
Innovations in Systems and Software Engineering (2022) 18:417–426
https://doi.org/10.1007/s11334-022-00449-3

S . I . : ATVA 2021

AALpy: an active automata learning library

Edi Muškardin1,2 · Bernhard K. Aichernig1 · Ingo Pill2 · Andrea Pferscher1 ·Martin Tappler1,2

Received: 21 October 2021 / Accepted: 19 February 2022 / Published online: 26 March 2022
© The Author(s) 2022

Abstract
AALpy is an extensible open-source Python library providing efficient implementations of active automata learning algorithms
for deterministic, non-deterministic, and stochastic systems.We put a special focus on the conformance testing aspect in active
automata learning, aswell as on an intuitive and seamlessly integrated interface for learning automata characterizing real-world
reactive systems. In this article, we present AALpy’s core functionalities, illustrate its usage via examples, and evaluate its
learning performance. Finally, we present selected case studies on learning models of various types of systems with AALpy.

Keywords Active automata learning · Model inference · Testing · Python

1 Introduction

Whenever facing an unknown system,we strive to learnmore
about its behavior, which in computer science terms often
translates to learning its language. Regular language infer-
ence, a.k.a. automata learning or model mining, is thus a
well-studied topic and has been an active field ever since
Anguin’s seminal paper [6]. Under appropriate abstraction,
the input–output traces of a reactive system form a regular
language. Consequently, a reactive system can be abstractly
modeled as a finite-state machine [17]. For this reason, the
topic has gained special interest in the context of model
checking [26] and software testing [3] of black-box systems.
By providing formal models of black-box systems, automata
learning extends the applicability of model-based verifica-
tion techniques to a class of systems that would otherwise be
inaccessible.

B Martin Tappler
martin.tappler@ist.tugraz.at

Edi Muškardin
edi.muskardin@student.tugraz.at

Bernhard K. Aichernig
aichernig@ist.tugraz.at

Ingo Pill
ingo.pill@silicon-austria.com

Andrea Pferscher
andrea.pferscher@ist.tugraz.at

1 Institute of Software Technology, Graz University of
Technology, Graz, Austria

2 TU Graz - SAL DES Lab, Silicon Austria Labs, Graz, Austria

Despite the growing interest, there are few available
libraries or frameworks for automata learning. The most
notable one is LearnLib [18], an open-source Java library that
is the de facto standard when it comes to tools. Compared to
LearnLib, our AALpy1 extends the scope to learning deter-
ministic Moore machines (ONFSMs) and stochastic models.
In addition to the support for awide range of systems,AALpy
aims to provide an easy-to-use API.

Due to Python’s popularity in software engineering and
AI, we chose to implement AALpy in Python such as to
target a wide audience, supported also by an open-source
MIT license. Especially important for learning models of
black-box systems is the fact that Python increasingly serves
as interface language for a wide range of software and
embedded systems. Popular and influential software, like
the machine-learning libraries Keras [9] and PyTorch [25],
mainly provide Python APIs, and the Python ecosystem
provides a vast amount of libraries, such as Scapy [31] to
communicate with and test (embedded) software systems.
At the time of writing, Python has just become the most pop-
ular programming language according to the TIOBE index
October 2021 [40].

This article is an extended version of our tool paper [22]
presented at the 19th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA
2021). Additional content presented in this article covers
applications of AALpy in several case studies (Sect. 4), an
experimental comparison with LearnLib [18], and extended

1 Code, documentation, interactive examples, and a comprehensive
Wiki can be found at https://github.com/DES-Lab/AALpy.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-022-00449-3&domain=pdf
http://orcid.org/0000-0002-4193-5609
https://github.com/DES-Lab/AALpy

418 E. Muvskardin et al.

Black-box
SUL

SUL
Adapter

SUL Implementation

SUL
Interface

Learning
Algorithm

Equivalence
Oracle

Learner

Algorithm
Implementations

Oracle
Implementations

parameterize algorithm
and oracle

implements step
and reset

implements

provide inputs
and observe output

perform steps
and resets

provide SUL
outputs

perform eq.
queries

User AALpy

Fig. 1 AALpy’s Interface and structure

Listing 1 Learning regural expressions with AALpy

1 class RegexSUL(SUL):
2 # System under learning for regular expressions
3 def __init__(self , regex : s t r) :
4 super () . __init__ ()
5 self . regex = regex i f regex[−1] == ’$’ else regex + ’$’
6 self . test_string = ""
7
8 def pre(self) :
9 self . test_string = ""

10
11 def post (self) :
12 pass
13
14 def step (self , le t te r) :
15 i f le t te r is not None:
16 self . test_string += str (le t te r)
17 return True i f re .match(self . regex , self . test_string) else False
18
19 regex = ’((0|1)∗0)∗1(11)∗(0(0|1)∗1)∗0(00)∗(1(0|1)∗)∗ ’ \ \# complement of Tomita 3 grammar
20 alphabet = [0 , 1]
21 regex_sul = RegexSUL(regex)
22 eq_oracle = RandomWMethodEqOracle(alphabet , regex_sul)
23 learned_automaton = run_Lstar(alphabet , regex_sul , eq_oracle , automaton_type=’dfa ’)
24 visualize_automaton(learned_automaton)

descriptions of AALpy’s features, such as the supported
learning algorithms and equivalence oracles, both of which
have been extended since the presentation at ATVA 2021.

2 AALpy – Intuitive automata learning in
python

Key features of our library are its modular design, a
seamlessly integrated deployment process, and support for
learning various types of system models. Efficient imple-
mentations of state-of-the-art learning algorithms for deter-

ministic, non-deterministic, and stochastic automata paired
with efficient conformance testing enables automata learn-
ing in a wide variety of environments.AALpy’s accessibility
and usability are enhanced via extensive documentation and
multiple demonstrating examples for each of the library’s
functionalities—complemented by visualization and logging
capabilities. The latter may be of special interest for educa-
tional purposes.

The query-based automata learning algorithms imple-
mented in AALpy are based on the minimally adequate
teacher (MAT) framework by Angluin [6]. We particu-
larly focus on learning models of reactive systems, whose

123

AALpy: an active automata learning library 419

input–output behavior under appropriate abstraction can be
captured by regular languages. Learning models of such
systems in the MAT framework lends itself nicely to a
test-based implementation, as demonstrated in various case
studies [5,11,30,35]. Algorithms in this framework alternate
between two phases. In an exploitation phase, membership
queries are issued to gain new information about the SUL
related to knowndata.At the endof such a phase, a hypothesis
automaton is formed from the queried data. The hypothesis
and the SUL are checked against each other in an exploration
phase via so-called equivalence queries. These queries shall
return counterexamples to equivalence between the SUL and
the current hypothesis to falsify the latter. A counterexam-
ple serves to refine the hypothesis and to progress learning.
Learning terminates with the final learned hypothesis as out-
put once it is not possible to falsify said hypothesis, that is,
an equivalence query returns that SUL and hypothesis are
equivalent.

When learning models of reactive systems, membership
queries ask for the outputs produced by the SUL in response
to a given sequence of inputs. From a testing point of
view, such queries can be implemented through a single
test of the SUL with the query inputs. There is no test
verdict, but the SUL outputs are recorded by the learn-
ing algorithm. In test-based automata learning, equivalence
queries are implemented via conformance testing—we refer
to implementations as equivalence oracles. Conformance
testing derives a set of test cases from the current hypothesis
and executes them on both SUL and hypothesis. A test case
revealing a difference in their input–output behavior is a wit-
ness of inequivalence. Like a membership query, a test case
essentially asks for the SUL outputs produced in response
to a sequence of inputs. Thus, we uniformly refer to both as
queries, while using more specific terms, like “equivalence
query,” where necessary.

The active approach to learning in the MAT framework
combines well with online testing, where test-case execution
proceeds in a step-wise manner. At the beginning of each
query, the SUL is reset to a known initial state. Then, each
input is performed as an individual step, with the output pro-
duced by the SUL being the result of the step. The final result
of a query is the sequence of outputs produced in a sequence
of steps.

To this end, AALpy interfaces the SUL and a selected
learning algorithm via a step-based interface. Thus, in an
individual step, an input stimulus is provided to the SUL and
then the resulting output is observed. For real-world SULs,
interfacing the SUL and the algorithm may involve some
abstraction and concretization, for instance, implemented via
a mapper [1]. When employing AALpy, a user thus in prin-
ciple only has to define the functionality for a step, as well as
a proper reset for the SUL in order to be able to start queries
from a known initial state. AALpy implements queries as

s0 0

s1

1 1

s2

0

s3

1

s4

0

0 1

0

1

Hypothesis 1: 1 states.
Hypothesis 2: 4 states.
Hypothesis 3: 5 states.

Learning Finished.
Learning Rounds: 3
Number of states: 5
Time (in seconds)
Total : 0.01

Learning algorithm : 0.0
Conformance checking : 0.01

Learning Algorithm
Membership Queries : 20
MQ Saved by Caching : 18
Steps : 77

Equivalence Query
Membership Queries : 100
Steps : 1169

Fig. 2 Output of Listing 1 Showing the visualization of the learned
automaton (left) and learning statistics (right).

sequences of steps and resets. If required, a user can imple-
ment queries directly.

When employing AALpy, a user follows a three-stage
process:

(a) define the SUL interface for the learning engine,
(b) select an equivalence oracle, and
(c) select, customize, and run the learning algorithm.

In (a), three methods are to be defined: pre, post,
and step (see also Listing 1). With pre, we initialize
and setup the SUL, while post shall support a graceful
shutdown/memory cleanup. As informally suggested above,
step encapsulates a single step in the query execution, such
that formally some σ ∈ � from the input alphabet � is
mapped to a concrete input/or action for the SUL, and the
SUL’s output is observed and reported back as a letter γ in
some output alphabet �. Note that we do not limit alpha-
bets to integers, characters, or strings. In particular, � and �

can be lists of hashable objects, or even class methods with
appropriate arguments.

In (b), the user selects and parameterizes one of the equiv-
alence oracles. The choice of oracle and its parameters will
determine the amount and type of testing performed in the
equivalence query. Hence, this oracle configuration can be
performed based on the available testing budget.More details
on available oracles can be found in Sect. 2.4.

Finally, in (c) the user provides parameters to the appro-
priate learning algorithm. Some of the common parameters
are the maximum number of learning rounds, a counterex-
ample processing strategy, and the amount of information
printed during the learning process. Other parameters vary
based on the chosen algorithm.Available learning algorithms
are described in the remainder of the section.
The tree-stage setup process, as well as the overall high-

123

420 E. Muvskardin et al.

level library architecture, can be seen in Fig. 1. The user
implements an SUL adapter with the three SUL-interface
methods described above, that is, step, pre, and post.
Additionally, the user configures a learning algorithm and an
equivalence oracle that interface with the SUL via the SUL
interface.

Example 1. Learning a regular expression. Listing 1
implements active learning of a DFA conforming to a regular
expression.

In Lines 1-17, we show a simple SUL that parses any
regular expression. In Lines 19 and 20, we define a regular
expression over a binary alphabet. In Line 22, we select the
equivalence oracle used for answering equivalence queries
via conformance testing, and inLine 23we select the learning
algorithm and execute it. When finished, AALpy prints the
learning statistics and visualizes the automaton as shown in
Fig. 2.

2.1 Learning deterministic models

Let us now describe the supported learning algorithms, start-
ing with the support of deterministic learning of DFA,
Mealy and Moore machines.

We extended the original L∗ algorithm [6] with two coun-
terexample processing techniques [29,32]. Both techniques
extract so-called distinguishing suffixes from counterexam-
ples. These are sequences that distinguish two states of the
SUL that map to the same state in an intermediate learned
hypothesis automaton, thus revealing an error in the hypoth-
esis. The first technique [29] analyzes the counterexample
and finds a single distinguishing suffix at the cost of a log-
arithmic number of queries with respect to counterexample
length, while the latter finds the distinguishing suffix that will
avoid consistency violations without posing any queries. As
reported in our previous work [4], counterexample process-
ing is essential for efficient learning.

In addition,AALpy implements query caching. The cache
reduces the number of SUL interactions performed for mem-
bership queries. It encodes membership query results as a
tree that is updated during learning as well as equivalence
checking. Via this cache we can avoid posing duplicate
membership queries and membership queries for prefixes of
already seen traces.

2.2 Learning non-deterministic models

The assumption of deterministic SUL behavior limits the
applicability of active automata learning. Non-determinism
might result from input and output alphabet abstraction or
from ignoring system properties, such as timed behavior.
To manage such circumstances, AALpy also offers learning
algorithms for non-deterministic and stochastic systems.

AALpy provides two algorithms for learning observ-
able non-deterministic finite-state machines (ONFSM).
These algorithms assume observable non-deterministic SUL
behavior, meaning that the SUL may produce outputs non-
deterministically, while non-deterministic state changes are
only possible with different outputs.

The notion of observable non-determinism should not
be confused with our general black-box view. We cannot
observe the system state directly, but we assume that there is
a uniquely defined target state for each triple of source state,
input, and output.

The first learning-algorithm implementation follows the
proposed learning algorithm of El-Fakih et al. [10]. However,
this algorithm is based on an “all-weather condition,” that is,
all possible outputs can be observed immediately. AALpy
replaces this assumption with a more practical implemen-
tation using sampling. Recently, Pferscher and Aichernig
[27] proposed an extension of the classic ONFSM learn-
ing algorithm. Their extension learns abstracted ONFSMs
by introducing equivalence classes for outputs. This abstrac-
tion mechanism enables the creation of smaller models and
faster learning.

2.3 Learning stochastic models

AALpy’s support of active learning of stochastic systems
draws on L∗

MDP [36,38] and L∗
SMM [39], an improved

adaptation of L∗
MDP . The learning algorithms formalize the

behavior of stochastic systems as either (SMMs) or (MDPs).
Both types of models can be controlled by its environment
through inputs and react stochastically through state changes
and by producing outputs.

While the previously discussed learning approaches rely
on membership and equivalence queries, L∗

SMM implements
a “stochastic” teacher that is able to answer tree queries and
equivalence queries. Tree queries serve the same purpose as
membership queries in gathering additional information on
the SUL’s behavior. Stochastic behavior makes it inefficient
to ask membership queries on individual sequences s, since
the SUL may or may not produce s or any of its prefixes.
Asking for information related to a tree created by merg-
ing a set of sequences accounts for that. Compared to the
original implementation of L∗

MDP [34], L∗
SMM as available

in AALpy requires fewer parameters and is more robust to
sparse observations. In practice, users only have to imple-
ment the SUL interface as discussed in Sect. 2. That is, there
are no additional requirements on stochastic SULs.

Models learned by L∗
SMM converge to the canonicalmodel

underlying the input–output behavior of the SUL. To the best
of our knowledge, there are currently no automata learning

123

AALpy: an active automata learning library 421

algorithms for MDPs and similar formalisms2 that provide
accuracy guarantees for models learned from finite samples
of system traces.Moreover, different learning algorithms cre-
ate models with different properties, even though they may
converge to the same models in the limit. For instance, we
observed in previous work [38] that IoAlergia [20] creates
smaller models than L∗-based learning. Such models may be
desirable in certain application scenarios, as well as the fact
that IoAlergia learns passively from given traces. For this
reason, AALpy implements Alergia [20], adding support
for passive learning of Markov Chains and MDPs. Given
traces for passive learning can be extended through active
learning extensions of Alergia [2,8].Weare currentlywork-
ing on adding one of the extensions to AALpy, which adds
support for probabilistic black-box reachability checking
[2].

2.4 Conformance testing

We address equivalence queries via conformance testing. As
outlined at the beginning of this section, we apply confor-
mance testing to check whether a hypothesis automaton is
equivalent to an SUL. To this end, we generate a test suite
from the hypothesis and execute it on both the SUL and
the current hypothesis. A test case revealing a difference
between them serves as a counterexample to equivalence.
Most equivalence oracles available in AALpy apply the
guiding principle suggested by Howar et al.: Equivalence
checking in automata learning should try “finding coun-
terexamples fast” instead of “trying to prove equivalence”
between the SUL and a hypothesis [16]. Therefore, we focus
on efficient random-testing heuristics rather than expensive
deterministic conformance testing, such as the W-method.
AALpy provides eleven equivalence oracles, and new ones
can be added easily. To this end, AALpy supports a user by
providing a (not necessarily minimal) characterization set of
the hypothesis, a shortest path to each state, and a set of previ-
ously observed traces (cache).Currently,AALpy implements
the following equivalence oracles:

• W-method: Formal testing method of proving equiva-
lence between an implementation and a specification
FSM up to predefined maximum number of implemen-
tation states. Here, a hypothesis automaton serves as
specification for the purpose of test-case generation.

• Randomword:Test cases consist of a sequence of random
inputs of uniformly distributed length.

2 Note that we generally consider models that are controllable through
non-deterministically chosen inputs that support active software testing.
Learning of uncontrollable models, like probabilistic finite automata,
has been studied in the PAC framework [7].

• Randomwalk:Test cases consist of a sequence of random
inputs with geometric length distribution.

• Random W-method: Each test case consists of a prefix
to a randomly chosen state, a random walk, and a ran-
dom element of the characterization set of the current
hypothesis.

• Probably approximately correct (PAC) oracle: Random-
word-based oracle providing the guarantee that the
returned hypothesis is an ε-approximation of the correct
hypothesis with the probability of at least 1 - δ. This is
achieved by setting the number of test cases in the learn-
ing round r is defined as 1

ε
×(log(1

δ
)+r× log(2)), where

ε is the generalization error and δ the confidence [21].
• Fixed prefix random walk: Test cases consists of a prefix
to a randomly chosen state and a random walk.

• Cache-tree based exploration: Each test case corre-
sponds to a path from the root of the cache to one of
its leaves concatenated with a random walk. In this way
we extend the boundary of the already explored search
space.

• k-Way transition coverage: Selects test cases based on
random testing and optimizing k-way transitions cov-
erage of the hypothesis. The oracle follows a two-step
process, in which it first generates a large number of ran-
domwalks. In the second step, it greedily selects a subset
of these tests to optimize coverage.

• Transition/same state focus:Each test case is created by a
guided random walk. Based on a parameter ε, each input
either leads to the same state with a probability of ε or to
a new state with a probability of 1 − ε.

• Breath-first exploration: This oracle creates test cases
through a complete breadth-first exploration up to prede-
fined depth.

• User input oracle: Interactive oracle in which a user pro-
vides inputs and obtains the corresponding outputs from
the SUL and the current hypothesis.

• Eq. Oracles for Stochastic Setting: AALpy implements
random walk and random word equivalence oracles for
the stochastic setting. Aside from finding counterexam-
ples, they also update the hypothesis based on observed
input–output pairs.

We refer the interested reader to AALpy’s documenta-
tion and Wiki3 for more detailed descriptions, suggested use
cases, and parameter explanations for each of these oracles.

2.5 Additional features

For an enhanced user experience, AALpy can save learned
automata to files following the community’s syntax [24],

3 https://github.com/DES-Lab/AALpy/wiki.

123

https://github.com/DES-Lab/AALpy/wiki.

422 E. Muvskardin et al.

visualize them, and display information about the learn-
ing progress and the observation table. AALpy implements
several data parsers easing the passive learning process
with Alergia. For evaluation, a user may generate random
automata, define them as an SUL and then learn them. For
verification of stochastic systems, AALpy provides a trans-
lation of MDPs into the format of the probabilistic model
checker Prism [19].

3 Experimental evaluation

In order to showcase AALpy’s performance, we con-
ducted several experiments on a Dell Lattitude 5410 with
an Intel Core i7-10610U processor, 8 GB of RAM running
Windows 10 and using PyPy4 3.9. In particular, we experi-
enced a performance benefit of using PyPy over CPython.5

Learning of deterministic models. The efficiency of
AALpy for learning deterministicmodels was evaluatedwith
extensive experiments on random automata. We conducted
two types of experiments, one in which we increased the
number of states of the target automatawhile keeping the size
of the input alphabet constant, and one where we increased
the size of the input alphabet whilst keeping the size of the
target automata constant. Each experiment was repeated 20
times to obtain average values. Figure 3 shows the results.
We observed that the automaton size affects DFA learning
more than Mealy machine learning. On the other hand, DFA
learning is least affected by the increase in the input alpha-
bet. Furthermore, we see that the runtime increases linearly
with the number of states and almost linearly with the size
of the alphabet. We also performed experiments on learning
random Moore machine, where we observed similar behav-
ior as for Mealy machines; therefore, we do not include the
results in the figures.

To compare with the state of the art in active automata
learning, both experiments were repeated with Learnlib
[18], with the results of these experiments being shown in
Fig. 3. Our findings are consistent with those presented by
LearnLib’s developers [18]. We observe that learning of ran-
dom automata is slightly faster with LearnLib. This minor
difference can be attributed to the execution speed differ-
ences between statically and dynamical typed languages and
potentially differences in internal data structures. However,
AALpy performed slightly better on DFAwith bigger alpha-
bets.

These experiments ignore SUL interaction time, which is
the most resource-intensive part of the learning process on
non-simulated systems, such as network protocols [11,35].
To account for that,we performed a second experimentwhere

4 https://www.pypy.org/
5 https://github.com/python/cpython.

we compared the number of learning steps and the actual
learning time needed to learn systems requiring an assumed
time of 25 milliseconds to complete a learning step. The
results of the experiments with both, AALpy and LearnLib,
are shown in Fig. 4. We observe that both libraries required
similar numbers of steps to learn the complete model of
the system. Under the assumption that each step requires a
constant time of 25 milliseconds to execute, the runtime dif-
ferences of the learning-algorithm implementations shown in
Fig. 3 become negligible compared to the system-interaction
time. This can be attributed to the usage of equivalent algo-
rithms, with minor differences in the numbers of steps due to
randomness found in equivalence oracles. We conclude that
there is no practical difference in speed betweenAALpy and
LearnLib for learning in practice.

Learning of stochastic models.We evaluated AALpy on
learning stochastic models with the same experiments as the
original Java version of L∗

MDP [38]. That is, we learned
MDPs by simulating known ground-truth MDP models as
black boxes andmeasured the learning runtime and accuracy.
To measure accuracy, we used a probabilistic model-checker
to compute probabilities for satisfying temporal properties
with the ground-truth models and the learned models. The
model-checking error then quantifies accuracy, which we
compute as the absolute difference between the results on the
ground truth and the results on the learned models. Figure 5
shows the average runtime and the average model-checking
errors measured in the experiments. We can see that AALpy
and the Java implementation are generally similarly fast and
produce similarly accurate models. Evaluation differences
can be attributed to minor implementation details.

4 Applications of AALpy

SinceAALpy’s first release inApril 2021,we and others have
used AALpy in a number of applications spanning various
application domains and fields of research related to testing.
The variety of domains highlights the flexibility and ease of
use of AALpy as well as the potential of rapid development
of testing tools in a Python environment. In this section, we
provide an overview of these applications.

4.1 Fuzzing Bluetooth low energy

Automata learning proved itself as a useful technique to ana-
lyze communication protocols, e.g., MQTT [35], SSH [12],
TCP [11], TLS [13,30], or the 802.11 4-Way Handshake
[33]. The literature frequently denotes learning-based test-
ing techniques on communication protocols as state fuzzing.
Recently, Pferscher and Aichernig [28] used AALpy to learn
the connection interface of BLE devices. Using a learn-
ing library implemented in Python creates the opportunity

123

https://www.pypy.org/
https://github.com/python/cpython.

AALpy: an active automata learning library 423

100 1000 2000 3000 4000 5000
Automaton Size

0.01

0.50

1.00

1.50

1.82
T
im

e
(s
)

DFA(AALpy)

DFA(LearnLib)

Mealy(AALpy)

Mealy(Learnlib)

5 25 50 75 100
Alphabet Size

0.024

1.000

2.500

4.000

5.218

T
im

e
(s
)

DFA(AALpy)

DFA(LearnLib)

Mealy(AALpy)

Mealy(Learnlib)

Fig. 3 Runtime of the deterministic L∗ with respect to automata size (for an alphabet of size 10) and alphabet size (for an automaton with 1000
states. Interaction time with the SUL is minimal as learning is performed on simulated systems.

Fig. 4 Comparison between
AALpy and LearnLib with
respect to the number of steps
performed and total runtime
during automata learning of a
deterministic system. Each step
on the system takes 25ms to
complete.

0 20 40 60 80 100

Automaton Size

0

5000

10000

15000

20000

25000

30000

N
um

be
r
of

Le
ar
ni
ng

St
ep
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ta
lL

ea
rn
in
g
T
im

e
(m

s)

1e6

DFA (AALpy)

DFA (LearnLib)

Mealy (AALpy)

Mealy (LearnLib)

35 state
Grid

72 state
Grid

Shared
Coin

Slot
Machine

0

50

100

150

200

250

300

Ti
m
e
(s
)

AALpy
Java

35 state
Grid

72 state
Grid

Shared
Coin

Slot
Machine

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
ve

ra
ge

er
ro
rs

AALpy
Java

Fig. 5 Runtime measurements and probabilistic model-checking errors on learned models for the AALpy implementation and the Java implemen-
tation of L∗

MDP .

123

424 E. Muvskardin et al.

for a smooth integration of handy communication package
libraries like Scapy [31]. In this application,Scapywas used
to construct BLE packages also on lower levels of the BLE
protocol stack. Furthermore, the case study on the BLE pro-
tocol shows that AALpy can be extended by a fault-tolerant
interface to the SUL. Considering fault tolerance is espe-
cially necessary in the learning of communication protocols
since requests or responses might be delayed or lost. Addi-
tionally, AALpys caching mechanism reduces the costs of
time-expensive network communication. In their presented
case study, they learned the behavioral models of five BLE
devices. They also discussed countermeasures in the case
of non-deterministic behavior. The learned models were dif-
ferent for every device. Considering the differences in the
behavioral models, a fingerprinting sequence could be gen-
erated that uniquely identifies theBLEdevice. In futurework,
the learned models can be used to generate a stateful black-
box fuzzing technique as proposed by Aichernig et al. [5].

4.2 Model-based diagnosis

Model-based diagnosis is a technique that detects and isolates
the causes of faults. However, the lack of a diagnostic model
often prohibits us from deploying diagnostic reasoning for
reasoning about the root causes of encountered issues. In
[23], we examined how to exploit active automata learning
for learning deterministic and stochastic models from black-
box reactive systems for diagnostic purposes.

With AALpy, we can learn models of faulty systems for
being able to deploy model-based reasoning. Furthermore,
we showed how to exploit fault models in the learning pro-
cess, such as to derive a behavioral model describing the
entire corresponding diagnosis search space.

4.3 Extractingmodels from recurrent neural
networks

We applied AALpy to extract automata out of recurrent neu-
ral networks that have been trained to recognize regular
languages.6 In particular, we observed that sufficient allo-
cation of testing resources in the equivalence check will lead
to counterexamples that state-of-the-art white-box methods
were unable to find. This further reinforces the need for the
development of advanced equivalence checking testing tech-
niques.

Furthermore, we showed how learning-based testing can
be used to extended the RNNs training set by obtaining new
samples from the ground truth model and how a mapper can
be used to learn abstracted models of RNN’s input–output
behavior.

6 https://github.com/DES-Lab/Extracting-FSM-From-RNNs.

4.4 Finding bugs in VIM

AALpy has been used as a debugger tool for software that
is internally based on a state machine, more specifically for
the text editor Vim and its feature-enriched fork Neovim.
A group of researchers used AALpy to generate a graph of
newly introduced modes, and during the learning process
encountered non-determinism.After the examination of non-
deterministic sequences, they were able to isolate the root
causes and submit a bug report. The bugs found were later
fixed by the community7.

5 Conclusion

We presented AALpy, the first active automata learning
library implemented in Python. AALpy efficiently learns
deterministic, non-deterministic, and stochastic systems.
AALpy provides its users with a set of equivalence oracles,
different configurations of learning algorithms, and the abil-
ity to visualize the learning process and results. AALpy has
been successfully used to learn the protocols of MQTT and
Bluetooth. These learnedmodels serve as a basis for learning-
based testing [3] and fuzzing [5].

AALpy is for researchers, educators, and industry alike.
Its modular design provides a solid basis for experimentation
with new learning algorithms, equivalence oracles, and coun-
terexample processing. In future, we intend to extend these
functionalities, with SAT-based learning [15] and learning
without reset [14]. We hope that the community will recog-
nize AALpy as an attractive foundation for further research,
and welcome suggestions and extensions.

Funding Open access funding provided by Graz University of Tech-
nology.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

7 https://github.com/DES-Lab/AALpy/discussions/13.

123

https://github.com/DES-Lab/Extracting-FSM-From-RNNs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/DES-Lab/AALpy/discussions/13.

AALpy: an active automata learning library 425

References

1. Aarts F, Jonsson B, Uijen J (2010) Generating models of
infinite-state communication protocols using regular inferencewith
abstraction. In: ICTSS 2010

2. Aichernig BK, Tappler M (2019) Probabilistic black-box reach-
ability checking (extended version). Formal Methods Syst Des
54(3):416–448

3. Aichernig BK,MostowskiW,Mousavi MR, Tappler M, Taromirad
M (2018) Model learning and model-based testing. In: Bennaceur
A, Hahnle R, Meinke K (eds) Machine Learning for Dynamic
Software Analysis: Potentials and Limits - International Dagstuhl
Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016,
Revised Papers, Springer, Lecture Notes in Computer Science, vol
11026, pp 74–100. https://doi.org/10.1007/978-3-319-96562-8_3

4. Aichernig BK, Tappler M, Wallner F (2020) Benchmarking com-
binations of learning and testing algorithms for active automata
learning. TAP 2020:3–22

5. Aichernig BK, Muškardin E, Pferscher A (2021) Learning-based
fuzzing of IoTmessage brokers. In: 14th IEEEConference on Soft-
ware Testing, Verification and Validation, ICST 2021, Porto de
Galinhas, Brazil, April 12-16, 2021, IEEE, pp 47–58. https://doi.
org/10.1109/ICST49551.2021.00017

6. Angluin D (1987) Learning regular sets from queries and coun-
terexamples. Inf Comput 75(2):87–106

7. Castro J, Gavalda R (2016) Learning probability distributions gen-
erated by finite-state machines. In: Heinz J, Sempere JM (eds)
Topics in Grammatical Inference, Springer, Berlin, Heidelberg, pp
113–142. https://doi.org/10.1007/978-3-662-48395-4_5

8. Chen Y, Nielsen TD (2012) Active learning of Markov decision
processes for systemverification. In: 11th International Conference
on Machine Learning and Applications, ICMLA, Boca Raton, FL,
USA,December 12-15, 2012.Volume2, IEEE, pp289–294. https://
doi.org/10.1109/ICMLA.2012.158

9. Chollet F, et al. (2015) Keras. https://github.com/fchollet/keras
10. El-Fakih K, Groz R, Irfan MN, Shahbaz M (2010) Learning finite

state models of observable nondeterministic systems in a testing
context. ICTSS 2010:97–102

11. Fiterau-Brostean P, Janssen R, Vaandrager FW (2016) Combining
model learning and model checking to analyze TCP implementa-
tions. In: Chaudhuri S, FarzanA (eds) ComputerAidedVerification
- 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part II, Springer, Lecture Notes in
Computer Science, vol 9780, pp 454–471. https://doi.org/10.1007/
978-3-319-41540-6_25

12. Fiterau-Brostean P, Lenaerts T, Poll E, de Ruiter J, Vaandrager FW,
Verleg P (2017)Model learning andmodel checking of SSH imple-
mentations. In: Erdogmus H, Havelund K (eds) Proceedings of the
24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017,
ACM, pp 142–151. https://doi.org/10.1145/3092282.3092289

13. Fiterau-Brostean P, Jonsson B, Merget R, de Ruiter J, Sagonas
K, Somorovsky J (2020) Analysis of DTLS implementations using
protocol state fuzzing. In: CapkunS,Roesner F (eds) 29thUSENIX
Security Symposium, USENIX Security 2020, August 12-14,
2020, USENIX Association, pp 2523–2540. https://www.usenix.
org/conference/usenixsecurity20/presentation/fiterau-brostean

14. Groz R, Bremond N, Simao A, Oriat C (2020) hW-inference: A
heuristic approach to retrieve models through black box testing.
JSS 159:110426

15. Heule MJH, Verwer S (2010) Exact DFA identification using SAT
solvers. In: Sempere JM, Garcia P (eds) ICGI 2010, pp 66–79

16. Howar F, Steffen B, Merten M (2010) From ZULU to RERS –
lessons learned in the ZULU challenge. In: ISoLA 2010, LNCS,
vol 6415, pp 687–704

17. HungarH,NieseO, SteffenB (2003)Domain-specific optimization
in automata learning. In: JrWAH,Somenzi F (eds)ComputerAided
Verification, 15th International Conference, CAV 2003, Boulder,
CO, USA, July 8-12, 2003, Proceedings, Springer, Lecture Notes
in Computer Science, vol 2725, pp 315–327. https://doi.org/10.
1007/978-3-540-45069-6_31

18. IsbernerM,Howar F, SteffenB (2015) The open-source LearnLib –
a framework for active automata learning. In: CAV2015 (I), LNCS,
vol 9206, pp 487–495

19. Kwiatkowska MZ, Norman G, Parker D (2011) PRISM 4.0: Veri-
fication of probabilistic real-time systems. In: CAV 2011, LNCS,
vol 6806, pp 585–591

20. Mao H, Chen Y, Jaeger M, Nielsen TD, Larsen KG, Nielsen B
(2016) Learning deterministic probabilistic automata from amodel
checking perspective. Mach Learn 105(2):255–299

21. Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of
Machine Learning. Adaptive computation and machine learning,
MIT Press. http://mitpress.mit.edu/books/foundations-machine-
learning-0

22. Muskardin E, Aichernig BK, Pill I, Pferscher A, Tappler M (2021)
Aalpy: An active automata learning library. In: Hou Z, Ganesh
V (eds) Automated Technology for Verification and Analysis -
19th International Symposium, ATVA 2021, Gold Coast, QLD,
Australia, October 18-22, 2021, Proceedings, Springer, Lecture
Notes in Computer Science, vol 12971, pp 67–73. https://doi.org/
10.1007/978-3-030-88885-5_5

23. Muškardin E, Pill I, Tappler M, Aichernig BK (2021) Automata
learning enabling model-based diagnosis. In: 32nd International
Workshop on Principle of Diagnosis, Hamburg-Germany, Septem-
ber 13th-15th

24. Neider D, Smetsers R, Vaandrager F, Kuppens H (2019) Bench-
marks for automata learning and conformance testing. In: Models,
Mindsets, Meta: The What, the How, and the Why Not?, LNCS,
vol 11200, pp 390–416

25. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A,
Yang E, DeVito Z, RaisonM, Tejani A, Chilamkurthy S, Steiner B,
FangL,Bai J, Chintala S (2019) Pytorch:An imperative style, high-
performance deep learning library. In: Wallach HM, Larochelle H,
Beygelzimer A, d’Alche-Buc F, Fox EB, Garnett R (eds) Advances
in Neural Information Processing Systems 32, Curran Associates,
Inc., pp 8024–8035

26. Peled DA, Vardi MY, Yannakakis M (2002) Black box checking. J
Autom Lang Comb 7(2):225–246

27. Pferscher A, Aichernig BK (2020) Learning abstracted non-
deterministic finite state machines. In: Casola V, Benedictis AD,
Rak M (eds) Testing Software and Systems - 32nd IFIP WG 6.1
International Conference, ICTSS 2020, Naples, Italy, December
9-11, 2020, Proceedings, Springer, Lecture Notes in Computer
Science, vol 12543, pp 52–69. https://doi.org/10.1007/978-3-030-
64881-7_4

28. Pferscher A, Aichernig BK (2021) Fingerprinting Bluetooth Low
Energy devices via active automata learning. In: Formal Methods -
24th International Symposium, FM 2021, Beijing, China, Novem-
ber 20-26, 2021, Accepted, Springer

29. Rivest RL, Schapire RE (1993) Inference of finite automata using
homing sequences. Inform. Comput. 103(2):299–347

30. de Ruiter J, Poll E (2015) Protocol state fuzzing of TLS imple-
mentations. In: Jung J, Holz T (eds) 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015, USENIX Association, pp 193–206. https://
www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/de-ruiter

31. Scapy (2021) Scapy. https://github.com/secdev/scapy/, Accessed
Sept 10 2021

123

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1109/ICST49551.2021.00017
https://doi.org/10.1109/ICST49551.2021.00017
https://doi.org/10.1007/978-3-662-48395-4_5
https://doi.org/10.1109/ICMLA.2012.158
https://doi.org/10.1109/ICMLA.2012.158
https://github.com/fchollet/keras
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-540-45069-6_31
http://mitpress.mit.edu/books/foundations-machine-learning-0
http://mitpress.mit.edu/books/foundations-machine-learning-0
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1007/978-3-030-64881-7_4
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://github.com/secdev/scapy/

426 E. Muvskardin et al.

32. ShahbazM,GrozR (2009) InferringMealymachines. In: FM2009,
LNCS, vol 5850, pp 207–222

33. Stone CM, Chothia T, de Ruiter J (2018) Extending automated
protocol state learning for the 802.11 4-way handshake. In: opez
J, Zhou J, Soriano M (eds) Computer Security - 23rd Euro-
pean Symposium on Research in Computer Security, ESORICS
2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part
I, Springer, Lecture Notes in Computer Science, vol 11098, pp
325–345. https://doi.org/10.1007/978-3-319-99073-6_16

34. Tappler M (2019) Evaluation material for L∗-based learning of
Markov decision processes (37). Available via https://doi.org/10.
6084/m9.figshare.7960928.v1, Accessed Sept 10 2021

35. Tappler M, Aichernig BK, Bloem R (2017) Model-based test-
ing IoT communication via active automata learning. In: 2017
IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017,
IEEE Computer Society, pp 276–287. https://doi.org/10.1109/
ICST.2017.32

36. Tappler M, Aichernig BK, Bacci G, Eichlseder M, Larsen KG
(2019a) L*-based learning of Markov decision processes. In: ter
BeekMH,McIver A, Oliveira JN (eds) FormalMethods - TheNext
30 Years - ThirdWorld Congress, FM 2019, Porto, Portugal, Octo-
ber 7-11, 2019, Proceedings, Springer, Lecture Notes in Computer
Science, vol 11800, pp 651–669. https://doi.org/10.1007/978-3-
030-30942-8_38

37. Tappler M, Aichernig BK, Bacci G, Eichlseder M, Larsen KG
(2019b) L∗-based learning of Markov decision processes. In: FM
2019, LNCS, vol 11800, pp 651–669

38. Tappler M, Aichernig BK, Bacci G, Eichlseder M, Larsen KG
(2021a) L*-based learning ofMarkov decision processes (extended
version). FAOC

39. Tappler M, Muškardin E, Aichernig BK, Pill I (2021b) Active
learning of stochastic reactive systems. In: Software Engineering
and FormalMethods - 19th International Conference, SEFM 2021,
Lecture Notes in Computer Science

40. Tiobe (2018) https://www.tiobe.com/tiobe-index/, Accessed Sept
10 2021

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.6084/m9.figshare.7960928.v1
https://doi.org/10.6084/m9.figshare.7960928.v1
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-30942-8_38
https://www.tiobe.com/tiobe-index/

	AALpy: an active automata learning library
	Abstract
	1 Introduction
	2 AALpy – Intuitive automata learning in python
	2.1 Learning deterministic models
	2.2 Learning non-deterministic models
	2.3 Learning stochastic models
	2.4 Conformance testing
	2.5 Additional features

	3 Experimental evaluation
	4 Applications of AALpy
	4.1 Fuzzing Bluetooth low energy
	4.2 Model-based diagnosis
	4.3 Extracting models from recurrent neural networks
	4.4 Finding bugs in VIM

	5 Conclusion
	References

