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Summary.

We propose a flexible design for the identification of optimal dose combinations in dual-agent 

dose finding clinical trials. The design is called AAA, standing for three adaptations: adaptive 

model selection, adaptive dose insertion and adaptive cohort division. The adaptations highlight 

the need and opportunity for innovation for dual-agent dose finding and are supported by the 

numerical results presented in the proposed simulation studies. To our knowledge, this is the first 

design that allows for all three adaptations at the same time. We find that AAA enhances the 

chance of finding the optimal dose combinations and shortens the trial duration. A clinical trial is 

being planned to apply the AAA design and a Web tool is being developed for both statisticians 

and non-statisticians.
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1. Introduction

Dual-agent dose finding trials are becoming much more popular in oncology as more new 

drugs become available. The traditional two-agent dose finding trials often aim to capture 

the dose– toxicity relationship for the combinations and identify one or more maximum 

tolerated dose combination (MTDC) of two agents. The MTDC is defined as the highest 

dose combination at which the probability that a patient experiences the dose limiting 
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toxicity (DLT) is less than a prespecified target rate pT, which is usually determined by 

physicians or clinical teams. A large number of designs have been proposed to find the 

MTDC for trials with cytotoxic agents. For example, Conaway et al. (2004) estimated the 

MTDC by determining the complete and partial orders of the toxicity probabilities by using 

nodal and non-nodal parameters. Yin and Yuan (2009) introduced Bayesian dose finding 

approaches using copula regression models. Braun and Wang (2010) developed a novel 

hierarchical Bayesian design accounting for patients’ heterogeneity and Wages et al. (2011) 

applied model selection to estimate possible complete orderings associated with the partial 

order based on the continual reassessment method. Later, Hirakawa et al. (2013) developed a 

likelihood-based dose finding method using a shrinkage logistic model. As a review, 

Hirakawa et al. (2015) compared these five model-based dose finding designs and found that 

their performance varied depending on the dose matrix and the location and number of true 

MTDCs. In addition, on the basis of a four-parameter logistic model, Riviere et al. (2014) 

proposed a Bayesian adaptive design to find the MTDC, Shi and Yin (2013) applied a two-

dimensional escalation with overdose control design by searching the MTDC along the rows 

and columns of the dose matrix, and Tighiouart et al. (2014, 2017) reparameterized the 

logistic model and adopted the conditional univariate escalation with overdose control 

design to estimate the MTDC curves in a two-dimensional plane and then extended it to 

three-agents trials to find the MTDC surfaces (Tighiouart et al., 2016). More recently, 

Mander and Sweeting (2015) published a curve-free method that relied on the product of 

independent beta probabilities. Sun and Braun (2015) proposed a two-stage adaptive 

algorithm based on a modified biased coin design. Lin and Yin (2016) developed a Bayesian 

optimal interval design for dual agents, and Wages (2017) extended the continual 

reassessment method to identify an MTDC contour for dual agents.

A key assumption in all the works above is the monotonicity of the dose–toxicity response 

and the dose–efficacy response, which is true in the case of cytotoxic agents (Le Tourneau et 
al., 2009). As for many new cancer biological or immunological agents, such as chimeric 

antigen receptors T-cell therapies, the monotonic relationship may not be true, especially for 

the dose–efficacy relationship (Li et al., 2016). For example, the dose–efficacy curve may 

follow a non-monotonic pattern, and efficacy may even decrease at higher dose levels (Hoff 

and Ellis, 2007). Therefore, traditional dose finding designs with a focus on finding the 

MTDC are not suitable for trials of non-cytotoxic agents. In contrast with the various 

references for dual cytotoxic agents dose finding, there is a scarcity of designs for non-

cytotoxic agents. Instead of identifying the MTDC, one could consider the biologically 

optimal dose combination (BODC) for biological agents, the definition of which takes into 

account both efficacy and toxicity. Wages and Conaway (2014) provided a phase I–II 

adaptive design to find a single dose combination with an acceptable level of toxicity that 

maximized efficacious response. However, they assumed that the dose–toxicity and dose–

efficacy relationships are monotonic among doses of one agent when the dose of another 

agent is fixed. Cai et al. (2014) proposed a novel dose finding algorithm to encourage 

sufficient exploration of untried dose combinations in the two-dimensional space. Guo and 

Li (2015) used isotonic regression to estimate partially stochastically ordered marginal 

posterior distributions of the efficacy and toxicity probabilities to estimate the BODC.
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For dual-agent trials, because of the challenges in capturing the proper therapeutic range for 

the dose levels of both agents, the BODC might locate outside the candidate dose range or 

sandwiched by existing dose combinations. Therefore, a design that can extrapolate or 

interpolate a new dose combination when candidate dose combinations are deemed 

suboptimal can drastically improve one’s chance of identifying better dose combinations. 

For this, Hu et al. (2013) considered an adaptive dose insertion scheme to allow new doses 

to be inserted during the course of a dose finding trial. Later, Chu et al. (2016) introduced an 

extended version. Both methods consider only toxicity outcomes. Guo et al. (2015) proposed 

a toxicity- and efficacy-based dose insertion design with adaptive model selection for single-

agent trials and illustrated the importance of correct model specification for dose insertion. 

They showed that, to insert the right doses, the dose–efficacy relationship must be properly 

identified.

In this paper, we extend the idea of a toxicity- and efficacy-based dose insertion design with 

adaptive model selection to dual agents and propose the AAA (triple A) design, which is 

named after three adaptive features. First, to describe the appropriate dose–efficacy curve, 

we present an adaptive Bayesian model selection procedure based on median posterior 

probability models (Barbieri and Berger, 2004) that allows the dose–efficacy model to vary 

between the monotone pattern and non-monotone pattern. Second, we propose adaptive dose 

insertion allowing new dose combinations to be extrapolated or interpolated throughout the 

trial. Last, importantly and innovatively, we consider adaptive cohort division (ACD) and 

allow multiple cohorts of patients to be enrolled simultaneously during the course of the 

trial. We show that ACD accelerates trial conduct and shortens trial duration.

We consider a conceived clinical study at the University of Chicago involving an MEK 

inhibitor and a PIK3CA inhibitor, both with four doses at their regular monotherapy dose, 

two lower doses and one higher dose. This phase I dose finding study will enrol late stage 

cancer patients with a primary end point aiming to improve the efficacy rate from 5% to 

30% with the optimal tolerated dose combination. Furthermore, a dose combination with 

improved efficacy rate, say 20% or higher, is considered clinically beneficial as long as the 

dose is well tolerated. We shall use this study as the basis for our numerical studies later.

The remainder of this paper is organized as follows. In Sections 2 and 3, we describe the 

probability model and the AAA design. In Section 4, using the phase I trial we examine the 

operating characteristics of AAA through simulation studies. To evaluate the time reduction 

by using ACD, we examine the duration of the trial in the simulated trials. We conclude with 

a discussion in Section 5.

The programs that were used to analyse the data can be obtained from http://

wileyonlinelibrary.com/journal/rss-datasets

2. Methods

2.1. Dose–response models

Consider a trial combining J doses of agent A, denoted by xa,1 < … < xa,J, and K doses of 

agent B, denoted by xb,1 < … < xb,K, for dose finding. Without loss of generality, we assume 
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that J ⩾ K and that the dosage values of the xa,js and xb,ks have been standardized to have 

mean 0 and standard deviation 0.5. Let xjk =(xa,j, xb,k) denote the combination of dose levels 

j and k, and let p(xjk) and q(xjk) denote probabilities of the toxicity event and efficacy event 

for the dose combination (xa,j, xb,k) respectively, for j = 1, 2, …, J, and k = 1, 2, …, K.

Assume that p(x) follows a linear logistic model and q(x) follows a quadratic logistic model 

to incorporate a non-monotone pattern in the dose–efficacy model

logit p(x) = α0 + α1xa + α2xb, (1)

logit q(x) = β0 + β1xa + β2xb + β3xa
2 + β4xb

2, (2)

where x = (xa, xb) is the vector of the dose combination. Later we briefly discuss adding an 

interaction term β5xaxb in the last section. Denote α = (α0, α1, α2)′ and β = (β0, β1, β2, β3, 

β4)′ the vector of regression parameters in the dose–toxicity model (1) and dose–efficacy 

model (2) respectively. Here, we use a working model and assume that the binary outcomes 

of toxicity and efficacy are independent. This working independence between efficacy and 

toxicity outcome in dose finding designs has been extensively discussed in the literature 

(Ivanova et al., 2009; Cai et al., 2014). We also assume that toxicity is monotone with the 

dose as a conservative choice of model. In other words, α1 > 0 and α2 > 0 in model (1).

2.2. Utility function and definition of biologically optimal dose combination

Utility-based decision criteria have been adopted frequently in recent dose finding trials 

(Thall and Nguyen, 2012; Lee et al., 2015; Quintana et al., 2016; Li et al., 2016). In this 

paper, we construct utility functions for dose safety and efficacy evaluation. Denote by UT 

{p(x), η0} and UE q(x), η  the utility for safety and efficacy at dose combination x = (xa, xb) 

respectively, and define

UT{p(x), η0} =
1 −

1 − η0
pT

p(x), p(x) ∈ [0, pT],

0, p(x) ∈ (pT, 1],
(3)

UE q(x), η = η1exp η2q(x) + η3, η2 > 0, (4)

where η = (η1, η2, η3)′. Fig. 1 gives an illustration. Here, the utility for safety UT in expression 

(3) is a truncated linear decreasing function with p(x); we assume that the utility UT 

decreases with toxicity probability and drops to 0 if p(x)> pT, i.e. there is no utility when 

toxicity probability p(x) is larger than pT. Usually pT is around 0.3 for oncology trials. The 

utility for efficacy UE in equation (4) follows an exponential function with parameters η1, η2 
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and η3, where η1 + η3 decides the utility value when there is no efficacy and (η1, η2) decide 

how fast utility increases when efficacy probability q(x) increases. Combining the utilities 

for safety and efficacy, we define the overall utility score as

U(x, θ, η) = UT p(x), η0 UE q(x), η , (5)

where θ = (α′, β′)′ and η = (η0, η1, η2, η3)′.

Then the BODC, xopt = (xa,opt, xb,opt), is defined as the dose combination that maximizes the 

utility function, i.e.

xopt(θ) = argmax
x ∈ ℝ2

  U(x, θ) .

To specify the unknown values (η0, η1, η2, η3), we follow a procedure that was suggested by 

Thall and Cook (2004). We elicit with physicians two pairs of toxicity–efficacy trade-offs, 

(0, q1*) and (pT, q2*), that have the same utility value U*, say U* = 0.3. For example, q1* = 0.1

and q2* = 0.3. This gives two equations: UT(0, η0)UE(q1*, η) = U* and UT(pT, η0)UE(q2*, η) = U*. 

In addition, UT and UE must have the same scale (0,1), which implies that

a. UE q(x) = 0, η = η1 + η3 = 0 and

b. UE q(x) = 1, η = η1exp(η2) + η3 = 1.

Therefore, we have a set of four non-linear equations and four unknown parameters. The 

solution of η can be easily solved numerically.

2.3. Adaptive model selection for the dose–efficacy model

Efficacy could be either monotone or non-monotone with dose combination, depending on 

many factors such as the pharmacology and mechanism of action of the drug. Proposing 

adaptive model selection, we allow adaptation in the model choice throughout the trial. 

Briefly, when the number of explored dose combinations or the sample size is small, a 

simpler model, such as a linear logistic model, may fit the data better to avoid the wrong 

estimation of a dose–response curve due to model misspecification. As the trial proceeds, 

more dose combinations are explored, more patient data are accumulated and more complex 

models such as a non-monotone quadratic logistic model might be beneficial to obtain better 

estimates (Guo et al., 2015).

Consider a model selection framework for the efficacy regression coefficients in equation (2) 

as follows: model M1, β3 = β4 = 0; model M2, β3 ≠ 0, β4 = 0; model M3, β3 = 0, β4 ≠ 0; 

model M4, β3 ≠ 0, β4 ≠ 0.

Similarly to Guo et al. (2015), we adopt inverse moment priors (Johnson and Rossell, 2010) 

on β3 under models M2 and M4 and on β4 under models M3 and M4, in which cases either or 
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both of them are assumed to be non-zero. The inverse moment prior has no probability mass 

at the null point (βi = 0, i = 3, 4) and takes the form

π(βi |Ml) = kτν/2
Γ (ν/2k) βi

−(ν + 1)exp − τk

βi
2k , (i, l) ∈ {(3, 2), (3, 4), (4, 3), (4, 4)},

for k, ν, τ > 0. Some examples of the inverse moment prior are shown in Fig. A.1 in the 

Web appendix A. The prior when β3 or β4 equals 0 is simply a point mass at zero, i.e.

π(βi Ml) = 1 βi = 0 , (i, l) ∈ (3, 1), (3, 3), (4, 1), (4, 2) ,

where 1 {·}is the indicator function. With no evidence favouring any of the hypotheses over 

the others a priori, we take P(M1) = P(M2) = P(M3) = P(M4) = 1
4 .

In the model selection, we compute P(Ml|data), the posterior probability of each model, and 

select the median probability model to be the dose–response model. The median probability 

model is defined as the model consisting of those variables which have overall posterior 

probability greater than or equal to 1
2  (Barbieri and Berger, 2004). In our case, denote by p3 

and p4 the posterior inclusion probability for the quadratic terms xa
2 and xb

2 respectively, and 

define

p3 = P(M2 data) + P(M4 data), (6)

p4 = P(M3 data) + P(M4 data), (7)

which are also the overall posterior probability that β3 ≠ 0 and β4 ≠ 0 respectively. The 

posterior probability of model Ml, P(Ml|data) in equations (6) and (7), l = 2, 3, 4, is given by

P(Ml | data) =
P(data |Ml)P(Ml)

l = 1
4 P(data |Ml)P(Ml)

,

where P(data|Ml) is the marginal distribution of the data under the prior of model Ml, given 

by

P(data |Ml) = ℒ(data |α, βl, Ml) π(α, βl |Ml) dα dβl .

Here, ℒ(data |α, βl, Ml) is the likelihood function under model Ml, l = 1, 2, 3, 4, β1 = (β0, β1, 

β2, β3 = 0, β4 = 0)′, β2 = (β0, β1, β2, β3, β4 = 0)′, β3 = (β0, β1, β2, β3 = 0, β4)′ and β4 = 
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(β0, β1, β2, β3, β4)′. Since the integral does not have a closed form, numerical integration 

such as Monte Carlo integration is applied. Specifically, we use the harmonic mean of 

likelihood values (Kass and Raftery, 1995). Let βl
(1), βl

(2), …, βl
(B) be a Markov chain Monte 

Carlo (MCMC) sample from the posterior distribution of βl under model Ml; suppressing 

terms that are related to α it can be shown that

ℒ(data | βl, Ml) π(βl |Ml) dβl ≈ 1
B b = 1

B
ℒ(data | βl

(b), Ml)
−1

−1
,

for l = 1, 2, 3, 4. Kass and Raftery (1995) showed that the harmonic mean approach is more 

efficient than directly sampling from the prior, especially when the likelihood function is 

highly concentrated in an area with low prior probabilities.

We perform model selection based on posterior inclusion probabilities p3 and p4 (Table 1). 

For instance, if p3 ⩾ 1
2  and p4 ⩾ 1

2 , the quadratic terms of both agents xa
2 and xb

2 are 

included in model (2), i.e. β3, β4 ≠ 0. Therefore, we select model M4.

2.4. Adaptive dose combination insertion

The therapeutic window of two different drugs is often complex and difficult to delineate. In 

a trial that prespecifies a set of dose combinations for investigation, a new dose combination 

should be inserted when the BODC, xopt, is distant from all the existing dose combinations 

in the trial. This is our second proposed adaptation. Mathematically, we propose an 

activation rule for triggering the dose insertion procedure. Let ℛC(xopt) represent the C% 

(e.g. C = 90%) posterior credible circular region of xopt, defined as

ℛC(xopt, r) = (xa, opt, xb, opt):Pr (xa, opt − xa, 0)2 + (xb, opt − xb, 0)2 ⩽ r | data = C% ,

where (xa,0, xb,0) and r are the centre and the radius of the circular region respectively. 

Define A as the indicator of dose insertion:

A =
1, if ℛC(xopt, r) ∩ (xa, j, xb, k): j = 1, …, J, k = 1, …, K = ∅ ,

0, if ℛC(xopt, r) ∩ (xa, j, xb, k): j = 1, …, J, k = 1, …, K ≠ ∅ ,
(8)

where Ø denotes the empty set. When A = 1, the credible region does not cover any existing 

dose combinations, and the dose insertion procedure is activated. Otherwise, the trial 

proceeds by treating the next cohort at one of the existing dose combinations.

2.5. Adaptive cohort division

ACD is the third and an innovative adaptation. When two or more doses are considered 

similarly desirable for the next cohort of patients on the basis of the data collected, the 

proposed AAA design allows patients to be enrolled simultaneously in parallel cohorts.
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The main idea is as follows. When we encounter a toxic dose combination during the trial, a 

de-escalation is needed that decreases the dose level of either drug. To improve efficiency, 

we propose to de-escalate to two untried lower dose combinations with parallel patient 

enrolment at both doses, i.e. we open two cohorts concurrently in this case. Cohorts are 

collapsed if a new dose combination is inserted, in which case the new single cohort will be 

enrolled at the inserted dose, or the multiple cohorts all point to the same dose combination 

for future patients.

Because of the ACD procedure, multiple cohorts can be enrolled at the same time. Some 

cohorts might finish enrolment and follow-up faster than others. When a cohort finishes 

follow-up, the efficacy and toxicity response data of the patients in the cohort are observed. 

At this point, a decision must be made about the next dose combination for future patients. 

However, at that moment, other cohorts might still be enrolling, or some patients might still 

be followed up without outcome data whereas others might have completed follow-up with 

outcomes. To use the existing information fully, we include the patients with complete data 

in all cohorts in the inference and decision making. In other words, we make a decision on 

the next dose combination based on the response data from all completers from all cohorts. 

This achieves faster enrolment and exploration of the new dose combinations, thereby 

shortening trial duration. A future plan is to model time-to-event outcomes so that 

information from those patients who are still being followed up can be incorporated in the 

statistical inference.

2.6. Likelihood and prior specification

Consider the moment when a cohort of patients completes the follow-up during the course of 

the trial. Let yjk and zjk be the numbers of patients treated at dose combination (xa,j, xb,k) 

with toxicity and efficacy events respectively, and let njk be the total number of patients 

treated at the same dose combination, for j = 1, 2, …, J, and k = 1, 2, …, K. Note that these 

numbers include all completers in all cohorts. Recall that we assume independence of 

toxicity and efficacy; for the observed data ≡ {(yjk, zjk, njk), j = 1, 2, …, J, k = 1, 2, …, K}, 

the likelihood function under model Ml is the product of the binomial densities, i.e.

ℒ(data |α, βl, Ml) ∝
j = 1

J

k = 1

K
p(x jk |α)

y jk 1 − p(x jk |α)
n jk − y jk

q(x jk | βl)
z jk 1 − q(x jk | βl)

n jk − z jk

where l = 1, 2, 3, 4 indexes four different models. Denote πE(βl|Ml) and πT(α) the priors for 

βl and α. Assuming prior independence between βl and α, the joint conditional posterior of 

the parameters under model Ml is given by

π(θl | data, Ml) ∝ ℒ(data |α, βl, Ml) πE(βl |Ml)πT(α),

where θl = (α′, βl′)′.

For the prior specification of parameters in the efficacy model (2) other than β3 and β4, we 

use a weakly informative prior for β0, β1 and β2, recommended by Gelman et al. (2008). 
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Specifically, β0 ~ Cauchy(0, 10), and β1, β2 ~ Cauchy(0, 2.5), where Cauchy (c, d) denotes a 

Cauchy distribution with centre parameter c and scale parameter d. These weakly 

informative and appropriately regularized priors improve the stability of the estimation and 

still ensure that the data can dominate the priors (Gelman et al., 2008). For the inverse 

moment priors for β3 and β4, we use the default values for k and ν, k = ν = 1, recommended 

by Johnson and Rossell (2010). With respect to the choice of parameter τ, we finally decide 

to set τ = 5 on the basis of the technical details shown in the Web appendix A.

For the toxicity model (1), we also adopt the weakly informative prior Cauchy(0, 10) for 

intercept α0. We assign α1 and α2 independent gamma distributions with the shape 

parameter of 0.5 and the rate parameter of 0.5. This gives mean 1 and variance 2.

3. Trial design

3.1. Overview

The dose finding design proposed consists of two stages. Stage I is a run-in period, in which 

we escalate the dose along the diagonal of the dose combination matrix to explore the dose 

combination space quickly and to collect preliminary data for stage II. Specifically, in stage I 

we make dose escalation decisions based on the mTPI-2 design (Guo et al., 2017). There are 

three possibilities. First, if mTPI-2 gives the ‘escalate’ decision based on the toxicity 

outcomes of the current dose combination xjk, (yj,k, nj,k), dose escalation along the diagonal 

will be allowed, i.e. the next cohort of patients will be treated at dose combination xj+1,k+1. 

Second, if mTPI-2 gives ‘stay’, the trial stays at the current dose xjk and enrols more patients 

until up to nine patients have been enrolled and treated at this dose; at that point stage II 

starts. Third, if mTPI-2 gives ‘de-escalate’, stage I stops and stage II starts. If the dose 

matrix is not square (i.e. J> K), after first escalating the dose along the diagonal to (xa,K, 

xb,K), we escalate the dose by holding the dose level of agent B at K and increasing the dose 

level of agent A from (xa,K, xb,K) to (xa,K 1, xb,K) and so on. After stage I, the trials enters 

stage II: adaptive dose finding.

In stage II, we apply the toxicity and efficacy probability models for inference, the utility 

function for dose assessment and the three adaptive procedures (model selection, dose 

insertion and cohort division) in Section 2 for adaptive dose finding. A simple flow chart in 

Fig. 2 depicts the flow of stage II in AAA. Specifically, once a cohort of patients has 

completed follow-up in the trial, we update the recorded outcome data from existing doses 

and enrolled patients, generate MCMC posterior samples of the parameters under models 

M1, M2, M3 and M4 respectively, denoted by θl
(b), b = 1, 2, …, B , l = 1, 2, 3, 4, and carry 

out adaptive model selection based on the median probability model by using the updated 

data. Suppose that model Ml* is selected: we obtain an MCMC posterior sample of θl* under 

the selected model Ml*. For each simulated values θl*
(b) from the bth MCMC iteration, b = 1, 

2, …, B, we maximize the utility function U(x, θl*
(b)) with respect to dose combination x, to 

obtain a posterior sample of BODC, i.e.
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xopt, l*
(b) = (xa, opt, l*

(b) , xb, opt, l*
(b) ) = argmax

x ∈ ℝ2
  U(x, θl*

(b)), l* ∈ {1, 2, 3, 4} . (9)

Then the posterior mean of BODC is

xopt = (xa, opt, xb, opt) =
b = 1

B
xopt, l*

(b) /B .

3.2. Deciding the next dose combination

We first consider whether dose insertion is needed on the basis of the estimation of A in 

equation (8). Specifically, using the posterior sample of BODC {xopt, l*
(b) :b = 1, 2, …, B}, let

A = 1{Pr{(xa, opt, l * − xa, opt)
2 + (xb, opt, l * − xb, opt)

2 ⩽ r} > C%}

≈ 1{ 1
B b

1{xa, opt, l*
(b) − xa, opt)

2 + (xb, opt, l*
(b) − xb, opt)

2 ⩽ r} > C%},

(10)

where 1{·}is the indicator function and r  is the minimum Euclidean distance among the 

distances between the centre and the existing dose combinations, denoted by

r = min
j, k

[ {(xa, j − xa, opt)
2 + (xb, k − xb, opt)

2}] .

We can easily see that A in approximation (10) is a posterior estimate of equation (8).

If dose insertion is needed, i.e. A = 1, we insert the new dose combination (xa, opt, xb, opt) and 

two sets of new dose combinations

(xa, 1, xb, opt), …, (xa, J, xb, opt)

and

(xa, opt, xb, 1), …, (xa, opt, xb, K)

into the dose combination matrix, as shown in Fig. 3 and assign the next cohort to the new 

dose combination (xa, opt, xb, opt).

If dose insertion is not needed, i.e. A = 0, we assign the next cohort of patients according to 

the utility of the existing dose combinations. Let N denote the prespecified maximum 

sample size, n1 the number of enrolled patients in stage I and N2 = N − n1 the total number 
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of patients who are available for stage II. Given the current dose combination xjk = (xa,j, 

xb,k), we define the one-degree admissible dose set, denoted by 𝒜1, as the dose combination 

xj′k′,whose dose levels are no more than 1 level different from xjk and satisfy the safety 

requirement, i.e. 𝒜1 = x j′k′: j′ − j ⩽ 1, k′ − k ⩽ 1, Pr p(x j′k′) > pT | data ⩽ ξ , where ξ is 

close to 1. Hereinafter, a dose combination is considered overly toxic and unacceptable if it 

satisfies Pr{p(xjk)> pT|data}> ξ, where ξ is close to 1. If not unacceptable, then a dose 

combination is acceptable. Then the next dose combination is decided on the basis of the 

following algorithm.

If (xa,j, xb,k) is considered acceptable, assign patients as follows.

a. On the basis of the accumulated trial data, determine dose set 𝒜1.

b. Among the dose combinations in 𝒜1, compute the posterior mean utility for each 

combination, i.e. U(x j′k′, θl*) = (1/B)∑b = 1
B U(x j′k′, θl*

(b)), x j′k′ ∈ 𝒜1, and identify 

the dose combination x j*k* = (xa, j*, xb, k*) with the highest posterior mean utility 

under the safety constraint j* − j + k* − k ⩽ 1, i.e.

x j*k* = argmax
x j′k′

{U(x j′k′, θl*)}, subject to x j′k′ ∈ 𝒜1 and j′ − j + k′ − k ⩽ 1. (11)

c. If dose combination x j*k* has not been used to treat any patient thus far, or all 

doses in 𝒜1 have been used to treat patients, we assign the next cohort of patients 

to x j*k*. However, if x j*k* has been used and there are some untried dose 

combinations in 𝒜1, we assign the next cohort of patients to x j*k* only if

Pr{U(x j*k*, θl*) > U0 |data} ≈ 1
B b = 1

B
1{U(x j*k*, θl*

(b)) > U0} > (
N2 − n2

N2
)
ω

where U0 is the lowest acceptable utility value, n2 is the total number of patients 

that have been treated in stage II and ω is a known tuning parameter controlling 

how stringent the threshold is. Otherwise, exclude x j*k* from 𝒜1 and return to 

step (b).

If (xa,j, xb,k) is considered unacceptable, de-escalate to the untried one-degree lower doses, 

xj−1,k = (xa,j−1, xb,k) or xj,k−1 = (xa,j, xb,k−1) or both, i.e., if both dose combinations exist and 

have not been used, two cohorts of patients are recruited and assigned to (xa,j−1, xb,k) and 

(xa,j, xb,k−1), simultaneously. If only one dose exists and has not been used, assign the next 

cohort of patients to this dose. If both doses exist but both have been used, terminate this 

cohort and do not recommend any dose for the next cohort until there is a cohort newly 

completed.
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As seen above, we adopt a concept of one-degree admissible neighbour 𝒜1 in assigning the 

next dose combinations when dose insertion is not needed. Cai et al. (2014) demonstrated 

that this admissible neighbour and adaptive rule (step (c)) not only encourage the exploration 

of untried dose combinations to avoid the problem of trapping in suboptimal doses, but also 

restrict the dose escalation–de-escalation within the neighbours of the current dose, avoiding 

dramatic dose changes and improving the reliability of the dose finding. Because of the 

ACD, two or more cohorts might complete follow-up and we might have two or more 

‘current dose combinations’ available. In this case, we apply the above algorithm to each 

dose combination separately.

3.3. Dose-finding algorithm

AAA’s design is summarized in Table 2. Additional rules listed in Table 3 are for ethics and 

stability concern. For brevity, we use ‘dose’ to denote a dose combination hereinafter.

A trial should be terminated if dose extrapolation is not activated (because of lack of 

information, for example, at the beginning of the trial) but the lowest dose is deemed overly 

toxic. Therefore, we need rule 2 to terminate the trial early because of toxicity when dose 

insertion is not activated.

4. Simulation

4.1. Simulation set-up

We consider the motivating trials combining two agents, an MEK inhibitor and a PIK3CA 

inhibitor, each with four dose levels. The maximum sample size is 96 and the cohort size is 

3. We investigate 11 different scenarios, and all scenarios assume a true linear or quadratic 

logistic model for both agents in the dose–efficacy relationship, as shown in Fig. 4 and Fig. 

C.2 (Web appendix C). For each scenario, 1000 simulated trials are conducted. In the design 

proposed, we set the BODC target toxicity rate pT = 0.3, the credible level threshold C% = 

90%, the lowest acceptable utility value U0 = 0.1 and the tuning parameter ω = 2. The 

probability threshold ξ 0.95 for the practical rule and safety requirement. Regarding the 

utility function, we assume that the two toxicity and efficacy rate pairs (0,0.45) and 

(0.3,0.85) have the same utility value 0.3. As a result, we obtain the estimated 

η = (0.369, 0.385, 1.280, − 0.385). Note that, under this configuration of η, a dose 

combination with toxicity and efficacy rates (0, 0.2) would result in an efficacy utility value 

of 0.11, which is higher than U0, i.e. we aim to find dose combinations with at least 20% 

efficacy rate. This decision is reached after discussion with our clinical collaborators. For 

different trials, one can go through a similar exercise to elicit U0- and η-values.

For MCMC computation, we adopt a standard random-walk Metropolis–Hastings algorithm. 

And, for each chain, 10000 MCMC samples are drawn with a burn-in size of 5000 iterations. 

The MCMC algorithm mixed fast and well with no sign of problems of convergence.

For comparison, we apply the design in Cai et al. (2014). For fairness, we slightly modified 

this design by using the utility function rather than efficacy probability for defining the 

admissible dose set 𝒜1. This typically improved the performance of their design on the basis 
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of our experience. There is no dose insertion and model selection in their algorithm. 

Therefore, we compare only dose allocation and dose selection. To demonstrate the benefit 

of ACD, we turn off the ACD procedure in AAA and apply a single-cohort algorithm, in 

which we randomly select one dose in step II(c) if two doses are available for ACD. See the 

Web appendix B for details of the simulation scheme for patient enrolment and follow-up.

4.2. Operating characteristics

The operating characteristics of the proposed algorithm for scenarios 1–6 are summarized in 

Figs 4 and 5 and Table 4. The two figures include the galaxy plots that present patient 

allocation and frequency of BODC recommendation respectively. Also, the true BODC, 

insertion rate and estimated dose levels of the doses inserted and selected BODCs at the end 

of the trial are provided at the top of each scenario-specific galaxy plot. Table 4 has six 

sections per scenario. The first section gives a brief description of the true dose response and 

the need for insertion. The next two sections provide the mean (and standard deviation in 

parentheses) of the posterior means across the 1000 simulated trials for the regression 

parameters in the dose–toxicity and dose–efficacy models. The fourth section summarizes 

the model selection frequencies. The fifth section lists the prespecified dose levels, the true 

toxicity and efficacy probabilities and utilities of all the doses. The last section measures the 

safety of the trial in terms of early termination, overall DLT rate and the percentage of trials 

with DLT rate greater than pT = 0.3 for both AAA and the design in Cai et al. (2014).

In scenario 1, the efficacy rates firstly increase and decrease later with both agents. The true 

BODC xopt = (0.517, 0.531) is bracketed by doses (0.4, 0.4), (0.4, 0.7), (0.7, 0.4) and (0.7, 

0.7) (Fig. 4). From Fig. 4, we see that AAA inserts new doses with mean (0.512, 0.518) in 

42.8% of the simulated trials. The utility of the mean inserted dose combination under the 

true model is 0.445, which is higher than that of all prespecified dose combinations. Among 

all the patients, 16.3% are treated at the inserted new dose combinations. At the end of 

41.1% of the simulated trials, an inserted dose is claimed to be the BODC (Fig. 5). The 

mean selected BODC at the end of the trial is (0.504, 0.518), which is close to the true 

BODC. Also, 88.1% of the trials correctly choose the quadratic logistic regression for both 

agents for the dose–efficacy curve at the end, and the posterior sample means of β are close 

to the true values (Table 4). Figs D.4 and D.6 (Web appendix D) present results of Cai et al. 
(2014) in terms of patient allocation and dose selection. The results are reasonable as most 

patients are allocated to the four doses that surround the true BODC. However, since their 

design does not allow dose insertion, it cannot correctly identify the true BODC.

Scenario 2 has a similar pattern of dose–toxicity and dose–efficacy curves to that of scenario 

1. From Figs 4 and 5, there is no need for insertion. AAA inserts new doses in only 9.1% of 

trials. The mean selected dose combination is (0.405, 0.402), which is close to the true 

BODC (0.408, 0.404).

Scenario 3 reflects a setting where only a few doses are tolerable whereas others are overly 

toxic (Figs 4 and 5). Because the utility of the existing dose x22 = (0.4, 0.4) is 0.26, which is 

not much different from the utility of the true BODC (0.468, 0.409), 0.283, only 37.9% of 

the trials insert new doses. At the end of 1000 simulated trials, AAA selects the true 

quadratic logistic model for the dose–efficacy 77.7% of the time. AAA shows a higher 
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toxicity profile than that of Cai et al. (2014). The main reason is because, when ACD is 

invoked at dose (0.7, 0.7), AAA would de-escalate simultaneously to dose (0.4, 0.7) and 

(0.7, 0.4) if they are untried. However, both doses are above the MTDC, therefore resulting 

in more toxicity outcomes. In contrast, the approach of Cai et al. (2014) is more likely to de-

escalate to dose (0.4, 0.4) if (0.7, 0.7) is deemed overly toxic. However, the behaviour of 

AAA is acceptable since, in the real world, it is impossible to know how toxic an untried 

lower dose is and, by encouraging exploration of those untried lower doses by using ACD, 

the trial gains in the speed of the trial conduct (Table 5) and power of identifying the BODC 

(70.5% versus 37.2%, AAA versus Cai).

Scenario 4 is a situation when all combinations are higher than the MTDC, and hence 2.6% 

of the trials are terminated at an early stage according to practical rule 2. New dose 

combinations with a mean (−0.277,−0.214) are inserted among 99.8% of the completed 

trials, and 99.2% end with selecting new dose combinations as the BODC. The mean 

selected dose combination is (−0.283, −0.175) whereas the true BODC is (− 0.313, −0.195) 

(Figs 4 and 5). This scenario demonstrates the important safety feature of the design 

proposed. Also, AAA not only stops the trial early because of toxicity, but it also performs 

desirable dose insertion below all the prespecified doses and identifies the correct BODC.

Unlike the previous four scenarios, scenario 5 presents a situation where the prespecified 

dose matrix covers only the bottom left-hand corner of the quadratic dose–efficacy curve. 

Thus, the efficacy grows with both agents and the true BODC (1.203, 1.219) locates at the 

upper right-hand corner beyond the dose matrix (Figs 4 and 5). The insertion rate is 26.9%, 

and the mean inserted dose and selected BODC are (0.491, 0.4) and (0.902, 0.84), which are 

poorly estimated. And all four dose–efficacy models are selected at similar rates. There are 

two reasons. First, because the prespecified doses do not cover a wide range of dose–

response surface, and few patients are allocated to the lower left-hand corner of the dose 

matrix because of their futility (Fig. 4), data on these doses could not provide a good 

estimate of the entire curve. Second, with a relatively small sample size N = 96, the 

simulated trials often run out of patients before the BODC has been reached. If a large N is 

allowed, the dose matrix could be extrapolated well and the dose insertion algorithm would 

perform better (the results are not shown). However, AAA still allocates most patients 

(24.8%) to the highest dose that is closest to the true BODC and selects it most often 

(46.4%) at the end of the trial.

Scenario 6 assumes that the true dose–efficacy model is a linear logistic model. About 

29.8% of the simulated trials insert new doses, and the linear model is selected at a relatively 

high rate, 62%. A total of 23.2% of trials select the inserted doses as the BODC with mean 

(1.127, 0.21), and the mean selected dose combination is (0.99, 0.322).

The results of scenarios 7–11 are given in Figs C.2, C.3 and Table C.1 in the Web appendix 

C. Scenario 7 shows the same pattern as scenario 1 but with a flat efficacy curve and low 

efficacy rates (0.2 or less). At the end of 1000 simulated trials, 58.9% select the quadratic 

dose–efficacy model for both agents and 28.5% insert new doses. A total of 12.4% of 

patients are treated at the inserted dose and 19.9% trials select the inserted dose at the end 

with a mean of (0.487, 0.505), which is close to the true BODC (0.519, 0.528). In scenarios 
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8–11, the dose–efficacy curves increase first and fall later with one agent but are monotone 

with another agent. In addition, the true BODCs are all outside the prespecified dose matrix 

at the right-hand side, top side, left-hand side and bottom side regions respectively. In all 

four scenarios, insertion is needed, and the insertion rates for AAA are 28.6%, 37.7%, 

30.6% and 40.1% respectively. The mean selected doses are close to the true BODCs in all 

four scenarios.

After careful comparison of results in Figs 4 and 5, and C.2 and C.3 (in the Web appendix 

C) for AAA, and Figs D.4–D.7 (in the Web appendix D) with those for Cai et al. (2014), we 

find that AAA assigns more patients to doses near the true BODC and selects these doses 

with higher frequencies. These improvements are potentially due to the three proposed 

adaptive features. Therefore, we believe that all three features or a subset of them can be 

used as an add-on to existing designs, such as that in Cai et al. (2014), to improve the 

performance of these methods.

4.3. Time duration

Table 5 demonstrates the benefit of ACD in shortening trial duration. In particular, step II(c) 

in Table 2 is expected to speed up the trial process and to reduce the time duration. It can be 

seen from Table 5 that about 40 days can be saved across most scenarios with the ACD 

procedure. The trial is never longer with ACD than without ACD. Scenarios with more toxic 

doses result in more reduction of trial time. For example, for scenario 3, the trial duration is 

reduced by about 90 days. However, if all doses are overly toxic or acceptable, the reduction 

of time duration is negligible, since cohort division is not allowed for inserted doses. The 

performances of multiple cohorts and single cohorts are almost the same in terms of the 

mean selected BODC, patient allocation and the percentage of being selected as the BODC.

4.4. Sensitivity to sample size

Lastly, to evaluate the effect of sample size, we apply the algorithm with a smaller sample 

size of 66 to scenarios 1, 4 and 5. Results are summarized in Figs E.8, E.9 and Table E.2 in 

the Web appendix E. We find that the reduction of sample size has a larger influence on 

scenario 1 than on scenarios 4 and 5. Specifically, for scenario 1, the insertion rate is 

reduced to 27% (from 42.5%) and the proportion of selecting the correct quadratic model is 

declined to 83.4% (from 88.1%), although the mean inserted dose combination (0.503, 

0.504) and the mean selected BODC (0.502, 0.525) are still close to the truth. In other 

words, reduction in sample size seems to affect dose insertion, but dose selection not much 

at the end.

5. Discussion

We propose a new Bayesian adaptive dose insertion design for dual-agents phase I–II 

oncology trials. The dose insertion procedure based on both efficacy and toxicity enables us 

to locate more desirable dose combinations. Bayesian model selection during the trial 

enables the dose–efficacy relationship to be adapted between linear and quadratic logistic 

models. The model selection has been shown to be important (Guo et al., 2015) in dose 

insertion and maintaining a high efficiency of the dose finding trial. ACD speeds up the trial 
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process and shortens the time duration in most scenarios. Simulation results show that the 

design proposed has desirable operating characteristics.

The AAA design is a utility-based method. Clearly, the performance heavily depends on the 

definition of utility. Although we choose utility as a multiplication of a linear truncated 

function (safety utility) and an exponential function (efficacy) in this paper, one can use 

other reasonable alternative utilities. Choosing an appropriate utility function must be done 

for individual trials and through discussion between clinicians and statisticians. For different 

diseases and drugs, a different trade-off between efficacy and toxicity might be allowed. 

Nevertheless, changes in the utility function are a separate topic and do not affect the overall 

statistical design illustrated in Tables 2 and 3. In other words, the algorithm that is presented 

therein is expected to find the optimal dose combination with high likelihood on the basis of 

the defined utility, however it is defined.

In AAA, we consider model selection so that linear and quadratic efficacy–response curves 

will be explicitly selected against each other. We could investigate model misspecification 

for other shapes, such as probit, Emax and change point models. On the basis of our 

previous experience (Guo et al., 2015), the operating characteristics of the type of designs 

like AAA should not be highly sensitive to model misspecification partially because of the 

discrete doses that are used in these trials and partially because of the goal of finding 

candidate BODCs instead of estimating the whole dose–response curves. Also, Guo et al. 
(2015) investigated Bayesian model averaging instead of Bayesian model selection in the 

case of dose finding designs. They showed that both approaches led to similar operating 

characteristics. Apparently, if one is interested in the actual dose–response shape, then 

model selection would be the choice for inference.

Dose extrapolation and dose interpolation are necessary to identify the BODC when 

candidate dose combinations are deemed suboptimal. To insert an appropriate dose, two 

points should be noted: one is the insertion criterion and another is the insertion frequency. 

In the AAA design, dose insertion is activated by formula (10). On the basis of a stringent 

value of C% (say, 90%), AAA only inserts new dose combinations with high confidence and 

low frequencies (see Fig. F.10 in the Web appendix F). Also, the range of dose inserted 

levels can be decided on the basis of previous animal data and discussion with the clinical 

team. One can certainly add another criterion to forbid dose insertion if the utility of the 

dose inserted is not better than the maximum utility of existing doses by a certain 

percentage. We did not do this simply because the current criterion works well in the 

simulation. We use simple upper and lower limits for dose extrapolation in rule 1 in Table 3, 

although these limits can be easily adjusted.

In AAA, inference for dose allocation is based on the complete data from enrolled patients, 

i.e. we do not use the partial information (e.g. time to event) from patients who are still 

being followed without outcomes. As a future extension, we plan to construct a time-to-

event model, like TITE-CRM (Cheung and Chappell, 2000), or to apply data augmentation 

to impute the missing outcomes, like Jin et al. (2014).
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In our models, we do not include an interaction effect β5xaxb for the two agents for a couple 

of reasons. First, in phase I dose finding trials, an interaction effect is often added depending 

on preclinical knowledge of the two agents, such as strong evidence on pharmacology and 

mechanism. When such knowledge is available, we recommend directly adding an 

interaction in the model rather than performing model selection since the power for 

identifying interaction based on trial data would be low. Second, it has been demonstrated 

that, for dose finding, a local fit with a working model of the response surface does not 

affect the efficiency of dose finding much, i.e., even when models are misspecified (by not 

including a true interaction term), the dose finding decisions may not be severely affected. 

This has been shown in Cai et al. (2014) and Wang and Ivanova (2005) in the context of 

drug combination trials. To see this, we simulated two scenarios consisting of the interaction 

term β5xaxb and fitted data by using dose– efficacy models either with or without the 

interaction term. The results are summarized in Figs G.11 and G.12, and Table G.3 in the 

Web appendix G. We can see that AAA can still locate the BODCs well although the 

inference on parameter estimates and dose insertion is not as accurate when compared with 

results for scenarios 1 and 6. In addition, an efficacy model without the interaction term can 

even outperform models with the interaction term (Figs G.11 and G.12), which suggests that 

adding an interaction term when the number of dose combinations and sample size are 

relatively small may hurt the inference. This has also been noted in Cai et al. (2014) and 

Wang and Ivanova (2005). We give a brief explanation next. Note that accurate estimation of 

β5 is needed for model selection, which in turn requires a large sample size and well-placed 

dose combinations across the dose–response surface. This is not so for the scenarios in this 

simulation. We found that, when we increased to a combination of 6 × 6 or 7 × 7 dose levels, 

the interaction can be well estimated (the results are not shown).

A futility stopping rule can be added as part of practical rules in Table 3. For example, if the 

posterior probability that the efficacy rate of the estimated optimal dose is lower than a cut-

off rate is higher than ξ, the trial can be stopped early for futility.

The AAA design is quite complex and requires information technology support for practical 

deployment. For example, a central information system and electronic data capture are 

required for smooth operation in real life settings. The design needs to be embedded in the 

information system to provide decisions based on electronic data. Also, the entire clinical 

and statistical team needs to meet regularly to review and approve the dose finding 

decisions. However, these operations are now routinely conducted for adaptive clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Utility functions: (a) utility for safety (truncated at pT and sharply decreases to 0), (b) utility 

for efficacy and (c) overall utility contours
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Fig. 2. 
Simple flow chart for stage II in the AAA design
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Fig. 3. 
Procedure of dose insertion: *, prespecified dose combinations; ○, inserted dose 

combinations; ●, inserted optimal (Xa, Xb)
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Fig. 4. 
Galaxy plots of patients allocation for the AAA design (for each scenario are listed the true 

BODC, insertion rate and estimated inserted dose): , prespecified doses; , inserted dose 

(the size of and value inside each dot indicate the percentage of patients allocated to the dose 

combination); ●, true BODCs; , dose–utility contour; , toxicity pT-boundary (any dose 

combinations beyond the pT-boundary with higher toxicity probability are of 0 utility)
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Fig. 5. 
Galaxy plots of BODC recommendation for the AAA design (for each scenario are listed the 

true BODC, insertion rate and estimated inserted dose): , prespecified doses; , inserted 

dose (the size of and value inside each dot indicate the percentage of patients who were 

allocated to the dose combination); ●, true BODCs; , dose–utility contour; , toxicity pT-

boundary (any dose combinations beyond the pT-boundary with higher toxicity probability 

are of 0 utility)

Lyu et al. Page 24

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2019 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lyu et al. Page 25

Table 1.

Median probability model selection rules

p3 p4 β3 β4 Selected dose–efficacy model

< 1
2 < 1

2
=0 =0  Linear logistic model, M1

⩾ 1
2 < 1

2
≠0 =0  Quadratic for agent A, M2

< 1
2 ⩾ 1

2
=0 ≠0  Quadratic for agent B, M3

⩾ 1
2 ⩾ 1

2
≠0 ≠0  Quadratic for both agents A and B, M4

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2019 June 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lyu et al. Page 26

Table 2.

AAA design for phase I–II dose finding trials

The trial starts with the treatment of the first cohort of patients at the lowest dose (xa,1, xb,1): suppose that patients are being treated at dose xjk = 
(xa,j, xb,k); a dose is deemed too toxic and unacceptable if Pr{p(xjk) > pT|data}> ξ, where ξ is close to 1; otherwise, the dose is acceptable; let 
N1 and N denote the maximum sample size of stage I and the entire trial respectively
Stage I: run-in period
 I1: on the basis of the observed data (yjk, njk) at dose xjk, perform one of the three decisions, ‘escalate to xj+1,k+1’, ‘stay at xjk ‘ or ‘de-
escalate’, according to design mTPI-2
 I2: start stage II if either of the three conditions is satisfied:
  (a) when the decision from I1 is ‘de-escalate’,
  (b) when the decision from I1 is stay at xjk and at least 9 patients have been assigned to this dose and
  (c) when the highest dose combination (xa,J, xb,K) or the maximum sample size of stage I N1 has been reached
Stage II: adaptive dose finding
Let n1( ⩽ N1) be the number of enrolled patients in stage I, N2 = N−n1 the maximum sample size for stage II and n2 the number of patients 

currently enrolled in stage II
 II1: once a cohort completes follow-up, collect efficacy and toxicity outcomes from all completers
 II2: using the accumulated trial data, generate MCMC posterior samples of parameters under models M1, M2, M3 and M4, and carry out 

adaptive model selection: suppose that model l* is selected; denote the MCMC posterior sample θl*
(b), b = 1, … , B  under the selected 

dose–efficacy model Ml*, l* ∈ 1, 2, 3, 4
 II3: obtain a posterior sample of xopt under model Ml*, i.e, xopt, l*

(b) , b = 1, 2, … , B , from equation (9); then compute the posterior 

mean BODC xopt = (xa, opt, xb, opt) from equation (10), and the decision indicator A in equation (10)

  (a) If A = 1, the new dose xopt is inserted in the trial and assigned to the next cohort: in addition, two sets of doses 

(xa, 1, xb, opt), … , (xa, J, xb, opt)  and (xa, opt, xb, 1), … , (xa, opt, xb, K)  are inserted as well; then go to II1 and wait for the 

completion of this cohort

  (b) If A, and xjk is acceptable,
    (i) identify 𝒜1 as the set of safe neighbours of xjk with degree 1;

    (ii) in 𝒜1, identify the dose x j*k* that has the highest posterior mean utility under the safety constraint J* − j + k* − k ≤1, from 

equation (11);
    (iii) If n j*k* = 0 or nrs ≠0, ∀xr, s ∈ 𝒜1, treat the next cohort at dose x j*k*; otherwise, if

Pr U(x j*k*, θl* | data) > U0 >
N2 − n2

N2

ω
,

    treat the next cohort at x j*k*; otherwise, remove x j*k* from 𝒜1 and go to step (b)(ii)

  (c) If A = 0 and xjk is unacceptable, de-escalate to the untried 1-degree lower doses allowing cohort division:
    (i) if {j,k ⩾ 2 and nj−1,k = nj,k−1 = 0}, simultaneously enrol two cohorts of patients at both doses xj−1,k and xj,k−1

    (ii) if {j,k ⩾ 2 and nj−1,k =0 but nj,k−1 > 0}, or { j ⩾ 2, k = 1 and nj−1,k =0 }, assign the next cohort to dose xj−1,k;
    (iii) if {j,k ⩾ 2 and nj,k−1 =0 but nj−1,k > 0}, or { k ⩾ 2, j = 1 and nj,k−1 =0 } assign the next cohort to dose xj,k−1;
    (iv) otherwise, terminate this cohort and do not recommend any dose
  (d) If no dose is recommended in (a)–(c), assign the next cohort to the dose x jk which has the highest posterior mean utility among all the 

existing acceptable doses, i.e. x jk = argmaxx j′k′
U(x j′k′, θl*)

 II4: repeat II1–II3 until the maximum sample size N is reached
 II5: select the dose that has the highest mean utility among all tested acceptable doses, including the newly inserted doses
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Table 3.

Practical rules

Rule 1 (dose extrapolation): the inserted new dose is not allowed to be more than twice the highest dose or less than half of the lowest dose that 
has been used in the trial on the basis of the original scale of the dose level

Rule 2 (early termination): if the lowest dose x11 = (xa,1, xb,1) is deemed unacceptable, i.e. Pr{p(x11) > pT | data > ξ, where ξ is close to 1, and 
no new dose is inserted, terminate the trial

Rule 3 (dose exclusion): if the dose xjk = (xa,j, xb,k) is deemed unacceptable, i.e. Pr{p(xjk)> pT | data > ξ, where ξ is close to 1, exclude doses 

(xa, j′, xb, k′): j′ = j, j + 1, … , J, k′ = k, k + 1, … , K , i.e. these doses will never be used in the trial again

Rule 4 (no skipping dose): restrict the escalation to a 1-level increment, i.e. there is no skipping in the escalation; particularly, if the new dose 
intended for insertion is higher than any unexplored dose, pause the insertion and go to steps II3(b)–II3(d) in Table 2
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Table 5.

Time duration comparison between the ACD algorithm and the single cohort under AAA†

Scenario Algorithm Mean (days) Minimum ∼ maximum (days) p-value

1 Cohort expansion 993.2 (161.9) 35 ∼ 1078
0:0687

Single cohort 1030.54 (102.4) 35 ∼ 1078

2 Cohort expansion 986.01 (172.01) 35 ∼ 1074
0:0126‡

Single cohort 1029.43 (110.76) 35 ∼ 1076

3 Cohort expansion 935.1 (201.36) 35 ∼ 1075
< 0:0001§

Single cohort 1023.29 (108.68) 35 ∼ 1072

4 Cohort expansion 741.75 (448.36) 34 ∼ 1077
0.6843

Single cohort 749.91 (448.76) 34 ∼ 1071

5 Cohort expansion 984.25 (221.82) 13 ∼ 1075
0.4032

Single cohort 992.41 (214.45) 13 ∼ 1083

6 Cohort expansion 979.98 (178.49) 28 ∼ 1073
0:0021‡

Single cohort 1022.02 (129.18) 28 ∼ 1078

7 Cohort expansion 1001.89 (159.84) 35 ∼ 1079
0:0714

Single cohort 1044.55 (91.66) 35 ∼ 1083

8 Cohort expansion 1027.4 (100.73) 36 ∼ 1075
0.4143

Single cohort 1035.1 (79.58) 35 ∼ 1078

9 Cohort expansion 1024.49 (104.33) 35 ∼ 1076
0.3268

Single cohort 1036.92 (75.89) 35 ∼ 1078

10 Cohort expansion 988.3 (168.62) 35 ∼ 1075
< 0:0113‡

Single cohort 1028.7 (110.98) 35 ∼ 1078

11 Cohort expansion 997.2 (166.25) 24 ∼ 1072
0:2232

Single cohort 1023.39 (134.85) 24 ∼ 1084

†
Entries are the simulated trial duration in days for two-agent trials with a sample size of 96 patients.

‡
p-value < 0.05.

§
p-value < 0.0001.
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