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Abstract

Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected

erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte mem-

brane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known pheno-

typic marker of parasites associated with severe malaria, the reason for this association

remains unclear, as do the molecular details of the interaction between the infected erythro-

cyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum

factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both

required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some

other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal

end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins,

plausibly augmenting their combined avidity for host receptors. IgM has previously been

identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot

induce rosetting on its own. This is in contrast to α2M and probably due to the more limited

cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with

α2M and markedly lowers the concentration of α2M required for rosetting. Finally,

HB3VAR06+ IEs share the capacity to bind α2Mwith subsets of genotypically distinct P. fal-

ciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together,

our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the

repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the eryth-

rocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mecha-

nism also affects IE adhesion to receptors on vascular endothelium. The study opens

opportunities for broad-ranging immunological interventions targeting the α2M—(and IgM-)
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binding domains of PfEMP1, which would be independent of the host receptor specificity of

clinically important PfEMP1 antigens.

Author Summary

Erythrocytes infected by parasites causing severe P. falciparummalaria often form rosettes

by binding a number of uninfected erythrocytes. Several of the parasite proteins involved

are known, whereas the identity of the corresponding host receptor(s) on the surrounding

erythrocytes is not. Although formation of rosettes often depends on non-immune IgM

also binding to the infected erythrocytes, that does not by itself lead to formation of

rosettes. Here, we report that the serum protein α2-macroglobulin (α2M) is able to induce

rosetting in several in vitro and ex vivo parasite isolates. In contrast to IgM, α2M supports

rosetting on its own, while presence of IgM markedly lowers the concentration of α2M

required. These findings are explainable by the ability of α2M to crosslink at least four

individual PfEMP1 molecules, indicating that the role of α2M in rosetting is to align multi-

ple parasite adhesion proteins, thereby increasing their combined avidity for carbohydrate

receptors on surrounding erythrocytes. Our study suggests a new mechanism whereby

P. falciparum exploits soluble host proteins to avoid immune destruction, by using them

to facilitate adhesion of infected erythrocytes to low-affinity carbohydrate receptors, and

points to new strategies to interfere with a major pathogenic mechanism of this devastat-

ing parasite.

Introduction

About 630,000 (0.3%) of the approximately 200 million malaria cases each year are fatal [1].

The majority occur among African children below the age of five years, who die of severe Plas-

modium falciparummalaria [2]. The particular virulence of P. falciparum parasites is related to

the expression of adhesive proteins on the surface of the erythrocytes they infect, and the P. fal-

ciparum erythrocyte membrane protein 1 (PfEMP1) family appears to be of particular impor-

tance in this respect. Each parasite genome encodes about 60 antigenically diverse PfEMP1

proteins composed of a series of Duffy binding-like (DBL) and Cysteine-rich inter-domain

region (CIDR) domains. The PfEMP1 proteins are expressed on knob-like protrusions on the

infected erythrocyte (IE) surface, where they mediate adhesion of IEs to a range of host endo-

thelial receptors [3–6]. IE sequestration can cause inflammation and organ dysfunction, and

can lead to severe and life-threatening complications [7]. In addition to adhesion to receptors

in various organs, some P. falciparum-IEs also have the capacity to bind receptors on unin-

fected erythrocytes, leading to IE/erythrocyte aggregates called rosettes [8,9]. Although the

mechanisms and functional significance of rosetting remain unclear, it has repeatedly been

associated with parasites causing severe P. falciparummalaria [10–12]. Rosetting involves solu-

ble factors in human serum, in apparent contrast to other PfEMP1-mediated IE adhesion to

clinically important endothelial protein receptors such as intercellular cell adhesion molecule 1

(ICAM-1) and endothelial protein C receptor [4,6,13]. Several candidates have been proposed

(reviewed in ref. [14]), but only pentameric IgM has repeatedly been found to be necessary,

although not sufficient, for rosetting to occur [15–17]. The molecular details of this interaction

between PfEMP1 and IgM have been described [17,18]. PfEMP1 interaction with the rosetting

receptors on surrounding erythrocytes is mediated by N-terminal DBL1 α1.5/6/7/8 domains

α2M and PfEMP1-Mediated Adhesion
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[19–21], whereas rosette-facilitating IgM binds to the membrane-proximal, C-terminal end of

PfEMP1 [17,18]. How IgM can facilitate rosetting despite binding the opposite end of the

PfEMP1 molecule facing the erythrocyte receptor is not known. Based on studies of the IgM-

binding and rosette-mediating PfEMP1 protein HB3VAR06, we recently proposed that the

function of IgM in rosetting could be cross-linking of PfEMP1 molecules [17], thereby over-

coming their low individual affinity for their erythrocyte receptors, which are suspected to be

mainly sulfated carbohydrate moieties [12,22–24]. However, we found that IgM alone was not

sufficient to facilitate HB3VAR06-mediated rosetting, in line with earlier findings [15,16], and

we therefore set out to identify the missing serum component(s) involved in rosetting and

describe their involvement in the interaction.

Results

Identification of the human serum protein α2M binding to the PfEMP1
protein HB3VAR06

Pentameric IgM facilitates HB3VAR06-mediated rosetting, although additional unidentified

serum components are required [17]. To identify these additional components, we used His-

tagged recombinant full-length HB3VAR06 (FV6) coupled to magnetic epoxy resin beads to

identify serum proteins with affinity for FV6. The proteins isolated by this pull-down tech-

nique were separated by 2-dimensional (2D) gel electrophoresis (Fig 1A). Two candidate spots

with an apparent molecular weight of 180 kDa and a third candidate spot at 118kDa were

detected, in addition to the expected 75-kDa band corresponding to the IgM heavy chain

(Fig 1A, left). These spots were not observed in parallel experiments with a recombinant, His-

tagged DBL domain (DBLβ3_D5) of a PfEMP1 protein (PFD1235w) not mediating rosetting

[25,26] (Fig 1A, right). Matrix-assisted laser desorption/ionization (MALDI) time-of-flight

(TOF)/TOF mass spectrometry analysis identified all three candidate spots as monomer sub-

units of the human protease inhibitor α2-macroglobulin (α2M). α2M is a 720-kDa homotetra-

meric glycoprotein composed of four disulfide-linked 180-kDa subunits that form a cage-like

structure [27], which circulates at physiological concentrations of 3–4 μM (2–3 mg)/mL [28].

Among its many roles in regulation and transport, it is best known as a broad-spectrum prote-

ase inhibitor (reviewed in ref. [29]). The observed affinity of α2M for HB3VAR06 was con-

firmed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, demonstrating

binding of α2M to FV6 and to native HB3VAR06 on IEs (Fig 1B and 1C). In contrast, α2M

did not bind to the VAR2CSA-type PfEMP1 IT4VAR04, neither recombinant full-length pro-

tein (FV2) nor native IT4VAR04 on IEs (Fig 1B and 1C). Fluorescence microscopy of α2M-

labeled HB3VAR06+ IEs revealed a punctate pattern of fluorescence (Fig 1D, top panels)

resembling that characteristic of antibody-labeled PfEMP1 [30,31], whereas parallel samples

including the detection antibodies but omitting α2M did not produce this pattern (Fig 1D,

lower panels).

HB3VAR06 can bind native α2M

Circulating native α2M has a serum half-life of several hours [32]. It contains four “bait”

regions that are highly susceptible to proteases, and an internal thioester that is sensitive to

cleavage by small nucleophiles such as methylamine (MA). Cleavage of either the “bait” regions

or the thioester results in a Venus flytrap-like conformational change in α2M. This exposes the

thioester, which then covalently “captures” the protease in the cage-like structure and exposes

the receptor-binding sites in α2M. In vivo, the serum half-life of this “activated” α2M is there-

fore short (2–4 min), as it is rapidly cleared from circulation when the receptor-binding sites

α2M and PfEMP1-Mediated Adhesion
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Fig 1. Identification of α2M as the soluble serum factor binding HB3VAR06. (A) 2D gel electrophoresis of
serum components pulled down with recombinant full-length HB3VAR06 (FV6; left) or PFD1235w-
DBLβ3_D5 (right). Spots subsequently identified as α2M and IgM in the left panel are boxed. Molecular
weight (kDa) markers are shown along the left margins. (B) Binding of α2M to recombinant full-length
HB3VAR06 (FV6; left) and IT4VAR04 (FV2; right), measured by ELISA. Means and SD are indicated. (C)
Binding of α2M to HB3VAR06+ IEs (left) and IT4VAR04+ IEs (right), measured by flow cytometry. Control
sample labeling (no α2M added) is indicated by gray shading. (D) Fluorescence micrographs of DAPI-labeled
HB3VAR06+ IEs in the presence (top) and absence (bottom) of fluorescein isothiocyanate-labeled α2M at low
(scale bar: 20 μm; left) and high (scale bar: 5 μm; right) magnification are shown.

doi:10.1371/journal.ppat.1005022.g001

α2M and PfEMP1-Mediated Adhesion
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bind to the α2M receptor low density lipoprotein receptor-related protein 1 (CD91) [32,33].

The conformation of α2M activated either by protease cleavage of the bait region or by nucleo-

phile cleavage of the thioester are structurally and functionally similar and both bind CD91

(reviewed in ref. [34]). We therefore used native α2M and MA-activated α2M (α2M-MA) to

examine which of the two conformational states could bind HB3VAR06. ELISA analysis

showed that FV6 bound approximately four times more native α2M than α2M-MA (Fig 2A).

Fig 2. Binding of native andMA-activated α2M to HB3VAR06. (A) Titration of binding of native α2M (black
circles) and α2M-MA (white circles) to recombinant full-length HB3VAR06measured by ELISA. Means and
SD are indicated. (B) Titration of binding of native α2M (black circles) and α2M-MA (white circles) to
HB3VAR06+ IEs measured by flow cytometry. Means and SD are indicated. (C) Activation of α2Mmeasured
by SDS gel electrophoresis of soluble and immobilized α2M in the presence of mPEG: soluble α2M alone
(lane 1), soluble α2M and MA (lane 2), soluble α2M and FV6 (lane 3), bead-immobilized α2M-FV6 complexes
alone (lane 4), and bead-immobilized α2M-FV6 complexes and MA (lane 5). While native α2Mwas detectable
in all lanes, activated α2M having a higher molecular weight than native α2M due to incorporation of mPEG
was only detected in the presence of MA (lanes 2 and 5).

doi:10.1371/journal.ppat.1005022.g002

α2M and PfEMP1-Mediated Adhesion
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Corresponding flow cytometry data showed concentration-dependent binding of native α2M

binding to HB3VAR06+ IEs, whereas α2M-MA did not bind well to IEs, even at high concen-

trations (Fig 2B).

α2M is a promiscuous protein with about one hundred binding partners listed in the Bio-

GRID database [35], and in most cases these interactions trigger activation of α2M. Methyl-

poly(ethylene glycol) maleimide (mPEG) forms a covalent bond with the thiol group liberated

following α2M activation. This can be detected by denaturing SDS gel electrophoresis as an

increase in the molecular weight of activated α2M.We used this system to test whether interac-

tion with HB3VAR06 activated α2M. In solution and in the presence of mPEG, MA activated

native α2M as expected (Fig 2C, lane 2), whereas FV6 did not (lane 3). Immobilization of

FV6-bound α2M to epoxy beads did not cause activation of α2M (lane 4), but the α2M in the

immobilized complex could be activated by MA (lane 5).

α2M binds the penultimate C-terminal DBLξ2 domain of HB3VAR06

HB3VAR06 is composed of an N-terminal segment followed by eight DBL and CIDR domains

(Fig 3A). In an earlier study, we used recombinant DBL domain constructs from HB3VAR06

to show that IgM binds to the penultimate DBL domain (D8; DBLξ2) near the C-terminus

[17]. Taking a similar approach here, we could show that α2M also bound exclusively to recom-

binant single-, double-, and triple-domain constructs containing DBLξ2 (Fig 3B). False signals

due to contaminating IgM in the primary or secondary antibodies used to detect α2Mwere

ruled out in control experiments without α2M (S1 Fig).

Flow cytometry analysis of HB3VAR06+ IEs showed that FV6- and DBLξ2-specific antisera

significantly reduced α2M binding, whereas an NTS-DBLα-CIDRδ-specific anti-serum did not

(Fig 3C). Thus, IgM and α2M bound to the same domain in HB3VAR06. IgM and α2M are

high-molecular weight proteins (about 900 kD and 720 kD, respectively), but either could bind

HB3VAR06+ IEs in the presence of the other (Fig 3D). In competitive binding experiments,

each protein reduced the binding of the other by approximately two-fold (Fig 3E and 3F). The

results indicate that IgM and α2M bind to separate HB3VAR06 molecules with similar affini-

ties, although we cannot rule out that individual HB3VAR06 molecules might be able to

accommodate both IgM and α2M simultaneously.

α2M is required for HB3VAR06-mediated rosetting and acts
synergistically with IgM

Size-exclusion chromatography analysis showed that saturation of native α2M by FV6 occurred

at a α2M:FV6 ratio of at least 1:4, whereas saturation of α2M-MA binding to FV6 was reached

already at a 1:1 ratio (Fig 4A and 4B). In the absence of serum, HB3VAR06+ IEs do not form

rosettes [17], but native α2M alone could support rosette formation in serum-free medium in a

concentration-dependent manner (Fig 4C). In contrast, α2M-MA had no effect on rosetting

(Fig 4C). This supports our hypothesis that HB3VAR06 rosetting requires cross-linking of

multiple PfEMP1 molecules to overcome the low affinity for receptors on erythrocytes [17],

although it may simply reflect the inability of α2M-MA to bind to IEs (Fig 2B). Furthermore,

the higher multimerization potential of α2M than IgM was consistent with our observation

that α2M could induce rosetting in the absence of other serum factors (Fig 4C), in contrast to

IgM [17]. IgM lowered the concentration of α2M required for rosetting, indicating that the two

serum factors can act in synergy (Fig 4C). This was supported by the observation that rosetting

rates were higher when α2M and IgM were added together at equimolar concentrations than

the theoretical rates calculated as the sum of rosetting rates in medium with either component

alone (S2 Fig). In our earlier study [17], we found that IgM-depleted serum did not support

α2M and PfEMP1-Mediated Adhesion
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Fig 3. Identification and characterization of the α2M-binding domain in HB3VAR06. (A) Schematic
representation of the domain structure of HB3VAR06. Domain nomenclature as described by Rask et al. [37],
as well as the first and last amino acid in each domain are indicated. (B) Binding of α2M to recombinant
HB3VAR06 single-, double-, and triple-domain constructs (labeled as in panel A) as well as to full-length
HB3VAR06 (FV6) measured by ELISA. Means and SD are indicated. (C) Inhibition of α2M binding to
HB3VAR06+ IEs by anti-sera raised against the N-terminal head structure (D1–D3), DBLξ2 (D8), and full-
length HB3VAR06 (FV6), respectively, measured by flow cytometry. Means and SD relative to binding
without anti-serum are indicated. (D) Simultaneous labeling of HB3VAR06+ IEs by α2M and IgM (left),
measured by flow cytometry. A control experiment with all detecting antibodies present but without α2M and
IgM is shown to the right. (E) Inhibition of IgM binding to HB3VAR06+ IEs by increasing concentrations of
α2M, measured by flow cytometry. Means and SD relative to binding in the absence of α2M are indicated. (F)
Inhibition of α2M binding to HB3VAR06+ IEs by increasing concentrations of IgM, measured by flow
cytometry. Means and SD relative to binding in the absence of IgM are indicated.

doi:10.1371/journal.ppat.1005022.g003

α2M and PfEMP1-Mediated Adhesion
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Fig 4. Capacity of α2M to induce resetting. (A) Size-exclusion chromatography of α2M alone (black),
recombinant full-length HB3VAR06 alone (FV6; green), or the two together at α2M:FV6 molar ratios of 1:1
(brown), 1:3 (blue), 1:5 (pink), and 1:7 (red), measured by size-exclusion chromatography. The prominent
shoulder of unbound FV6 at 1:7 is indicated by a red arrow. (B) Size-exclusion chromatography of α2M-MA
alone (black), recombinant full-length HB3VAR06 alone (FV6; green), or the two together at α2M-MA:FV6
molar ratios of 1:1 (brown) and 1:2 (blue), measured by size-exclusion chromatography. The prominent
shoulder of unbound FV6 at 1:2 is indicated by a blue arrow. (C) Rosetting of HB3VAR06+ IEs in Albumax
medium at different concentrations of α2M (black circles), α2M-MA (�), and α2M in the presence of fixed
concentration (3 mg/mL) IgM (black point-up triangles) or IgA (black point-down triangles). Means and SDs
relative to rosetting in serum-containing medium are indicated. (D) Ability of α2M to restore the capacity of
IgM-depleted serum to support rosetting of HB3VAR06+ IEs. Means and SD are indicated.

doi:10.1371/journal.ppat.1005022.g004

α2M and PfEMP1-Mediated Adhesion
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rosetting although α2Mwas not intentionally removed. However, addition of exogenous native

α2M at concentrations lower than those required in serum-free medium restored the ability of

IgM-depleted serum to support rosetting (Fig 4D). Thus, endogenous α2M levels in IgM-

depleted serum appeared to be too low to sustain rosetting, but sufficient to augment IgM-

dependent rosetting, when subsequently added.

α2M-binding is not restricted to HB3VAR06

Late-stage erythrocytes infected with five of eight laboratory lines selected to express different

rosette-mediating PfEMP1 variants contained sub-populations binding α2M, evaluated by flow

cytometry (Fig 5A). α2M induced serum-free rosetting in one (TM284VAR1(R+)) of three

α2M-binding lines tested, but not in the two others (PF13 and VarO) (Fig 5B). PF13 IEs express

the PfEMP1 protein PF13_0003, which does not contain a DBLξ domain with potential to bind

IgM, and this parasite did not form any rosettes when grown in serum-free Albumax medium.

VarO+ IEs have previously been reported to require at least 5% serum to form rosettes [36], but

in our hands this parasite line rosetted at low levels (~10%) under serum-free conditions.

Although the penultimate C-terminal DBL domain in VarO is a DBLξ domain according to

the classification algorithms employed by Rask et al. [37] used here, not all such domains sup-

port Fc-mediated IgM binding (Jeppesen et al., submitted for publication). For both PF13 and

VarO, it is tempting to speculate that the inefficiency of α2M to induce rosetting in these two

parasites is related to absence of synergy between α2M and IgM. As expected, α2M had no

effect on rosetting rates in two lines (HB3VAR03 and IT4VAR09) not binding α2M. Ex vivo

analysis of IEs from 12 Ghanaian children with P. falciparummalaria showed α2M binding in

four and IgM binding in five (Fig 5C and 5D). The two phenotypes were highly correlated (P(r -

= 0.75)<0.005), and IEs from all the α2M-binding isolates also bound IgM (Fig 5D). Four chil-

dren were clinically categorized as suffering from severe P. falciparummalaria (two had

multiple convulsions, one was prostrate, one had respiratory distress). There were no statisti-

cally significant associations between clinical presentation (including parasitemia at admission)

and either α2M- or IgM-binding phenotype (P(r)>0.4 for all). However, our study was neither

designed nor powered to thoroughly investigate whether these phenotypes are preferentially

found among erythrocytes infected by parasites obtained from patients with severe disease.

Together, these data show that the ability to bind α2M is a common PfEMP1 phenotype, rather

than restricted to HB3VAR06.

Discussion

Serum factors are required for PfEMP1-mediated rosetting to occur in the majority of geneti-

cally and phenotypically distinct P. falciparum isolates (reviewed in ref. [14]). Pentameric IgM

has been a recurring candidate [38,39], and we recently proposed that its role in rosetting is

linked to its ability to bind multiple PfEMP1 proteins [17]. However, pentameric IgM only

accommodates two HB3VAR06 proteins per IgMmolecule, limiting its multimerization poten-

tial, and our results showed that additional unidentified serum component(s) are indeed

needed for HB3VAR06-mediated rosetting to occur. We therefore set out to close this gap in

understanding, and we report here that the unknown serum factor is the abundant protease

inhibitor α2M. This is the first report that α2M plays a role in the pathogenesis of P. falciparum

malaria, and the first demonstration of a single, soluble serum component that is both neces-

sary and sufficient for rosetting of P. falciparum-IEs.

Antigen-specific pull-down and mass-spectrometry showed that α2M bound HB3VAR06,

and this finding was confirmed by ELISA and flow cytometry employing recombinant and

native HB3VAR06, respectively (Fig 1). We next showed that native α2M bound HB3VAR06

α2M and PfEMP1-Mediated Adhesion
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much better than activated α2M, that this binding did not lead to activation of α2M, and that

native α2M retained its capacity for activation after binding to PfEMP1 (Fig 2). This is similar

to what has previously been observed in human-pathogenic Group G Streptococci [40,41],

where it has been proposed that surface-bound native α2M can protect the bacteria from host

protease attack [42]. It is possible that α2M-binding to PfEMP1 might provide IEs with a simi-

lar type of protection, but this is presently an unconfirmed hypothesis.

Fig 5. α2M binding in parasites not expressing HB3VAR06. (A) Binding of α2M to erythrocytes infected by
eight genotypically and/or phenotypically different parasite lines, measured by flow cytometry. Control
sample labeling (secondary antibody only) is indicated by gray shading. (B) Rosetting frequencies of
erythrocytes infected by six genotypically or phenotypically different parasite lines at increasing
concentrations of α2M but without serum, measured by flow cytometry. Means and SD relative to rosetting in
the presence of serum are indicated. (C) Ex vivo binding of α2M (left) and IgM (right) to erythrocytes infected
by a P. falciparum patient isolate (P25). (D) Correlation of ex vivo binding of α2M and IgM to erythrocytes
infected by P. falciparum parasites from 12 patients with uncomplicated malaria. Isolate P25 shown in panel
C is indicated by an arrow.

doi:10.1371/journal.ppat.1005022.g005

α2M and PfEMP1-Mediated Adhesion
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α2M bound to DBLξ2 near the C-terminus of HB3VAR06, which anchors it in the IE mem-

brane (Fig 3). This is the same domain previously shown to interact with the Fc part of IgM

[17]. We previously proposed that IgM facilitates rosetting by aligning or “cross-linking”mul-

tiple PfEMP1 molecules to increase their combined avidity for receptors on the surrounding

erythrocytes, because we found that IgM could bind up to two HB3VAR06 molecules [17].

This “cross-linking” hypothesis is markedly strengthened by the findings reported here. While

native α2M (which binds at least four PfEMP1 molecules; Fig 4A) supports rosetting on its

own, our data also show that α2M and IgM act synergistically in facilitating rosetting (Fig 4C

and 4D). Thus, IgM allows α2M-dependent rosetting to occur at much lower concentrations of

α2M than would otherwise be required, although IgM on its own does not support rosetting

[17]. Activated α2M (which cannot bind multiple PfEMP1 molecules; Fig 4B) appears to play

no role in rosetting (Fig 4C). Finally, our results showed that α2M binding is not restricted to

HB3VAR06, as several other genotypically distinct P. falciparum laboratory lines expressing a

variety of PfEMP1 proteins on the IE surface could be labeled by α2M (Fig 5A), and that this in

some cases led to rosetting (Fig 5B). Furthermore, α2M bound to the surface of IEs from Gha-

naian P. falciparummalaria patients (Fig 5C), and the ability to bind α2M and IgM were linked

phenotypes (Fig 5D). Rosetting has been linked to parasites causing severe malaria in several

studies [10,12,43], but in our small data set we did not find significant correlation between

α2M-binding and severe malaria as defined by the WHO criteria [44]. Future studies are there-

fore required to determine whether the α2M-binding rate is higher among parasites isolated

from severe malaria patients, and whether it is associated with particular clinical syndromes

and/or expression of particular PfEMP1 proteins.

In this paper we have provided comprehensive evidence that α2M is an important compo-

nent in PfEMP1-mediated rosetting. While the requirement for soluble serum factors in roset-

ting has long been recognized, their role has not been fully understood. An early study [38],

predating the discovery of PfEMP1, suggested that soluble serum factors can form bridges

between the IE and the erythrocytes bound to it in the rosette. While our evidence does not for-

mally rule out that possibility, it suggests an alternative mechanism where the soluble serum

proteins bind multiple PfEMP1 proteins at their C-terminus, further organizing the knob-spe-

cific display of PfEMP1 on the IE surface. The putative α2M—(and IgM-) mediated cross-link-

ing of PfEMP1 might improve IE binding avidity by refining the overall topological

organization of PfEMP1 or by facilitating intermolecular dimerization of constituent DBL

domains. With respect to the former possibility, it is known that the topological and spatial

organization of both mannose binding lectin (MBL3 oligomers) and its ligand (mannose) con-

tribute to the strength of their adhesive interaction [45]. With respect to the latter, closer pack-

ing of multiple PfEMP1 head structures might allow intermolecular dimerization of N-

terminal DBL domains. DBL dimerization has been proposed to be “conserved in DBL-domain

receptor engagement” and important for the adhesive interaction of DBL domains and their

receptors [46,47]. Evidence that the binding sites for Blood Group A antigen and heparin are

situated on opposing sides of the head structure of the PfEMP1 protein VarO is compatible

with this model, as soluble heparin disrupts VarO-dependent rosetting [36]. However, experi-

mental validation of either hypothesis will require further investigation.

Whether α2M binding to PfEMP1 arose to subvert a host immune response mechanism, as

might be suggested by the protective function of the complement factor C3 homolog TEP1 in

mosquito immunity to these parasites [48], or conversely evolved as a parasite immune-evasive

strategy similar to that of Group G Streptococci [40,41] is another question that will require

further investigation. In either case, it is plausible that the net result is an increased repertoire

of host receptors available for IE adhesion. This is likely to enhance IE retention in tissues,

either directly (by enabling IE adhesion to low-affinity vascular receptors, e.g., endothelial

α2M and PfEMP1-Mediated Adhesion

PLOS Pathogens | DOI:10.1371/journal.ppat.1005022 July 2, 2015 11 / 19



Blood Group A antigen [49]) or indirectly (through retention of rosetting IEs in the microvas-

culature). Either way, this would help the P. falciparum parasites to avoid destruction in the

spleen. We propose that this at least partially explains the correlation between rosetting and

severe malaria. Since the proposed α2M-mediated cross-linking of PfEMP1 does not depend

on the host receptor specificity of the PfEMP1 ligands involved, our finding may open new ave-

nues for PfEMP1-based immune intervention against IE adhesion that target α2M/IgM-

binding rather than host receptor-binding epitopes. Such anti-adhesive intervention would

have a broader scope than has been possible to date.

Materials and Methods

Ethics statement

The collection of human plasma samples was approved by the Institutional Review Board of

Noguchi Memorial Institute for Medical Research, University of Ghana (Study Number 038/

10-11), and by the Regional Research Ethics Committees, Capital Region of Denmark (Proto-

col H-4-2013-083). All donors were adults and provided written informed consent. All the ani-

mal experiments were conducted according to Danish Law and approved (permit 2012-15-

2934-00567) by the Danish Animal Procedures Committee (“Dyreforsøgstilsynet”).

Recombinant parasite proteins, animal anti-sera, human serum, and
α2M

All recombinant parasite proteins were cloned, expressed, and purified as previously described

[50]. In brief, the ectodomains of HB3VAR06, IT4VAR60 (Met1 to Ser2,136) and IT4VAR09

(Met1 to Cys2,345) were codon-optimized for insect cell expression by GeneArt (Regensburg,

Germany). Full-length, single-, double-, and triple-domain constructs were cloned into the

pAcGP67-A vector (BD biosciences, San Jose, CA), transfected and amplified in Sf9 insect cells

before being purified from the supernatant of High-Five insect cells via affinity chromatogra-

phy on HisTrap HP columns (GE Healthcare, Fairland, CT). Recombinant proteins represent-

ing PFD1235w-DBLβ3_D5 and the full-length VAR2CSA-type PfEMP1 IT4VAR04 (FV2)

were expressed as previously described [26,51]. The ICAM-1-binding full-length PfEMP1 pro-

tein IT4VAR13 (FV13) [52] was a kind gift from Thomas Lavstsen. PfEMP1 domain bound-

aries and sequences not explicitly given above can be obtained from the VarDOM server

(http://genome.cbs.dtu.dk/services/VarDom/) [37].

Animal anti-sera specific for recombinant HB3VAR06, IT4VAR09, and IT4VAR60 con-

structs were raised in rats and rabbits as previously described [17]. All the animal experiments

were conducted according to Danish Law and approved by the Danish Animal Procedures

Committee (“Dyreforsøgstilsynet”) (permit 2012-15-2934-00567). The mouse monoclonal

antibodies specific for the PfEMP1proteins VarO (D1568) and PF13 (J321) were a kind gift

from Inès Vigan-Womas and Odile Mercereau-Puijalon. Anti-serum specific for the N-

terminal head structure (NTS-DBLα-CIDRα1.4) of HB3VAR03 has been described previously

[53] and was a kind gift from Alex Rowe. Human serum was collected and pooled from ten

anonymous and healthy blood bank donors without previous exposure to P. falciparum

antigens.

α2-macroglobulin (α2M) (Sigma) and MA-activated α2M (α2M-MA; BioMac, Leipzig, Ger-

many) were purchased or extracted from human serum by Zn2+-chelate affinity as described

[54]. This was followed by gel filtration on a Superdex 200 (GE Healthcare) according to the

manufacturer’s instructions. MA-induced conversion of serum-purified native α2M to activated

α2M (α2M-MA) in the presence of iodoacetamide was carried out as described before [55].
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Pull-down and identification of α2M

FV6 or PFD1235w DBLβ3_D5 (100 μg) were coupled to M-270 epoxy Dynabeads (3 mg; Life

technologies, Carlsbad, CA) overnight at 4°C according to manufacturer’s instructions. Follow-

ing washing (3× in 0.1 M NaPO4 buffer containing 0.1% Ig-free bovine serum albumin (BSA;

Rockland, USA; pH7.4), the beads were incubated in non-heat-inactivated human serum

(500 μL, 1 h, 4°C) on a rotating mixer. Finally, the beads were washed (3× in NaPO4 buffer

with 0.05% Tween 20) before bound proteins were eluted in citrate (50 μL, 0.01 M, pH 3.1).

Eluted products were extensively dialyzed against NaPO4 buffer (0.1 M) before the protein con-

centration was assessed by measurement of absorbance at 280 nm, and 5 μg added to rehydra-

tion buffer (8 μL, immobilized pH gradient (IPG) buffer pH 3–10; Life Technologies) with

dithioerythritol (0.05 g). The 7 cm IPG strips (Life Technologies) for 2D gel electrophoresis

were rehydrated (14 h) before a three-step electrophoresis program was run on an IPGPhor

machine (Amersham, Buckinghamshire, UK) as described [56]. Strips were equilibrated and

second dimension electrophoresis run using pre-cast 4–12% Bis-Tris Zoom gels according to

manufacturer’s instructions (Life Technologies).

Gels were silver stained by sequential incubations in fixation solution (10% C2H4O2, 40%

C2H6O, 30 min), sensitizing solution (30% C2H6O, 0.2% Na2S2O3, 0.8 M NaOAc, 30 min),

dH2O (3×5 min), silver stain (0.25% w/v AgNO3 solution, 20 min), dH2O (2×1 min), develop-

ing solution (0.0074% w/v CH2O, 0.25 M Na2CO3, 5 min), and stopping solution (1.46% ethyl-

ene-diamine-tetra-acetic acid-Na2, 10 min).

Mass spectrometry

Gel spots of interest were excised and cut into 1 mm3 cubes, de-stained by washing in acetoni-

trile, and subjected to reduction and alkylation before in-gel digestion with trypsin at 37°C

using a ProGest Investigator in-gel digestion robot (Digilab, Marlborough, MA) and standard

protocols [57]. Digested peptides were extracted with 10% formic acid, and applied (0.5 μL) to

the MALDI target along with α-cyano-4-hydroxycinnamic acid matrix (0.5 μL, 10 mg/mL,

50:50 acetonitrile: 0.1% trifluoroacetic acid) and allowed to dry. MALDI-mass spectrometry

data were acquired, using a 4800 MALDI TOF/TOF analyzer (ABSciex, Cheshire, UK)

equipped with a Nd:YAG 355 nm laser and calibrated using a mixture of peptides. The most

intense peptides were selected for mass spectrometry (MS)/MS analysis using GPS Explorer

(ABSciex) to interface with the Mascot 2.4 search engine (Matrix Science) and the MS/MS

data using Mascot 2.4 directly. Swiss-Prot (Dec 2012) or NCBInr (Aug 2013) databases were

interrogated using Homo sapiens as species restriction. The data were searched with tolerances

of 100 parts-per-million for the precursor ions and 0.5 Da for the fragment ions, trypsin as

the cleavage enzyme, assuming up to one missed cleavage, carbamidomethyl modification

of cysteines as a fixed modification and methionine oxidation selected as a variable

modification.

P. falciparum parasites, and in vitro culture and selection

P. falciparum HB3 parasites [58] were maintained in vitro and selected for rosetting and

expression of HB3VAR06 expression as described [17]. For rosetting laboratory isolates, we

used a combination of rosette enrichment (sedimentation in gelatin as described by [59]) and

PfEMP1-specific antibody selection [60]. We used rabbit anti-sera raised against the relevant

recombinant full-length PfEMP1 proteins to select P. falciparum IT4 to express IT4VAR60

(such parasites have variously been described in the literature as FCR3S1.2 and PAR+; see

[61]) and IT4VAR09 (also known as R29; [62]). P. falciparum HB3 was selected to express

HB3VAR03 using rabbit-antisera against HB3VAR03-NTS-DBLα-CIDRα. P. falciparum 3D7

α2M and PfEMP1-Mediated Adhesion
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expressing PF13_0003 (PF13) and VarO (Genbank: EU9082205) were selected by mouse

monoclonal antibodies J321 and D1568 respectively, as described elsewhere [21]. For the iso-

late TM284var1 (Genbank: JQ684046 and [63]), no PfEMP1-specific anti-sera were available

to us. Instead, we used a combination of rosette enrichment and IgM selection. Rosetting in

the isolate MUZ12 (Genbank: JQ684048) was maintained by gelatin selection, but no further

PfEMP1-specific selection was used. For IgM selection, IEs were incubated in culture medium

supplemented with 10% human serum (15 min, rotating plate) before being washed and

enriched using rabbit anti-human IgM (Dako, A0426) coupled to Protein A beads (Life tech-

nologies). PfEMP1 expression was regularly monitored by flow cytometry using PfEMP1-

specific antisera, and only IEs where 60–95% of IEs were specifically labeled were used in the

experiments described in this study. All cultures were kept synchronous by twice-weekly sor-

bitol treatment as described [64]. The genotypic identity and the absence of Mycoplasma

infection were verified regularly as described [26]. P. falciparum IT4 was selected for IE sur-

face expression of the PfEMP1 protein IT4VAR32b by human monoclonal antibody AB01

[65]. IEs from 12 children with P. falciparummalaria were obtained from venous blood

samples collected at Hohoe Municipal Hospital, Hohoe, Ghana. The samples were incubated

overnight in candle jars at 37°C, and transported to Accra for analysis by ex vivo flow cytome-

try (see below). These samples were collected with the permission of the Institutional

Review Board at Noguchi Memorial Institute for Medical research, University of Ghana (file

026/13-14) and the Ethical Review Committee of the Ghana Health Services (file GHS-ERC

08/05/14).

Measurements of α2M and Fc-mediated IgM binding to PfEMP1

To assess α2M binding by ELISA, 96-well, flat-bottomed MaxiSorp plates (Thermo scientific)

were coated with recombinant PfEMP1 constructs (18nM, overnight, 4°C). Following blocking

(2 h) in TSM buffer with 1% Ig free BSA, plates were washed and incubated with α2M or

α2M-MA (10 nM). Binding was detected with polyclonal goat-anti-α2M (Abcam, Cambridge,

UK 7337 1:5,000) or monoclonal mouse-anti-α2M (Abcam, 1:1,000), followed by rabbit-anti-

goat horseradish peroxidase (1:6,000, Dako, Glostrup, Denmark) or rabbit-anti-mouse horse-

radish peroxidase (1:2,000, Dako).

Binding of IgM, α2M and α2M-MA to IEs was detected by flow cytometry, essentially as

described [65]. In brief, late-stage IEs (1x105) purified by magnet-activated cell sorting were

incubated (30 min, room temperature) with either α2M or α2M-MA (10 nM). The IEs were

washed and incubated first with primary (polyclonal goat-anti-α2M, 1:3,000), then fluorescein

isothiocyanate-conjugated secondary antibody (polyclonal rabbit-anti-goat, 1:150) (Vector,

Peterborough, UK, FI-5000) and ethidium bromide (2 μg/mL). In competition assays, α2M,

IgM, or HB3VAR06-specific anti-sera (1:20) were added in separate steps. Ethidium bromide

labeling was omitted in experiments detecting IgM binding using phycoerythrin-conjugated

donkey-anti-human IgM (Jackson ImmunoResearch, Newmarket, UK, 1:400). In assays

employing simultaneous surface labeling of IEs by IgM, α2M, and HB3VAR06-specific IgG, we

used PerCP-conjugated donkey-anti-rabbit antibody (Jackson ImmunoResearch,1:50) to detect

HB3VAR06-specific rabbit IgG and Alexa 488-conjugated donkey-anti-goat antibody (Life

Technologies, 1:10,000) to detect α2M. IE surface labeling was assessed by flow cytometry

using a Beckman coulter FC500 instrument (Beckman Coulter, Fullerton, CA) in Copenhagen

or a Becton Dickinson FACSCalibur (BD Biosciences, San Jose, CA) in Ghana. List-mode data

files were analyzed using FlowJo (v 7.6; Treestar, Ashton, OR) and WinList (v. 6; Verity Soft-

ware House, Topsham, ME) software.
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Immunofluorescence microscopy

HB3VAR06+ IEs (1.2 mL, 5% hematocrit) were pelleted, washed (3×, PBS with 1% Ig-free

BSA), and incubated with α2M (500 μL, 100 nM, room temperature, 30 min). Following addi-

tional washing, the IEs were incubated with polyclonal goat-anti- α2M (500 μL, 1:3,000) then

Alexa 488-conjugated donkey-anti-goat (Life Technologies, 1:10,000) and DAPI (1 μg/mL).

Micrographs of live, unfixed IEs were obtained using a Nikon TE 2000-E confocal microscope

equipped with a 60× oil immersion lens (N.A. 1.4) and Nikon EZ-C1 3.5 software (Nikon

Instruments, Amsterdam, Netherlands). Images were analyzed using Image J64 software

(http://imagej.nih.gov/ij/) [66].

Detection of α2M activation

To test whether binding of α2M to FV6 induced thiol-ester conversion of α2M to activated

α2M, FV6 and α2M (10 μg) were incubated together in NaPO4 buffer (pH 8), in the presence of

0.75 mMmPEG, MW 5000 (mPEG; Laysan Bio, Arab, AL). Incorporation of mPEG was

assessed by denaturing SDS-PAGE (5 μL load), comparing activation to that obtained by MA

(150 mM; Sigma) in the absence of iodoacetamide. To assess whether α2M could be activated

after binding to FV6, the FV6: α2M complex was immobilized on epoxy beads as described

above for the α2M pull-down, but using purified α2M (200 μg) instead of serum. After removal

of unbound α2M by thorough washing, FV6-bound α2Mwas incubated with mPEG with or

without methylamine as above in NaPO4 buffer (pH8, 2 h, 4°C). After additional washing, the

beads were incubated with SDS loading buffer and DTT (50 μL), heated (70°C, 5 min) before

loading (20 μL) on denaturing SDS gels and processed as above.

Analytical size-exclusion chromatography

Size-exclusion chromatography (SEC) was performed using a 24-mL Superdex 200 10/30 HR

column (GE Healthcare) equilibrated with 50 mM Tris-HCL and 150 mMNaCl (pH 7.4). α2M

(150 μg) alone and in combination with molar ratios of FV6 were incubated on ice (15 min)

and subjected to SEC analysis using a flow rate of 0.5 mL/min and absorbance detection at

280 nm.

Rosetting assessment

Late-stage IEs (5% parasitemia) were diluted in Albumax medium to 2% hematocrit to achieve

a total volume of 20 μL in a 384-well plate. Rosetting agents (α2M, α2M-MA, IgM, IgA, serum)

were concentrated to�10 mg/mL and dialyzed against Albumax medium before dilution to

the required concentration. The effect of each reagent on IEs (20 μL culture) was tested in

triplicate in 384-well plates (20 μL/well, 1 h, 37°C). IEs were labeled with ethidium bromide

(2 μg/mL), and rosetting (�2 erythrocytes bound per IE) assessed by fluorescence microscopy

of 200 IEs. In each assay, the rosetting frequency was compared to the positive control (10%

serum).

Supporting Information

S1 Fig. Detection of α2M-binding to HB3VAR06 is not explainable by presence of IgM in

antibody preparations used to label α2M. To test whether IgM in the primary, α2M-specific,

antibody and/or in the HRP-conjugated secondary antibody used to detect α2M by ELISA

would compromise the assay specificity for detection of α2M-binding to HB3VAR06, we

coated ELISA plates with FV6 and added goat-anti- α2M antibody followed by HRP-

conjugated rabbit anti-goat antibody (A, left bar) or mouse-anti- α2M antibody followed by
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HRP-conjugated rabbit anti-mouse antibody (B, left bar). Neither produced any signal, in con-

trast to the strong signal in control wells coated with α2M instead of FV6 (right-hand bars in A

and B). Graphs show means and S.D. of triplicates.

(TIF)

S2 Fig. Rosetting of HB3VAR06+ IEs in serum-free medium supplemented with different

concentrations of α2M and/or IgM. To verify the synergistic effect of α2M and IgM on roset-

ting, we measured absolute rosetting rates (solid lines) of Albumax-maintained HB3VAR6+

IEs after incubation (1 h) in Albumax medium supplemented with IgM alone (black point-up

triangles), α2M alone (black circles), or equimolar α2M and IgM together (black squares) at the

concentrations indicated. Synergy was evident, as the observed rosetting rates when α2M and

IgM were added in combination (black squares) were higher than theoretical rates calculated

as the sum of the rates observed in medium containing either α2M or IgM (white squares and

dashed line). Rosetting rate in medium supplemented with 10% NHS is shown for comparison

(right).

(TIF)
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