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Abstract

For 3D hand and body pose estimation task in depth

image, a novel anchor-based approach termed Anchor-to-

Joint regression network (A2J) with the end-to-end learn-

ing ability is proposed. Within A2J, anchor points able to

capture global-local spatial context information are dense-

ly set on depth image as local regressors for the joints. They

contribute to predict the positions of the joints in ensemble

way to enhance generalization ability. The proposed 3D

articulated pose estimation paradigm is different from the

state-of-the-art encoder-decoder based FCN, 3D CNN and

point-set based manners. To discover informative anchor

points towards certain joint, anchor proposal procedure is

also proposed for A2J. Meanwhile 2D CNN (i.e., ResNet-

50) is used as backbone network to drive A2J, without using

time-consuming 3D convolutional or deconvolutional layer-

s. The experiments on 3 hand datasets and 2 body datasets

verify A2J’s superiority. Meanwhile, A2J is of high running

speed around 100 FPS on single NVIDIA 1080Ti GPU.

1. Introduction

With the emergence of low-cost depth camera, 3D

hand and body pose estimation from a single depth im-

age draws much attention from computer vision commu-

nity with wide-range application scenarios (e.g., HCI and

AR) [32, 33]. Despite recent remarkable progress [20, 42,

26, 18, 19, 7, 33, 50, 41, 3], it is still a challenging task

due to the issues of dramatic pose variation, high similarity

among the different joints, self-occlusion, etc [20, 42, 37].

Most of state-of-the-art 3D hand and body pose estima-

tion approaches rely on deep learning technology. Never-
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Figure 1. The main idea of anchor-based 3D pose estimation

paradigm within A2J. The densely set anchor points predict the

positions of joints with weighted aggregation. The different joints

possess the different informative anchor points of high weights

(i.e., > 0.02), which reveals A2J’s adaptive characteristics.

theless, they still suffer from some defects. First, encoder-

decoder based FCN manners [2, 43, 27, 4, 42, 41, 26] are

generally trained with non-adaptive ground-truth Gaussian

heatmap for different joints and with relatively high compu-

tational burden. Meanwhile, most of them cannot be fully

end-to-end trained towards 3D pose estimation task [35].

Secondly, 3D CNN models [16, 10, 26] are difficult to train

with costly voxelizing procedure, due to the large number of

convolutional parameters. Additionally, point-set based ap-

proaches [14, 17] require some extra time-consuming pre-

processing treatments (e.g., point sampling).

Thus, we attempt to address 3D hand and body pose

estimation problem using a novel anchor-based approach

termed Anchor-to-Joint regression network (A2J). The pro-
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posed A2J network has end-to-end learning ability. The key

idea of A2J is to predict 3D joint position by aggregating

the estimation results of multiple anchor points, in spir-

it of ensemble learning to enhance generalization ability.

Specifically, the anchor points can be regarded as the local

regressors towards the joints from different viewpoints and

distances. They are densely set on depth image to capture

the global-local spatial context information together. Each

of them will contribute to regress the positions of all the

joints, but with different weights. The joint is localized by

aggregating the outputs of all the anchor points. Since dif-

ferent joints may share the same anchor points, the articu-

lated characteristics among them can be well maintained.

For a specific joint, not all of the anchor points con-

tribute equally. Accordingly, an anchor proposal procedure

is proposed to discover the informative anchor points to-

wards the certain joint by weight assignment. During train-

ing, both factors of estimation error of anchor points and

spatial layout of informative anchor points are concerned.

In particular, the picked up informative anchor points are

encouraged to uniformly surround the corresponding joint

to alleviate overfitting. Accordingly, the main idea of the

proposed anchor-based 3D pose estimation paradigm with-

in A2J is shown in Fig. 1. We can see that, generally d-

ifferent joints possess different informative anchor points.

Furthermore, the visible “index tip" joint holds few infor-

mative anchor points. While, the invisible “index mid" joint

and the “palm" joint on the relatively flat area possess much

more ones, in order to capture richer spatial contexts. This

actually reveals A2J’s adaptive property.

Technically, A2J network consists of 3 branches driven

by 2D CNN backbone network (i.e., ResNet-50 [21]) with-

out deconvolutional layers. In particular, the 3 branches

take charges of predicting in-plain offsets between the an-

chor points and joints, estimating depth value of the joints,

and informative anchor point proposal respectively. The

main reasons to build A2J on 2D CNN for 3D pose estima-

tion lie in 3 folders: (1) 3D information is already involved

in depth image, using 2D CNN can still reveal 3D character-

istics of the original depth image data; (2) compared to 3D

CNN and point-set network, 2D CNN can be pre-trained on

large-scale datasets (e.g., ImageNet [9]), which may help

to enhance its visual pattern capturing capacity for depth

image; (3) 2D CNN is of high running efficiency without

time-consuming 3D convolution operation and preprocess-

ing procedures (e.g., voxelizing and point sampling).

A2J is experimented on 3 hand datasets (i.e., HAND-

S 2017 [48], NYU [37], and ICVL [36]) and 2 body pose

datasets (i.e., ITOP [20] and K2HPD [42]) to verify its su-

periority. The experiments reveal that, both for 3D hand and

body pose estimation tasks A2J generally outperforms the

state-of-the-art methods on effectiveness and efficiency si-

multaneously. Meanwhile, A2J can online run with the high

speed around 100 FPS on a single NVIDIA 1080Ti GPU.

The main contributions of this paper include:

• A2J: an anchor-based regression network for 3D hand

and body estimation from a single depth image. It is of end-

to-end learning capacity;

• An informative anchor proposal approach is proposed,

concerning the joint position prediction error and anchor s-

patial layout simultaneously;

• 2D CNN without deconvolutional layers is used to

drive A2J to ensure high running efficiency.

A2J’s code is available at https://github.com/

zhangboshen/A2J.

2. Related Works

The existing 3D hand and body pose estimation ap-

proaches can be mainly categorized into non-deep learning

and deep learning based groups. The state-of-the-art non-

deep learning based ones [33, 22, 13, 46] generally follow

the 2-step technical pipeline of first extracting hand-crafted

feature, and then executing classification or regression. One

main drawback is that, hand-crafted feature is often not rep-

resentative enough. This tends to lead non-deep learning

based method to be inferior to deep learning based manner.

Since the proposed A2J falls into deep learning group, next

we will introduce and discuss this paradigm from the per-

spectives of 2D and 3D deep learning respectively.

2D deep learning based approach. Due to end-to-end

working manner, deep learning technology holds strong fit-

ting ability for visual pattern characterization. 2D CN-

N has already achieved great success for 2D pose estima-

tion [38, 4, 27, 43, 44]. Recently it has also been introduced

to 3D domain, resorting to global regression [18, 19, 29,

28, 7, 15, 20] or local detection [37, 25, 42, 41, 39] ways.

The global regression manner cannot well maintain local

spatial context information due to the global feature aggre-

gation operation within fully-connected layers. Local de-

tection based paradigm of promising performance generally

chooses to address this problem via encoder-decoder model

(e.g., FCN), setting local heatmap for each joint. Never-

theless, heatmap setting is still not adaptive for the different

joints. And, the deconvolution operation is time consuming.

Furthermore, most of the encoder-decoder based methods

cannot be fully end-to-end trained [44].

3D deep learning based approach. To better reveal the

3D property within depth image for performance enhance-

ment, one recent research trend is to resort to 3D deep learn-

ing. The paid efforts can be generally categorized into 3D

CNN based and point-set based families. 3D CNN based

methods [16, 10, 26] voxelizes the depth image into vol-

umetric representation (e.g., occupancy grid models [24]).

3D convolution or deconvolution operation is then execut-

ed to capture 3D visual characteristics. However, 3D CNN

is relatively hard to tune due to the large number of convo-

794



Pipeline

iCommon trunk Regression 
trunk

In-plain offset
estimation branch

Depth estimation
branch

Backbone network

Informative 
anchor proposal

Softmax

Depth image

Estimated
depth value

Predicted joint

Anchor point
Informative anchor point

Predicted in-plain offset
Predicted depth value

Anchor proposal 
branch

Element-wise multiplication

Predicted in-plain position

Figure 2. The main technical pipeline of A2J. A2J consists of backbone network and 3 functional branches. The backbone network is built

on ResNet-50. And, the 3 branches are in-plain offset prediction branch, depth estimation branch, and anchor proposal branch.

Symbol Definition

A Anchor point set.

a Anchor point a ∈ A.

J Joint set.

j Joint j ∈ J .

K Number of joints.

S(a) In-plain position of anchor point a.

Pj(a) Response of anchor a towards joint j.

Oj(a) Predicted in-plain offset towards joint j from anchor point a.

Dj(a) Predicted depth value of joint j by anchor point a.

Table 1. Symbol definition within A2J.

lutional parameters. Meanwhile, 3D voxelization operation

also leads to high computational burden both on memory s-

torage and running time. Another way for 3D deep learning

is point-set network [6, 30], transferring depth image into

point cloud as input. Nevertheless some time-consuming

procedures (e.g., point sampling and KNN search) are re-

quired [6, 30], which weakens running efficiency.

Accordingly, A2J belongs to 2D deep learning based

group. The dense anchor points capture the global-local s-

patial context information in ensemble way, without using

computationally expensive deconvolutional layers. 2D CN-

N is used as the backbone network for high running efficien-

cy, also aiming to transfer knowledge from RGB domain.

3. A2J: Anchor-to-Joint Regression Network

The main technical pipeline of A2J is shown in Fig. 2.

And, the symbols within A2J are defined in Table 1. A2J

consists of 2D backbone network (i.e., ResNet-50), and

3 functional branches: in-plain offset estimation branch,

depth estimation branch, and anchor proposal branch. The

3 branches predict Oj(a), Dj(a), and Pj(a) respectively.

Within A2J, anchor points are densely set up on the in-

put depth images with stride St = 4 pixels to capture the

global-local spatial context information as in Fig. 3. Essen-

tially, each of them serves as the local regressor to predict

the 3D position of all the joints via in-plain offset predic-

tion branch and depth estimation branch. For certain joint,

it is finally localized by aggregating the outputs of all the

anchor points. Concerning that maybe not all the anchor

points contribute equally to certain joint, the anchor points

Anchor point Joint 1 Joint 2 

S
tr

id
e
=

4
 

Figure 3. The densely set anchor points on depth image. They will

serve for predicting the positions of all joints in ensemble way.

will be assigned weights via anchor proposal branch to dis-

cover the informative ones. As consequence, the in-plain

position and depth value of joint j can be achieved as the

weighted average of the outputs of all anchor points as:






Ŝj =
∑

a∈A

P̃j (a) (S (a) +Oj (a))

D̂j =
∑

a∈A

P̃j(a)Dj(a)
, (1)

where Ŝj and D̂j indicate the estimated in-plain position

and depth value of joint j; P̃j(a) can be regarded as the

normalized weight of anchor point a towards joint j across

all anchor points, and is acquired using softmax by:

P̃j(a) =
ePj(a)

∑

a∈A

ePj(a)
. (2)

It is worthy noting that, the anchor point a with P̃j(a) >

0.02 will be regarded as the informative anchor points for

joint j. The selected informative anchor points can reveal

A2J’s adaptive characteristics as in Fig. 1. Joint position es-

timation loss and anchor point surrounding loss are used to

supervise A2J’s end-to-end training. Under their joint su-

pervision, informative anchor points with the spatial layout

that surrounds the joint will be picked up to enhance gener-

alization ability. Next, we will illustrate the proposed A2J

regression network and its learning procedure in details.

3.1. A2J regression network

Here, the 3 functional branches and backbone network

within A2J will be illustrated in details respectively.

795



3.1.1 In-plain offset and depth estimation branches

Essentially, these 2 branches play the role of predicting the

3D positions of joints. Since in-plain position estimation

and depth estimation are of different properties, we choose

to execute them separately. Specifically, one is to estimate

Oj(a) between anchor points and joints. And, the other is

to estimate Dj(a) towards joints. As in Fig. 4, they are

built upon the output feature map of regression trunk within

backbone network to involve semantic feature. Four 3 × 3
intermediate convolutional layers (with BN and ReLU) are

consequently set to aggregate richer local context informa-

tion without reducing in-plain size. Since the feature map is

a 16× downsampling of the input depth image on in-plain

size (illustrated in Sec. 3.1.3) and anchor point setting stride

St = 4 as in Fig. 3, one feature map point corresponds to

4×4 = 16 anchor points on depth image. An output convo-

lutional layer with the feature map in-plain size is then set

towards all the 16 corresponding anchor points in column-

wise manner. Suppose K joints exist, in-plain offset estima-

tion branch is of 16 × K × 2 output channels. And, depth

estimation branch is of 16×K × 1 output channels.

3.1.2 Anchor proposal branch

This branch discovers informative anchor points for the cer-

tain joint by weight assignment as Eqn. 2. As in Fig. 5, an-

chor proposal branch is built upon the output feature map of

common trunk within backbone network to involve relative-

ly fine feature. As the 2 branches introduced in Sec. 3.1.1, 4

intermediate convolutional layers and 1 output convolution-

al layer are consequently set for predicting Pj(a) for the

anchor points without losing in-plain size. Accordingly, the

output layer of this branch is of 16×K × 1 channels.

3.1.3 Backbone network architecture

ResNet-50 [21] pre-trained on ImageNet is used as the

backbone network. In particular, layers 0-3 correspond to

the common trunk in Fig. 2. And, layer 4 corresponds to

regression trunk. Some modifications are executed to make

ResNet-50 more suitable for pose estimation. First, the con-

volutional stride in layer 4 is set to 1. Consequently, the

output feature map of layer 4 is a 16× downsampling of

the input depth image on in-plain size. Compared with the

raw ResNet-50 with 32× downsampling, more fine spatial

information can be maintained in this way. Meanwhile, the

convolution operation within layer 4 is revised as the dilated

convolution with a dilation of 2 to enlarge receptive field.

3.2. Learning procedure of A2J

To generate input of A2J, we follow [26] and use cen-

ter points to crop the hand region from depth image. For

body pose, we follow [11] and use bounding box to crop
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𝑯𝟏𝟔
𝑾𝟏𝟔
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Figure 4. In-plain offset and depth estimation branches. They both

contain 4 intermediate convolutional layers with 256 channels, and

1 output convolutional layer (with 16 × K × 2 or 16 × K × 1

channels). W and H indicate width and height of the input depth

image. d means dimensionality.

𝟑 𝟑
Conv𝟒 𝟒𝟏𝟔 𝑲 𝟏  𝒅

Feature map of 
common trunk 

Input depth image

𝟑 𝟑
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𝟐𝟓𝟔 𝐝 𝟐𝟓𝟔 𝐝
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Anchor point

𝑯𝟏𝟔
𝑾𝟏𝟔

Figure 5. Anchor proposal branch with 4 intermediate convolu-

tional layers with 256 channels, and 1 output convolutional layer

with 16×K× 1 channels. W and H indicate width and height of

the input depth image. d means dimensionality.

the body region. For joint j, in-plain target T i
j denotes the

2D ground-truth in pixel coordinate transformed according

to the cropped region. To make T i
j and depth target T d

j

be in comparable magnitude, we transform the ground-truth

depth Zj of joint j as:

T d
j = µ(Zj − θ), (3)

where µ and θ are the transformation parameters. For hand

pose µ is set to 1, and θ is set to the depth of center points.

For body pose µ is set to 50 and θ is set as 0, since we do

not have depth center. During test, the prediction result will

be warpped back to world coordinate. A2J is then trained

under the joint supervision of 2 loss functions: joint position

estimation loss and informative anchor point surrounding

loss. Next, we will illustrate these 2 loss functions in details.

3.2.1 Joint position estimation loss

Within A2J, the anchor points serve as the local regressors

to predict the 3D position of joints in ensemble way. This
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objective loss can be formulated as:

loss1 = α
∑

j∈J

Lτ1(
∑

a∈A

P̃j(a)(S(a) +Oj(a))− T i
j )

+
∑

j∈J

Lτ2(
∑

a∈A

P̃j(a)Dj(a)− T d
j ),

(4)

where α = 0.5 is the factor to balance in-plain offset and

depth estimation task; T i
j and T d

j are the in-plain and depth

targets position of joint j; and Lτ (·) is the smoothL1 like

loss function [31] given by:

Lτ (x) =

{

1
2τ x

2, for |x| < τ,

|x| − τ
2 , otherwise.

(5)

In Eqn. 4, τ1 is set to 1 and τ2 is set to 3 since the depth

value is relatively noisy.

3.2.2 Informative anchor point surrounding loss

To enhance the generalization ability of A2J, we intend to

let the picked up informative anchor points locate around

the joints, in spirit of observing the joints from multiple

viewpoints simultaneously. Hence, the informative anchor

point surrounding loss is defined by us as:

loss2 =
∑

j∈J

Lτ1(
∑

a∈A

P̃j(a)S(a)− T i
j ). (6)

To reveal its effectiveness, we show the informative anchor

point spatial layouts with and without using it both for hand

and body pose cases in Fig. 6. It can be seen that, informa-

tive anchor point surrounding loss can essentially help to

alleviate viewpoint bias. Its quantitative effectiveness will

also be verified in Sec. 4.3.1.

3.2.3 End-to-end training

The 2 loss functions above jointly supervise the end-to-end

learning procedure of A2J, which is formulated as:

loss = λloss1 + loss2, (7)

where loss is the loss in all; and λ = 3 is the weight factor

to balance loss1 and loss2.

4. Experiments

4.1. Experimental setting

4.1.1 Datasets

HANDS 2017 dataset [48]. It contains 957K training and

295K test depth images sampled from BigHand 2.2M [49]

and First-Person Hand Action [48] datasets. The ground-

truth is the 3D coordinates of 21 hand joints.

With surrounding loss

Index tip

Index mid

Index tip

Index mid

Without surrounding loss

(a) Hand cases from NYU dataset

With surrounding loss

Neck

Left hand

Neck

Left hand

Without surrounding loss

(b) Body cases from ITOP front-view dataset

Figure 6. Effectiveness of anchor point surrounding loss. Grey dot

denotes anchor point. Red dot indicate informative anchor point.

Green arrow represent in-plain offset. Yellow square corresponds

to ground-truth joint.

NYU Hand Pose Dataset [37]. It contains 72K training

and 8.2K test depth images with 3D annotation on 36 hand

joints. Following [7, 19, 18, 26], we pick 14 of the 36 joints

from frontal view for evaluation.

ICVL Hand Pose Dataset [36]. It contains 22K training

and 1.5k test depth images. It is augmented to 330K sam-

ples by in-plane rotations. 16 hand joints are annotated.

ITOP Body Pose Dataset [20]. It contains 40K training

and 10K test depth images both for the front-view and top-

view tracks. Each depth image is labelled with 15 3D joint

locations of human body.

K2HPD Body Pose Dataset [42]. It contains about 100K

depth images. 19 human body joints are annotated with the

in-plain manner.

4.1.2 Evaluation metric

For hand, the average 3D distance error and percent-

age of success frame metrics [26] are used as the e-

valuation criteria. For body, Percent of Detected Joints

(PDJ) [42, 20] and mean average precision (mAP) with

10-cm rule [42, 20] are used for evaluation.

4.1.3 Implementation details

A2J network is implemented using PyTorch. The input

depth image is cropped and resized to a fixed resolution

(i.e., 176×176 for hand, and 288×288 for body). Random
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Methods AVG SEEN UNSEEN FPS

Vanora [47] 11.91 9.55 13.89 -

THU VCLab [8] 11.70 9.15 13.83 -

Oasis [14] 11.30 8.86 13.33 48

RCN-3D [47] 9.97 7.55 12.00 -

V2V∗ [26] 9.95 6.97 12.43 3.5

A2J (Ours) 8.57 6.92 9.95 105.06

Table 2. Performance comparison on HANDS 2017 dataset [48].

“SEEN" and “UNSEEN" denote the cases whether the test sub-

jects are involved in training set. “AVG" indicates the result over

all subjects. And, “∗" means the ensemble of 10 models.

Methods Mean error (mm) FPS

DISCO [1] 20.7 -

Hand3D [10] 17.6 30

DeepModel [51] 17.04 -

JTSC [12] 16.8 -

Global-to-Local [23] 15.60 50

Lie-X [45] 14.51 -

REN-4x6x6 [18] 13.39 -

REN-9x6x6 [18] 12.69 -

DeepPrior++ [28] 12.24 30

Pose-REN [7] 11.81 -

HandPointNet [14] 10.5 48

DenseReg [39] 10.2 27.8

V2V [26] 9.22 35

P2P [17] 9.045 41.8

A2J (Ours) 8.61 105.06

Table 3. Performance comparison on NYU dataset [37]. “Mean

error" indicates the average 3D distance error.

in-plain rotation and random scaling for both in-plain and

depth dimension are executed for data augment. Random

Gaussian noise is also randomly added with the probabili-

ty of 0.5 for data augment. We use Adam as the optimizer.

The learning rate is set to 0.00035 with a weight decay of

0.0001 in all cases. A2J is trained on NYU for 34 epochs

with a learning rate decay by 0.1 every 10 epoch, and for

17 epochs on ICVL and HANDS 2017 with a learning rate

decay by 0.1 every 7 epoch. For 2 human body datasets, the

epoch for training is set as 26 with a learning rate decay by

0.1 every 10 epoch.

4.2. Comparison with stateoftheart methods

HANDS 2017 dataset: A2J is compared with the state-

of-the-art 3D hand pose estimation methods [47, 8, 14, 26]

, particularly. The performance comparison is listed in Ta-

ble 2. It can be observed that:

• On this challenging million-scale dataset, A2J consis-

tently outperforms the other approaches both from the per-

spectives of effectiveness and efficiency. This essentially

verifies the superiority of our proposition;

• It is worthy noting that, A2J is significantly superi-

or to the others with the remarkable margin (2.05 at least)

towards the “UNSEEN" test case. This phenomenon essen-

tially demonstrates the generalization ability of A2J;

• V2V∗ is the strongest competitor of A2J, but with 10

Methods Mean error (mm) FPS

LRF [36] 12.58 -

DeepModel [51] 11.56 -

Hand3D [10] 10.9 30

CrossingNets [40] 10.2 90.9

Cascade [34] 9.9 -

JTSC [12] 9.16 -

DeepPrior++ [28] 8.1 30

REN-4x6x6 [18] 7.63 -

REN-9x6x6 [18] 7.31 -

DenseReg [39] 7.3 27.8

Pose-REN [7] 6.79 -

HandPointNet [14] 6.935 48

P2P [17] 6.328 41.8

V2V∗ [26] 6.286 3.5

A2J (Ours) 6.461 105.06

Table 4. Performance comparison on ICVL dataset [36]. “Mean

error" indicates the average 3D distance error.

Figure 7. Comparison of A2J with state-of-the-art methods. Left:

the percentage of success frames over different error thresholds.

Right: 3D distance errors per hand keypoints. Top: NYU dataset.

Bottom: ICVL dataset.

models ensemble. As a consequence, it is much slower than

A2J with only a single model.

NYU and ICVL datasets: We compare A2J with the

state-of-the-art 3D hand pose estimation methods [36, 1, 34,

28, 51, 12, 10, 45, 19, 18, 40, 7, 23, 39, 14, 17, 26] on this 2

datasets specifically. The experimental results are given in

Table 3, 4 on the average 3D distance error. Meanwhile, the

percentage of success frames over different error thresholds

and the error of each joint are also given in Fig. 7. We can

summarize that:

• A2J is superior to the other methods in most cases both

on accuracy and efficiency. The exceptional case is that,

A2J is slightly inferior to V2V∗ and P2P on ICVL dataset

on accuracy but with much higher running efficiency;

• Concerning the good tradeoff between effectiveness

and efficiency, A2J essentially takes advantage over the

state-of-the-art 3D hand pose estimation approaches.
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mAP (front-view) mAP (top-view)

Method
RF

[33]

RTW

[50]

IEF

[5]

VI

[20]

CMB

[41]

REN-

9x6x6 [18]

V2V∗

[26]

A2J

(Ours)

RF

[33]

RTW

[50]

IEF

[5]

VI

[20]

REN-

9x6x6 [18]

V2V∗

[26]

A2J

(Ours)

Head 63.8 97.8 96.2 98.1 97.7 98.7 98.29 98.54 95.4 98.4 83.8 98.1 98.2 98.4 98.38

Neck 86.4 95.8 85.2 97.5 98.5 99.4 99.07 99.20 98.5 82.2 50.0 97.6 98.9 98.91 98.91

Shoulders 83.3 94.1 77.2 96.5 75.9 96.1 97.18 96.23 89.0 91.8 67.3 96.1 96.6 96.87 96.26

Elbows 73.2 77.9 45.4 73.3 62.7 74.7 80.42 78.92 57.4 80.1 40.2 86.2 74.4 79.16 75.88

Hands 51.3 70.5 30.9 68.7 84.4 55.2 67.26 68.35 49.1 76.9 39.0 85.5 50.7 62.44 59.35

Torso 65.0 93.8 84.7 85.6 96.0 98.7 98.73 98.52 80.5 68.2 30.5 72.9 98.1 97.78 97.82

Hips 50.8 90.3 83.5 72.0 87.9 91.8 93.23 90.85 20.0 55.7 38.9 61.2 85.5 86.91 86.88

Knees 65.7 68.8 81.8 69.0 84.4 89.0 91.80 90.75 2.6 53.9 54.0 51.6 70.0 83.28 79.66

Feet 61.3 68.4 80.9 60.8 83.8 81.1 87.60 86.91 0.0 28.7 62.4 51.5 41.6 69.62 58.34

mean 65.8 80.5 71.0 77.4 83.3 84.9 88.74 88.0 47.4 68.2 51.2 75.5 75.5 83.44 80.5

Table 5. Performance comparison on ITOP 3D body pose estimation dataset [20].

Method
PHR

[2]

CPM

[43]

SH

[27]

IEML

[42]

CMB

[41]

A2J

(Ours)

PDJ (0.05) 26.8 30.0 41.0 43.2 52.5 76.3

PDJ (0.10) 70.3 58.5 73.7 64.1 84.2 94.4

PDJ (0.15) 84.7 87.8 84.6 88.1 91.7 97.6

PDJ (0.20) 91.3 93.6 89.0 91.0 95.1 98.6

Average 68.3 67.5 72.1 71.6 80.9 91.7

Table 6. Performance comparison on K2HPD dataset [42].

ITOP dataset: We also compare A2J with the state-of-

the-art 3D body pose estimation manners [33, 50, 5, 20, 18,

41, 26] on this dataset. The performance comparison is list-

ed in Table 5. We can see that:

• A2J is significantly superior to the other ones both for

front-view and top-view tracks, except V2V∗. The perfor-

mance gap is 3.1 at least for front-view case, and 5 at least

for top-view case. This reveals that A2J is also applicable

to 3D body pose estimation, as well as 3D hand task;

• A2J is inferior to V2V∗. However, V2V∗ actually con-

sists of 10 models ensemble . Thus, compared with A2J

with single model it is of much lower running efficiency.

K2HPD dataset: Since this body pose dataset only pro-

vides the pixel-level in-plain ground-truth, the depth esti-

mation branch within A2J is removed accordingly. We also

compare A2J with the state-of-the-art approaches [2, 43, 27,

42, 41]. The performance comparison is given in Table 6. It

can be observed that:

• A2J outperforms the other methods by large margin-

s consistently, corresponding to the difference PDJ thresh-

olds. In average, the performance gap is 10.8 at least. This

demonstrates that, A2J is also applicable to 2D case;

• It is worthy noting that, with the decrease of PDJ

threshold the advantage of A2J will be enlarged remarkably.

This reveals the fact that, A2J is essentially superior to more

accurate body pose estimation.

4.3. Ablation study

4.3.1 Component effectiveness analysis

The component effectiveness analysis within A2J is execut-

ed on NYU [37] (hand), and ITOP [20] dataset (body). We

Dataset Component error / mAP

NYU

(hand)

w/o anchor proposal branch 10.08

w/o informative anchor point surrounding loss 9.00

Estimate IPO and DV using one branch 8.95

A2J (Ours) 8.61

ITOP

front-view

(body pose)

w/o anchor proposal branch 80.1

w/o informative anchor point surrounding loss 86.4

Estimate IPO and DV using one branch 87.4

A2J (Ours) 88.0

Table 7. Component effectiveness analysis within A2J. “IPO" in-

dicates in-plain offset, and “DV" denotes depth value.

will investigate the effectiveness of anchor proposal branch,

informative anchor point surrounding loss, and configura-

tion of in-plain offset and depth estimation branches. The

results are listed in Table 7. It can be observed that:

• Without using anchor proposal branch, performance

will drop remarkably especially for body pose. This verifies

our point that, not all the anchor points contribute equally to

the certain joints. Actually, anchor point adaptivity is A2J’s

essential property to leverage performance;

• Without using informative anchor point surrounding

loss, performance will drop especially for body pose. This

demonstrate that, informative anchor point spatial layout is

an essential issue that should be concerned towards gener-

alization ability;

• When estimating in-plain offset and depth value in one

branch, performance will drop to some degree. This may be

caused by the fact that, in-plain offset and depth value holds

different physical characteristics.

4.3.2 Effectiveness of anchor-based paradigm

To verify the effectiveness of anchor-based 3D pose es-

timation paradigm, we compare A2J with the global re-

gression based manner [38] and FCN-based approach [44].

Since FCN model is generally used to predict in-plain

joint position, this ablation study is executed on K2HPD
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Paradigm Global regression [38] FCN model [44] A2J (Ours)

PDJ (0.05) 61.5 70.4 76.3

FPS 145.12 45.48 93.78

Table 8. Performance comparison among the different paradigms

on K2HPD dataset [42].

Pre-train From scratch ImageNet pre-training

NYU (error) 10.08 8.61

ITOP front-view (mAP) 87.3 88.0

Table 9. Effectiveness of pre-training A2J on ImageNet.

Backbone ResNet-18 ResNet-34 ResNet-50

NYU
error 9.32 9.01 8.61

FPS 192.25 144.63 105.06

ITOP

front-view

mAP 87.1 87.8 88.0

FPS 167.19 122.47 93.78

Table 10. Performance comparison among the backbones.

dataset [42] only with in-plain ground-truth annotation.

Global regression manner encodes depth image with 2D C-

NN, and then regresses in-plain human joint position using

fully-connected layers. FCN model is built following [44].

ResNet-50 [21] is employed as the backbone network for

them, which is the same as A2J for fair comparison. PDJ

(0.05) is used as the evaluation criteria. The performance

comparison is listed in Table 8. We can see that:

• Our proposed anchor-based paradigm significantly out-

performs the other 2 ones, when using the same ResNet-

50 backbone network. We think 2 main reasons lie. First,

compared with global regression based manner local spatial

context information can be better maintained within A2J.

Meanwhile, compared with FCN model A2J possess anchor

point adaptivity towards the certain joint;

• A2J runs faster than FCN model, but slower than glob-

al regression way. However, its performance advantage over

global regression paradigm is significant, actually with bet-

ter tradeoff between effectiveness and efficiency.

4.3.3 Effectiveness of the pre-training

One reason for why we build A2J on 2D CNN is that, it

can be pre-trained on the large-scale RGB visual dataset-

s (e.g., ImageNet) for knowledge transfer. To verify this

point, we compare the performance of A2J with and without

pre-training on ImageNet on NYU (hand) and ITOP (body)

datasets. The performance comparison is listed in Table 9.

It can be observed that, both for hand and body pose cases

pre-training A2J on ImageNet can indeed help to leverage

the performance.

4.3.4 Backbone network comparison

The comparison among the different backbone networks is

further studied. As shown in Table 10, we compare the per-

formance of 3 backbone networks (i.e., ResNet-18, ResNet-

34 and ResNet-50). It can be summarized that:

• Deeper network can achieve better results, but with

relatively slower running efficiency. However, the perfor-

mance gap among the different backbones is not huge;

• It is worthy noting that, even using ResNet-18 A2J still

can generally achieve the state-of-the-art performance and

with extremely fast running speed of 192.25 FPS. This re-

veals the applicability of A2J towards high real-time run-

ning demanding application scenarios.

4.4. Running speed analysis

The average online running speed of A2J for 3D hand

pose estimation is 105.06 FPS, including 1.5 ms for reading

and warpping image, and 8.0 ms for network forward prop-

agation and post-processing on a single NVIDIA 1080Ti

GPU. The running speed for 3D body pose estimation is

93.78 FPS, including 0.4 ms for reading and warpping im-

age, and 10.2 ms for network forward propagation and post-

processing. This reveals A2J’s real-time running capacity.

5. Conclusions

In this paper, an anchor-based 3D articulated pose es-

timation approach for single depth image termed A2J is

proposed. Within A2J anchor points are densely set up

on depth image to capture the global-local spatial context

information, and predict joint’s position in ensemble way.

Meanwhile, informative anchor points are extracted to re-

veal A2J’s adaptive characteristics towards the different

joints. A2J is built on 2D CNN without using computation-

al expensive deconvolutional layers. The wide-range ex-

periments demonstrate A2J’s superiority both from the per-

spectives of effectiveness and efficiency. In future work, we

will seek the more effective way to fuse the anchor points.
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