
Progress of Theoretical Physics, Vol. 57, No. 5, May 1977 

A~ Term, Rcnormalization of Matter-Photon Interaction 

and Coherent States in Matter-Photon Systems 

Shozo T AKENO and Michiyoshi NAGASHIMA * 

DejJartment of Physics, Kyoto Technical University, Kyoto 606 

*Department of Engineering Physics, Faculty of Engineering 

Kyoto University, Kyoto 606 

(Received June 7, 1976) 

1507 

A non-relativistic quantum theory of matter-photon interaction is formulated, within the 

framework of the dipole approximation, by employing a canonical transformation to diago­

nalize the A' term plus the free photon Hamiltonian. The matter-photon interaction is there­

by expressed rigorously in a renormalized A·p form. Using this form for the Dicke model 

of two-level atoms interacting with a single-mode radiation field, we examine a possibility of 

the occurrence of stationary coherent states which could arise for a photon and atomic 

polarization as the ground state of the system, deducing a condition for such coherent states. 

The condition, expressed as an inequality which imposes a stable nontrivial Bloch angle of 

the uniform atomic polarization, is identical with that for the occurrence of a second order 

phase transition, and indicates that the non-existence of a second order phase transition 

pointed out by Rza2ewski et al. io; in fact a consequence of the present treatment of the A'­

term renormalization. However, a fulfillment of the condition is recovered, if exchange­

type atom-atom interaction is taken into account in the matter system. We also present a 

method to construct an effective Hamiltonian of atom-atom interaction which is equivalent 

to the above Dicke model in the thermodynamic limit. 

§ 1. Introduction 

vVith the advancement of quantum optics, nonlinear optics1) and laser physics, 2) 

much attention has been paid recently on the coherence and cooperative properties 

of matter-photon systems." In the non-relativistic regime the Hamiltonian of a 

matter-photon system is generally \vritten as*l 

(1·1) 

Here rn and Pu are the coordinate and the momentum, respectively, of the l-th 

electron bound to the nucleus of an atom at a site Ri by the potential Yi ( {ri}), **l 

m and ~ e the mass and the charge of the electron, respecti,·ely, and A (ra) is 

the Coulomb-gauge vector potential evaluated at the site ru. The symbols HP 

and Ilaa represent the free photon Hamiltonian and the Hamiltonian describing 

atom-atom interactions, respecti\·ely. Historically, the Hamiltonian for the matter­

photon interaction has been treated 111 yarious approximate ways. Broadly speak-

*1 \Vc uoc natural units to put h=c=l. 

**1 The "Y111 bol {r,} denotes a set of the coordinates of electrons bound to the i atom. 
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1508 S. Takeno and l'vf. Nagashima 

ing, this may be classified into two types, A· p form and E · r form. The former 

is obtained by neglecting the A" term in Eq. (1·1), while the latter is derived 

by applying a canonical transformation to express the matter-photon interaction 

entirely in terms of electric and magnetic fields, rather than of the vector potential, 

and by neglecting a self-energy term appearing therein. 4J. 5J,*J For matter sys­

tems, a two-level-atom model has been used extensively to take into account essential 

features of nonlinearity in atomic excitations. 6J Also employed here conventionally 

has been an approximation to neglect direct atom-atom interactions. It has been 

recognized for some time in the field of quantum optics, laser physics and others 

that such approximate Hamiltonians, of which the Dicke model Hamiltonian is 

most typical, 6J,n provide simple but fruitful starting points for the study of the 

coherence and cooperative properties of matter-photon systems."J,sJ,oJ 

Recently, however, Rzazewski et al. have shown that the Dicke model Hamil­

tonian with the A 2 term included fails to yield a second order phase transition, 8J 

a result incompatible with the conclusions reached by Hepp and Lieb9J and by 

many others. 10 J~lBJ This work appears to have aroused renewed attention to the 

role played by the A 2 term which has hitherto been neglected in quantum optics 

and nonlinear optics. On the other hand, the A" term has long been recognized 

to play a dominant role in solid-state plasma.m Also, this term was taken into 

account previously by Agranovich 18J and by Hopfield19J in their theories of linear 

polaritons. 

The purpose of the present paper is: (i) to formulate a quantum theory 

of matter-photon interaction which contains an attempt to fully take into account 

the A 2 term in the non-relativistic regime and (ii) to examine the effects of this 

term and of direct atom-atom interactions for the occurrence of stationary coherent 

states in matter-photon systems. The formulation is done by employing a canonical 

transformation to diagonalize the A 2 term plus the free photon Hamiltonian and 

by using the atomic operator formalism20J to take into account the multi-level nature 

of the atomic spectra. The theory so developed enables us to express the effect 

of the A 2 term rigorously in a renormalized A ·p form. 

In a previous paper the present authors and Sugimoto studied the coherence 

properties of the Dicke model Hamiltonian to show that under a strong coupling 

condition the ground state is characterized by the simultaneous appearance of a 

stationary coherent state of a photon and that due to atomic polarization. 2n To 

illustrate the role played by the A" term, the same type of stationary coherent 

states in the Dicke model Hamiltonian with direct atom-atom interaction as well 

as the A 2 term included are studied in this paper, without resorting to the use 

of the rotating-wave approximation to treat the matter-photon interaction. In doing 

this discussion is given on the condition for the occurrence of such coherent states, 

and it is shown to be identical with that of a second order phase transition. It 

*J In the conventional E · r form the effect of the A 2 term is only partially taken into account. 

For a detailed discussion see, for example, Refs. 4) and 5). 
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rl" Term, Renormalization of J1.1atter-Photon Interaction 1509 

IS shown that the result obtained by Rzazewski et al.8l is a natural outcome of 

the renormalization of the matter-photon interaction. It is also shown that the 

appearance o£ the stationary coherent states becomes possible, if there exist ex­

change-type atom-atom interactions in the matter system. 

In the next section the atomic operator formalism and the dipole approximation 

are employed to treat Eq. (1·1). In § 3 a canonical transformation is applied 

to diagonalize the A 2 term plus the free photon Hamiltonian. Section 4 is devoted 

to study of a stationary photon coherent state and that clue to atomic polarization 

in the model matter-photon system. In § 5 another canonical transformation is 

introduced by eliminating the matter-photon interaction to recast it in the form 

of effective atom-atom interactions resulting from virtual exchange of photons. 

§ 2. Atomic operators and dipole approximation 

We consider a matter-photon system governed by the Hamiltonian (1·1). We 

assume for the sake of simplicity that the matter system is composed of idential 

one-electron atoms, omitting the subscripts l and i attached to the electron operators 

and the potential Vi, respectively, and that the electron is spin-less. It is also 

assumed here that the electronic states of the matter system composed of atoms 

are well described by the Heitler-London scheme, in which the overlapping of 

atomic wave functions on neighbouring atoms is negligible in the first order ap­

proximation. We rewrite Eq. (1·1) as 

(2·1) 

Here 

(2· 2) 

and 

(2·3) 

are the Hamiltonian for the atomic system, the free photon field and the matter­

photon interaction, respectively. The quantities aki and ati are annihilation and 

creation operators of a photon of energy {)) (k) specified by the wave vector k 

and the polarization index j(j=1, 2). In terms of the photon operators the vector 

potential A (rJ is expressed in the form*) 

(2·4) 

where 

*' The asterisk denotes the complex conjugate. 
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1510 S. Takeno and 111. 1Vagashima 

(2·5) 

m which ekj is the unit vector denoting the polarization direction, 1r the normali­

zation volume and .:1 the Kronecker delta. 

We assume that the eigenvalue problem for the free atom 

(2·6) 

has been solved. Here the label ai is envisaged as running over all eigenfunctions 

of Ha (i) for the i atom. *l Let us introduce an atomic operator by the eq uation20 l 

(2· 7) 

where I is an identity operator. Physically, the operator (Jiafl destroys an atom 

in the state I /3i) at the site Ri and re-create it in the state I ai). The multiplication 

rule obeyed by the (J's is given by 

(2·8) 

By virtue of the completeness of the states I ai), any operator ~Yi affecting only 

electrons in the i atom can be expressed in terms of Uiafl according to 

The first of Eqs. (2 · 2) is then rewritten as 

Ha = ~ ta(Jiaa • 
ia 

(2·9) 

(2 ·10) 

Similarly, the atom-atom interaction Hamiltonian Haa, which is assumed to be expres­

sed in the form of multi-pole or exchange-type interaction, is taken to be of the 

form 

(2·11) 

Explicit expressions for the L's are obtained once the form of the inter-atomic 

interaction is specified. 

In treating the matter-photon interaction we adopt the dipole approximation, 

which amounts to evaluating the vector potential A (ri) at the position Ri of the 

nucleus of the i atom. As is well known, the use of this approximation is justified 

if the orbital radius of the electron in the atom is much smaller than the relevant 

transition wavelengths. By the use of this approximation the Hamiltonian Ha~l 

can be expressed entirely in terms of the photon operators. Thus it is convenient 

to incorporate Ha~l into the free photon Hamiltonian HP to write**l 

Hv+Ha~) 

= (1/2) ~ {B(kj, k'j') atjak'i' + 2C(kj, k'j') ai;jak'j' + B* (kj, k'j') a~cjak'F}, 
kk' j j' 

(2·12) 

*l We will often omit the index i attached to the label a, to avoid the u:'e of complicated 

symbols whenever appropriate to Jo so. 

**l We omit any constant factor appearing in the Hamiltonian. 
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A.2 Term, Renormalization of Jlatter-Plzoton Interaction 1511 

vvhere 

B(k.i, 1.'/)=TV(k, k')e,rek"j'p(k+lr') with W(k, k')=uJ//2[(/J(k)r,J(I/)r 2
, 

(2· Ba) 

In the above equations 

(2 ·14) 

are, respectively, the Fourier transform of the atomic number densitv normalized 

to unity and the plasma frequency, in ·which 1V and n = 1V /1/ are the total number 

and the average number density, respectively, of the atoms in the matter system. 

In terms of the a's and the a's the interaction Hamiltonian Ha~l is re\\·ritten as 

{exp(ik·RJawl-exp(-ik·RJaU=- 'EJi-Ai 
i 

=:z= :z= Uia,da,3 • (Aikja;ri-A[kja~j) vvith Ai=A(R1) and Aikj=A 1j(R 1). 

iu~1 kj 

(2·15) 

Here 

(2 ·16) 

and 

(2·17) 

are, respectively, a constant characterizing atom-photon interaction in the A· p form 

and the matrix element of the current operator Ji= -e(dr;/dt) =dpjdt clue to 

the electron bound to the i atom. In the above equations the quantities Ea,J, f!a 8 

and da~ki are defined by 

(2-18) 

It has been assumed that the dipole moment operator #i =- cr 1 has no diagonal 

matrix element for any of the a's. Combining Eq. (2·17) \Yith the commutation 

relation obeyed by r 1 and p 1 gi,·es the \vell-known sum-rule :22J 

cz ·19) 

where rs the u component of the a,3 element of the dipole moment p, 1• 

§ 3. Diagonalization of the A 2 term plus the free photon Hamiltonian 

For the sake o£ simplicity, we limit our discussion henceforth to the case 

rn \vhich all the atoms in the matter system are arranged on periodic lattice sites. 
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1512 S. Takeno and M. Nagashima 

Here the quantity p(k) in Eqs. (2·13) and (2·14) becomesp(k)=J(k,G), where 

G is the reciprocal lattice vector. We can neglect the optical Umklapp process, 

thus putting G = 0, since the wavelength of relevant photons is much longer than 

the lattice constant. In this specific case Eq. (2 ·12) reduces to 

HP + Ha~l =I: [ {w (k) + [wp2/2u> (k)] }a~·jakj + [wp2
/ 4w (k)] (atja!kj +akja-kj)]. 

kj 

(3·1) 

Let bkj and btj be new Bose operators defined by the Bogoliubov transformation23l 

(3· 2) 

with 

(3·3) 

where the S''s and r;'s are real. Then, Eq. (3·1) can be diagonalized as follows: 

(3·4) 

with 

(3·5) 

where 

(3·6) 

is the eigenfrequencies of quasi-photons corresponding to the new operators bkj 

and btj· Diagonalization of the right-hand side of Eq. (2 ·12) for a general case 

of arbitrary spatial configurations of atoms in the matter system is done in the 

Appendix. 

By the use of the transformation (3 · 2) the interaction Hamiltonian, the vector 

potential and other field variables can be expressed entirely in terms of the new 

Bose operators bkj and bfc·j· Combining Eqs. (2 · 4) and (3 · 2), we get 

where we have used the relation 

(3·8) 

Similarly, we get for the electric field E (r) and the magnetic field B (r): 

E (r) = i I: [27ZQ(k) /VY 2ekj {exp(ik · r) bkj-exp ( -ik · r) bU, (3 ·9) 
kj 

B(r) =i I:[27Z/Q(k) VT2 (kx ekj){exp(ik·r)bkj-exp( -ik·r)btj}. (3·10) 
kj 

It is of interest to note that Eqs. (3 · 7), (3 · 9) and (3 ·10) are identical with 

Eq. (2 · 4) and the conventional expressions for E (r) and B (r) written in terms 

of the a's, provided akj• atj and w(k) are replaced by bkh btj and Q(k), respectively. 
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L'F Term, Renormalization of 11.1atter-Photon Interaction 1513 

Using the same procedure, we can reduce Eqs. (2 ·15) to 

I-Ia~) = -iN- 112 I: I: J,,pkj(fia;9{exp(ik· Ri) bkj +exp( -ik· R;) btj}, (3 ·11) 
ia(3 kj 

·where 

(3 ·12) 

As in the case of the field variables, the interaction constant Xa&kj is also identical 

in form with the bare interaction constant AaSkh provided J2 (k) is replaced by (J) (k). 

It is therefore seen that the diagonalization of the A 2 term plus the free photon 

Hamiltonian leads to the renormalization of the atom-photon interaction constants 

in the A ·p form. From the result thus obtained, we can express the total Hamil­

tonian I-I in terms of the new photon operators and the atomic operators in the 

form 

In this renormalized form, equations obeyed by the field variables are immediatlely 

obtained by using Eq. (3 · 6). For the vector potential A (r) and the electric 

field E (r) we get the equations 

{J- (f}2jf}t2) -(J)P2}A(r) = -4rrJ(r), 

{J- (f)2jf}t 2) -(J)P2}E(r) =4rr(fJ2P(r) jfJt'). 

Here 

J(r) =I:' JiLl (r-Ri) and P (r) =I:' #iLl (r-Ri) 
i i 

(3 ·14) 

(3·15) 

(3 ·16) 

are the current density and the electric polarization density, respectively, at the 

site r. In Eqs. (3 ·16) the prime on the summation symbol denotes a sum over 

the atomic sites in a unit volume. The physical meaning of the new photon 

operators is understood by noting that neglect of the right-hand sides of Eqs. 

(3 ·14) and (3 ·15) gives the well-known expression for the dispersion of electro­

magnetic waves in a plasma: 17J 

(3·17) 

We close this section by giving the following remarks: The LF term was 

taken into account previously by Agranovichm and by Hopfield18J in their theories 

of the dispersion of polaritons. These workers, however, limited from the outset 

their discussion to linear excitations in matter systems, which amount here to 

replacing the atomic operators UiaP by Bose-type exciton operators Bi and Bi + with 

[Bi, B/] =J(i,j), [Bi, Bj] = [B/, Bj +] =0. The total Hamiltonian of the matter­

photon system studied by these workers can be written in the form 
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1514 S. Takeno and 111. JVagashima 

+ 2::.: [EBi'Bi + 2::.: K (tj) (Bi + Bj + BiBj + + Bi + Bj + + BiBj)] 
i j 

- iN-- 112 I: I: (}..;kjBi' - l[kjB;) {exp (ik · R;) akj + exp (- ik · Ri) a~j}. (3 ·18) 
i kj 

Here E is the excitation energy of the atom and K(ij) denotes the dipole-dipole 

interaction energy between the i and j atoms. It is seen that replacing the photon 

operators akj and atj and the interaction constants Xaakj by bkh btj and Xa/3kh res­

pectively, gives Eq. (3 ·13) with the atomic operators Ch,8 replaced by the Bose-type 

exciton operators Bi and B/. Introducing the Fourier transform Bk = .N-- 1 •2 X 

I:i exp (ik · R;) Bi and Bk + = N- 112 I:i exp (- ik · Ri) Bi + of the exciton operators and 

employing a canonical transformation similar to Eq. (A ·1), these workers succeeded 

m diagonalizing the Hamiltonian (3·18) as a whole. 24l 

§ 4. Stationary coherent states in a matter-photon system 

As an illustrative example to elucidate the role played by the A2 term, we 

study stationary coherent states in a matter-photon system. For this purpose, we 

consider a specific model of a matter-photon system composed of identical two-level 

atoms interacting with a single-mode radiation field with a photon of energy .Q (k) 

=S2 and momentum k. *l We also assume that the wave function of the ground 

state and that of the excited state of the atom specified by the indices a=O and 

1, respectively, are real. We rewrite the atomic operators in terms of the Pauli 

operators as 

Gila= u/ , Gio1 = ui- , Gin= o;' + (1/2), Gioo = (1/2) - u/, 

(oi!a+oia!)/2=u/, (uil0-ui0l)/2i=u/, (uill-ui0o)/2=u;', 

together with abbreviations 

f10 = E, P1o = Po1 = P, J1o =Jo1 = iEp, 

x!Okj"='J=-ul(2Jr/.f2) 112ll 112 , ekj=e!, d=p·el• 

(4·1) 

(4· 2) 

We note in passing that by the use of Eq. (2 · 9) the atomic dipole moment operator 

Pi can be expressed as follows: 

( 4 .:-3) 

Then, on the assumption that atom-atom interactions are described by multi-pole 

or exchange-type interactions, Eq. (3 ·13) can be rewritten as 

H=Qb+b-t-E 2::.: u/+2lN- 112 2::.: u/{exp(ik·Ri)b+exp( -ik·Ri)b+} 
i i 

+ 2 I: {K, (ij) u/u/ + K2 (ij) u/u/ + Ks (ij) u;'u/}, (4·4) 
ij 

where Kn (zj) (n = 1, 2, 3) are constants of the atom-atom interaction. 

*1 \Ve omit the indices k and j attached to quantities or operators pertaining to the photon. 
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A 2 Term, Rcnormaliza tion of "lfattcr- P!zoton Interaction 1515 

Let J1= lr, ~1) and [17i, be the coherent state of the photon mode'" and that 

of the Pauli-spin operator ui = (u/', u/, u/) characterized by angles Oi and r;; in 

the spherical polar coordinate. 261 ~zs> Here r and ~J are action and angle \·ariables 

which are related to the eigem·alue (3 of the photon operator b by j':J=r exp(i\0). 

The coherent states of the whole spin system are denoted by I{(:)}, {c,';} ). We 

evaluate the expectation value (H)='(r, rj;, {0}, {9} IHir, ~,, {(:)}, NJ}) of Eq. (4·4) 

with respect to the photon and spin or atomic coherent states I r, s1J, {0}, ). By 

the use of the relations 

= (1/2) sin (:)i cos ~'i , ( (:);, ~';! I 0;, = (1/2) sin(:); sin~';, 

we then obtain. 

(H)=' Qr2 + (</2) 2::: cos 0; + (2XN- 1 ') r 2::: sin Oi sin cp; cos (tj1 + k · R;) 
'i i 

+ (1/2) 2::: {K1 (ij) sin Oi sin Oj cos ~-i cos r;j 
ij 

+ K 2 (zj) sin Oi sin Oj sin (Pi sin ~1 + K 3 (ij) cos Oi cos (:)j}. 

(.:1· 5) 

(-!. 6) 

The expectation value (J-I) of the Hamiltonian is stationary with respect to the 

variation of r, </J, (:);, 9; for 

a(H)jor=a(H)/fNJ=O; a(H)j3(:)i=a(II)/39i=O for all z. (4·7) 

Let a solution of Eqs. (4·7) for which (JJ) is minimum be r 0 , ~1 0 , OiO, ~\ 0 • vVe 

are concerned here only with those fJ; 0 and ~\o which are independent of the site 

index i; such a solution is considered to yield the lowest of the minimum of (H) 

to which we pay particular attention (hereafter we omit the index i for oiO and 

the ~oiO). Physically, this corresponds to a uniform atomic polarization. A simple 

calculation gives 

where 

</Jo + k · R. i = 0 } 

~-o= 3n/2 
or 

</Ju-', k· R=n ] 

r;u= n/2{ 

The solution ( 4 · 8) can exist only when the condition 

k=O 

and 

lal>1 

for all z , ( 4 ·Sa) 

( 4. 8b) 

(J·10b) 
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1516 S. Takeno and M. Nagashima 

is satisfied. Inserting the fourth of Eqs. (4·2) into Eq. (4·9), we can rewrite 

the condition (4·10b) as 

On the other hand the sum rule (2 ·19) imposes the condition 

2mEd2
/ e'<1, 

(4·11) 

( 4·12) 

smce we are concerned here only with two states among many atomic eigenstates. 

Thus, it is seen that the condition (4·10b) or (4·11) cannot be satisfied when 

the direct atom-atom interaction is absent. This is identical with the result obtained 

Rzazewski et al. 8) The presence of the term 2(K3 - K,) /< here, however, does 

not necessarily invalidates inequality ( 4 ·11), provided K,<O and Ka>O. Since we 

get K 3>0 in almost all cases of physical interese9) and the dipole-dipole interaction 

energy here is expressible entirely in terms of the (Jx's, it is seen from the result 

obtained above that in order for inequality ( 4 ·11) to be satisfied, an exchange-type, 

rather than dipole-dipole, interaction with K,<O must exist. 

To see the physical meaning of the solution ( 4 · 8), let us consider the expec­

tation values of the vector potential A (R;), the electric field E (Ri) and the 

current density operator J= (1/V) I;i J(Ri) =- (2<p,/V) I;io/ at the stationary 

point r=r0 , </J=</J0, Oi=(}o and (/Ji=(jJ0 • Let us put <r0 , </JoiA(R;) Ira, </Jo)=Ao(Ri), 

<r0 , <PolE (RJ Ira, </Jo) =Eo (Ri) and <{eo}, {((Jo} IJI {eo}, {Y?o}) =Jo. Then, applying Eqs. 

(3 · 7) and (3 · 9) to the case of the single photon mode and using Eqs. ( 4 · 2) 

and (4·8), we get 

A 0 (Ri) = ± 47rnf (e1 • p,) sin 60e 1/f2'=A 0 , Eo(Ri) =0 and Jo= ±nE sin 60P,. 

(4·13) 

Here the plus (minus) s1gn corresponds to the first (second) of Eqs. (4·8a). 

It is seen that the vector potential A 0 (Ri) is spatially uniform and the electric· 

field Eo (Ri) vanishes. This result corresponds to the solution </Jo + k · Ri = 0 or 

</Jo+k·Ri=rr for alliin Eqs. (4·8a); such a solution can exist only for k=O. 

Combining the first and the third of Eqs. ( 4 ·13) giVes 

( 4 ·14) 

We can understand this result as follows: The stationary point determined by 

Eqs. ( 4 · 7) corresponds to the appearance of a uniform coherent atomic polarization 

or a coherent current induced by a static vector potential or a Bose-condensed 

photon with k = 0, while a coherent vector potential is produced by the coherent 

atomic polarization. It is seen from Eqs. (4·8) that the stationary coherent states 

which can exist simultaneously for photon and atomic polarization are characterized 

by 

and 
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A 2 Term, Renormalization of A1atter-Photon Interaction 1517 

The phase transition as discussed by Rzazewski et al. 8J can be considered as the 

onset of nonvanishing of (r, c/JibJr, ~1) and ( {8}, {9} lu/1 {8}, {9} ). The result 

(4·13) and (4·15) may probably preclude a possibility of a simultaneous ap­

pearance of a stationary photon coherent state and a stationary coherent state of 

atomic polarization due to dipole-dipole interaction which could arise if the E · r 

form of matter-photon interaction is to be used. Let Po be the expectation value 

( {8}, {9} IPI {8}, {9}) at the stationary point 6i=60 and 9i=90 of the dipole moment 

operator P defined by P= (2p/V) L:>oix· Then, in the case of the Dicke model 

Hamiltonian in which the E · r form of the atom-photon interaction is used, it was 

shown in the previous paper21 J that the electric field Eo (RJ and Po become non­

vanishing and related to each other by the relation Eo= - 47rP0• *J Stationary co­

herent states in such a case are characterized by ( {8}, {9} I o/1 {8}, {9} )=FO as 

well as (r, c/JibJr, r/J)=O(N12). 

We are also concerned here with the expectation value of energy at the 

stationary state, (H)., and that corresponding to the state in which all the atoms 

are in their ground state while no photon is present, (ri)0• The former and 

the latter are obtained by inserting Eqs. ( 4 · 8) and the relation r = 0 and cos 6i = rr 
for all i, respectively, into Eq. (4·6) as 

(H)s=- (N</2) {g+ (1/g)} +N(K3/<)<- (N</2) +N(K3/<) =(H)o. 

(4·16) 

Here the inequality holds smce inequality ( 4 ·lOb) reduces to g> 1 for K,<O 

and K3>0. 

Thus we have shown that when atom-atom interactions are taken into account, 

matter'photon interaction can induce, under certain circumstances, a simultaneous 

appearance of a coherently polarized atomic state and a Bose-condensed photon 

as shown by Eqs. ( 4 · 8), with energy eigenvalue lower than that of the state 

in which all the atoms in the matter system are in their ground state while no 

photon is present. The role played by the A' term is most easily seen by con­

sidering the case in which the direct atom-atom interaction is neglected. Here 

the condition for the appearance of the stationary coherent state is given by 

4l'/uv>I or (8rr<d2/ul)n>l. (4·17) 

This is identical with the results obtained by Hepp and Lieb9J and by Wang and 

Hioe 10J for the occurrence of the second order phase transition in the conventional 

Dicke model in which the A.' term is omitted. Such a condition can always be 

satisfied for a sufficiently large value of the atomic number density n=1VjV, a 

result which is qualitatively different from the condition 

*J We have rewritten Eo(R,) as Eo, since in the conventional Dicke model the spatial dimen­

sion of the matter system is taken to be small compared with the wavelength of relevant photon. 
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1518 S. Ta!?eno and Jl1. 1Vagashima 

(4·18) 

This is the same as the condition obtained by Rzazewski et al. 8J for the occur­

rence of the second order phase transition in the Dicke model with the L12 term 

included.*> Due to inequality ( 4 ·12), however, the relation ( 4 ·18), which is 

obtained from ( 4 ·11) by neglecting K 2 and K 3 , can never be satisfied. 

§ 5. Canonical transformation and effective atom-atom interaction 

It is shown that the condition ( 4 ·10) or ( 4 ·11) can also be derived from 

the following effective spin Hamiltonian: 

Heff=E I:; IJ/- (4J2j.QN):L:; OiyiJ/ 
i ij 

+ 2 I:; {K, (ij) o/o/ + K2 (ij) o/o/ + K3 (ij) oN/}. (5·1) 
ij 

Namely, inequality (4·10) or (4·11) can be derived by demanding the condition 

for the expectation value (Herr)=( {8} {9} /Herr! {8} {'p}) of Heff with respect to 

the spin coherent states I {8} {ip}) to be stationary: 

(5· 2) 

As in the case of the previous section, we are concerned here only with those 

solutions Ow and ipw of Eqs. (5 · 2) \vhich are independent of the site index i. The 

equation a(Herf)/aiiJi=O then gives the condition sin 9 cos 9=0. We are interested 

here in the solution 

cosif=O or ip=7r/2 or 3rr/2, (5 ·3) 

which yields a non-vanishing contribution from the second term of Eq. (5 ·1). 

Equation (5 · 3) is identical with the second of Eqs. ( 4 ·Sa). The equation a<Heff) 

j()8i=O then is identical \vith the second of Eqs. (4·8b). Thus Eq. (5·1) is 

equivalent to Eq. ( 4 · 4) for the coherent photon mode with k = 0, as far as we 

are concerned with a uniform stationary atomic coherent state. 

To study the physical meaning of this effective Hamiltonian, we apply a canon­

ical transformation to Eq. (4·4) to eliminate the third term representing the matter­

photon interaction. This is done by introducing new Bose operators b and fj+ 

and new spin operators 8t, 8/, 8/ by the equations30J 

b = exp (-iS) b exp (iS)= b + 2 (JjN'12.Q) L exp (- ik · R) IJ/ l 
~ ', ~ cxp ( - iS)b' 'cxp (;S) ~ b' I 2(Xj,N'P;) ~ :xp (ik · R,)6/ , 

oi =exp( -zS)oi exp(zS) =cos ¢ioi -sm ¢ioi 

(5·4) 

*J From the results obtained by Hepp and Lieb and by Rzazewski et al., it is expected that 

inequality (4·11) obtained in this paper is also the condition for the occurrence of the second order 

phase transion in the Dicke model with the direct atom-atom interaction as well as the A 2 term 

included. This point will be studied elsewhere. 
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A' Term, Renormalization of i\latter-Plzoton Interaction 1519 

J/=exp( -iS)u/ exp(iS) =u/ } 

3/ = exp (-iS) u/ exp (iS) =sin ¢iu/ + cos ¢iu/ . 
(5·5) 

Here the operator S and the angle rpi are defined by the equation 

S= (2JjiN1 'Q) I: {exp(- ik · Ri) b'- exp(ik · Ri)b} u/ 
i 

= (2X/iN112Q) I: {exp (- ik · Ri) t;~- exp (ik · RJb} u/= I: ¢iu/. (5 · 6) 
i i 

The canonical transformation here is to introduce a displacement of the photon 

operators on the one hand and a rotation of the spin operators around the y-axis 

on the other. Insertion of Eqs. (5 · 4) and (5 · 5) into Eq. ( 4 · 4) gives an expres­

sion for the Hamiltonian written entirely in terms of the new Bose operators 

b and b ,_ and the new spin operators 3/, 3/', 3;': 

I-I= Qfj+ b +I: E cos rj;Jf/- I: E sin ¢i3./'- 40'/ NQ) I: exp[ik · (Ri- Rj)] u/u/ 

where 

i i ij 

+ 2 I: {K1 (ij) iJ;riJ/ + K 2 (zj) 3/3/' + K3 (zj) 3;'3/ + K' (zj) 3;"3/}, 
ij 

K1 (ij) = K, (ij) cos ¢i cos rfij + K 3 (ij) sin rfii sin rf;i, 

K 3 (ij) = K, ( ij) sin rf;i sin rpj + K 3 ( ij) cos rf;i cos rf;j , 

K'(ij) = 2 {K1 (ij) cos ¢i sin ¢ j- K 3 (ij) sin ¢i cos ¢ j} 

(5 ·7) 

(5 ·8) 

The Hamiltonian (5 · 7) has the following physical meaning: (i) The energy E cos rf;i 

in the new basis states undergoes fluctuations clue to the factor cos rf;i being a 

function of the photon operators b and iJ+. (ii) There arises a non-diagonal part 

of the energy of the atom represented by the factor E sin rf;i 3/. (iii) The inter-atomic 

interaction energies K1 (ij) and K 3 (ij) undergo fluctuations, which give rise to the 

destruction of the phase coherence of the electronic vvave functions. (iv) The 

fourth term in Eq. (5 · 7) represents effective atom-atom interaction of infinite range 

resulting from virtual exchange of the photon. The effect of the cliagonalization 

of the A' term here is seen by the fact that effective atom-atom interaction is 

also renormalizecl clue to the presence of the factor X. 
vV e introduce the reduced Hamiltonian 1-Ired by the equation 

(5. 9) 

Here !U) IS the ground state of the ne\v photon state defined by 

(5 -10) 

The expectation values of the terms such as cos rpi, sin r/Ji, cos r/;; cos rph sin rpi sin rf;h 

etc. '.Yith respect to i 0) can be obtained by making repeated use of the identity30) 

(5 ·11) 
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1520 S. Takeno and Jl.1. Nagashima 

to get the normal ordered form, where c1 and c2 are constants, and Eq. (5 ·10). 

A straightforward calculation leads to the following result: 

where 

(Oleos ¢il0)=exp( -go/2), (Oisin ¢il0)=0, 

(0 I cos rPi cos ¢jl 0) = {exp ( -g0 ) /2} {exp[g0 exp {ik · (Ri- Rj)}] 

+exp[ -g0 exp{ik· (Ri-Rj)} ]}, 

( 0 I sin q\i sin ¢JI 0) = {exp (- g0) /2} {exp[g0 exp (ik · (Ri- RJ)}] 

-exp[ -g0 exp{ik· (Ri-RJ)} ]}, 

(Oisin q\i cos ¢JIO)=(Oicos rPi sin ¢}10)=0, 

g0=4l'jNQ'= [2mtd'/e'{1+ (w/wP)'}] (t/2) (1/N). 

(5 ·12) 

(5 ·13) 

The quantity g0 vanishes in the thermodynamic limit, namely, 

g0 -'>0 for N-'>oo, with n=N/V being kept constant (5 ·13') 

due to the inequality ( 4 ·12) and to the factor t/ Q being at least of the order 

of unity. Combining Eqs. (5 · 7) ~ (5 ·10) and (5 ·12) and putting k = 0, which 

is the condition for the first of the solution ( 4 ·Sa) to exist, we get 

where 

Hred=~ t'u/- (4J'jNQ)~ 6/6/ 
i ij 

(5 ·14) 

f 1 = f exp (- g0/2), (5 ·15a) 

K,' (ij) = (1/2) {1 + exp (- g0)} K 1 (ij) + {1- exp (- g0)} K 3 (ij), (5 ·15b) 

K 3 ' (ij) = (1/2) {1- exp ( -g0)} K 1 (ij) + {1 + exp ( -g0)} K 3 (ij). (5 ·15c) 

We observe the relations 

t'=t, K,'(ij)=K1 (ij) and K/(ij)=K3 (ij) for N-'>oo and 

n=N/V=const. (5 ·16) 

Thus we arrive at the conclusion that in the thermodynamic limit the reduced 

Hamiltonian Hred is equivalent to the effective Hamiltonian Heff giVen by (5·1), 

namely, 

Hred=Heff for N-'>oo and n=N/V=const. (5 ·17) 

It is seen that due to the renormalization of the effective atom-atom interaction, 

which is of infinite range, combined effect of this and the direct atom-atom inter­

action of exchange type, which is of finite range, can induce the stationary coherent 

state under the condition (4·10) or (4·11). It is also of interest to note that 

the nonvanishing of the expectation value of the spin Hamiltonian which has a 
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112 Term, Renormalization of 1\Iatter-Photon Interaction 1521 

form similar to Eq. (5 ·1) bears some resemblance to situations in the phase transi­

tion of liquid helium discussed previously by Matsubara and Matsuda."!) 
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Appendix 

--Diagonalization of Eq. (2·21)--

Equation (2 ·12) can also be diagonalized exactly even when the spatial dis­

tribution of atoms in the matter system is taken to be arbitrary. Let b, and b, + 

be new Bose operators defined by a Bogoliubov-Tyablikov-type transformation:32) 

-··"'(~'- b "'7* b +) akj-.i.....Jr;k}ss- 1'-kjss' atj = 2:: (~tjsbs + -YJ-kjsbs) (A·1) 
s s 

with 

(A·2) 

Equation (2 ·12) can then be diagonalized as follows: 

HP + Ha~> = 2:: f2,b/ b, with [b., bn = L1 (s, s'), [b., b,,] = [b/, b:;] = 0. 
s 

(A·3) 

Here the new photon eigenfrequencies f2 = f2, characterized by the index s is deter­

mined by the eigenvalue equation 

2:: {B* (kj, k'j') ~k'j's- C* (kj, k'j') 1J-k'j's} = S2r; -kjs . 
lc'j' 

By the use of Eqs. (2 ·13) and (2 ·14) Eqs. (A· 4) are rewritten as 

ekj" l:W(k, k') ek'F {p (k- k') ~k'h- P (k + k') 1J-k'Fs} = {Q- ()) (k)} ~kjs, 
k' j' 

(A·4) 

As in the case of Eqs. (3 · 7) and (3 ·11), the vector potential A (r) and the 

interaction Hamiltonian Ha~> etc. can be expressed entirely in terms of the new 

Bose operators b, and b, + as follows: 

A(r) = l:{A,(r)b,+A,*(r)b/}, 
8 

Ha(~) =- 2:: Ai ·Ji =- 2:: 2:: Uiada{J · (Aisbs + A{,b,'), 
i ia[J s 

where 

(A·6) 

(A-7) 
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1522 S. Takeno and A1. Nagashima 

(A·8) 

In this general case total Hamiltonian of the matter-photon system can be expressed 

in the form 

- L; L; (jiaPJa(3 · (Ai,bs + A[,b, +). (A·9) 
ia/3 s 
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