical Meteorology, Int
Geophys. Ser., Vol. 23 . Academic Press, 391 pp. deep sea heat storage in the secular response to climatic forcing.
J. Geophys. Res., 85, $6667-6679$.
Holton, J. R., 1979: An Introduction to Dynamical Meteorology, Int. atmospheric model designed for climatic sensitivity experiments.
J. Atmos. Sci., 35, $206-229$.
Hoffert, M. I., A. J. Callegari, and C.-T. Hsieh, 1980: The role of Held, I. M., and M. J. Suarez, 1978: A two-level primitive equation

and S. H. Schneider, 1985 a: Transient climate response to
xternal forcing on $10^{0}-10^{4}$ year time scales. Part 1: Experiments
ey, L. D. D., 1988: A semianalytic energy balance climate model
with explicit sea ice and snow physics. J. Climate, 1, $1065-$
1085 . Hastenrath, S., 1982: On meridional heat transports in the World
Ocean. J. Phys. Oceanogr., 12, $922-927$.
Harvey, LL. D. D. $1988:$ A semianalytic energy balance climate mode stress over the global ocean. Mon. Wea. Rev., 111, 1554-1566.
Haney, R. L., 1971 : Surface thermal boundary condition for ocean
general circulation models. J. Phys. Oceanogr., 1, 241-248. nisms of ocean heat transport. Deep-Sea Res., 29, 339-359.
Han, Y..J., and S.-W. Lee, 1983: An analysis of monthly mean wind
stress over the global ocean. Mon. Wea. Rev., 111, 1554-1566. Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mecha-
nisms of ocean heat transport. Deep-Sea Res., 29, 339-359. Gordon, A. L., 1986: Interocean exchange of thermocline water. J.
Geophys. Res., $91,5037-5046$. Gill, A. E., 1982: Atmosphere-Ocean Dynamics, Int. Geophys. Ser., Fu, L. L., 1986: Mass, heat and freshwater fluxes in the south Indian
Ocean. J. Phys. Oceanogr., 16, 1683-1693.
 deiro, M. E., and G. Veronis, 1977: On weighted-mean schemes
for the finite-difference approximation to the advection-diffusion
equation. Tellus, 29, $512-522$.

circulation model. J. Geophys. Res., in press.
unsch, C., 1984: An eclectic Atlantic Ocean circulation model.
Part I: The meridional flux of heat. J. Phys. Oceanogr., 14, 1712-
1733.

 Wright, D. G., 1992: Finite difference approximations to the advec-
tion-diffusion equation. Tellus (in press).

 Weaver, A. J., and E. S. Sarachik, 1991a: Evidence for decadal vari-
ability in an ocean general circulation model: An advective
 Vallis, G. K., 1982: A statistical-dynamical climate model with a
simple hydrology cycle. Tellus, 34, 211-227. Talley, L. D.., 1984: Meridional heat transport in the Pacific Ocean.
J. Phy. Oceanogr., 14, 231-241. sәu!
 culation induced by changes in the surface water fluxes. Nature,
$351,729-732$. model for the thermohaline circulation. Part II: Interocean cir-
culation in the Pacific-Atlantic basin system. J. Phys. Oceanogr.,
 Stephens, G. L., G. G. Campbell, and T. H. Vonder Haar, 1981:

 Peixóto, J. P., and A. H. Oort, 1984: Physics of climate. Rev. Mod.
Phys., 56, 365-429. ort, A. H., 1983: Global atmospheric circulation statistics, 1958-
 equilibria in a meridional-plane model of the thermohaline cir-
culation. Tellus, 40A, $162-172$. 'T

[^0]: (81)

