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Abstract

In this paper, we present results on experiments employ-
ing Active Appearance Model (AAM) derived facial rep-
resentations, for the task of facial action recognition. Ex-
perimental results demonstrate the benefit of AAM-derived
representations on a spontaneous AU database containing
“real-world” variation. Additionally, we explore a number
of normalization methods for these representations which
increase facial action recognition performance.

1. Introduction
The Facial Action Coding System (FACS) [1–3] is the lead-
ing method for measuring facial movement in behavioral
science. FACS has been successfully applied, but not lim-
ited to, identifying the differences between simulated and
genuine pain, differences between when people are telling
the truth versus lying, and differences between suicidal and
non-suicidal patients. Typically, FACS is performed manu-
ally by trained human experts.

With the advent of modern computer vision and pattern
recognition techniques, considerable progress1 has been
made towards the lofty goal of “real-world” automatic facial
action recognition. However, for any pattern recognition
task there always exists a constant conflict between within-
class and between-class variation. The task of the scien-
tist/engineer is to design a facial action recognition system
that maximizes between-class variation while minimizing
within-class variation.

We investigated the relative performance of a broad
gamut of facial representations on a database that is rep-
resentative of spontaneous facial behavior. These multiple
facial representations are derived from a model-based ap-
proach for modeling and tracking the face. This approach
is referred to in literature as an Active Appearance Model
(AAM) [5]. Results demonstrate that AAM derived repre-
sentations to be of real benefit for spontaneous facial behav-

1Readers are encouraged to inspect the following review articles [3, 4].

ior when a number of ”real-world” within-class variations
occur. Additionally, we explore a number of normalization
methods for these representations which increase facial ac-
tion recognition performance.

2. Background

One of the first studies into representations of the face, for
automatic facial action recognition, was conducted by Do-
nato et al. [3]. Motivated by the plethora of work previ-
ously performed in the face recognition community, this
study was restricted to only 2-D appearance based repre-
sentations of the face (e.g. raw pixels, optical flow, Gabor
filters, etc.) as well as data-driven approaches for obtaining
compact features (e.g. PCA, LDA, ICA, etc.). These ap-
pearance based approaches were broadly categorized into
monolithic and parts based representations. That is, where
patches of pixels within the face are either analyzed holis-
tically (monolithic) or locally (parts). In the ensuing lit-
erature, appearance based approaches have continued to be
popular as demonstrated by the recent feature evaluation pa-
per by Bartlett et al. [6]. A major criticism of purely appear-
ance based approaches however, is their lack of shape reg-
istration. When “real-world” variation tends to occur, their
lack of shape registration (i.e. knowledge of the position of
the eyes, brow, mouth, etc.) can make normalizing for this
variation very difficult.

Model-based approaches offer an alternative to appear-
ance based approaches for representing the face. Typical
approaches have been Active Shape Models (ASMs) [7] and
Active Appearance Models (AAMs) [7] where both appear-
ance and shape can be extracted and decoupled from one an-
other. Model-based approaches, like those seen in an AAM,
have an inherent benefit over purely appearance based ap-
proaches in the sense they can account and attempt to nor-
malize many types of of “real-world” variation. They are
however, limited in some circumstances by their ability to
accurately register the face in terms of shape and deal with
3D variation.
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3. Database and Scope
3.1. Database
Our experiments were carried out on video data-set,
recorded at Rutgers University2, containing spontaneous
AUs where 33 people of varying ethnicity and sex lied or
told the truth to an interviewer. Data from 20 of the sub-
jects was available for our experiments, containing 4 males
and 16 females. Of the 20 subjects, 13 were of European
heritage, 1 of African heritage, and 6 Asian. There was
some degree of head movement in the data-set with frontal
and out-of-plane head motion being common.

Lies were elicited in the following manner. A situation
was created where the subject entered a room where there
was a a check, for a specified amount (typically $100) made
to an organization that the subject opposes. The subject was
then interviewed about whether he/she took the check. The
subject has to convince the interviewer that he/she did not
take the check, even if they did. If the subject is believed,
the check will be donated to an organization that he/she sup-
ports. If not, the check is donated to an organization he/she
vehemently disagrees with. Interviews typically lasted 5-7
minutes and consisted of around 13 questions.

3.2. Scope
The scope of this paper was restricted to the specific task
of peak-to-peak AU recognition. Typically, when an AU is
annotated there is an onset, offset and peak time stamp as-
sociated with an individual AU sequence. Certified FACS
coders at the video collection site manually FACS-coded
the whole interview section. A certified FACS coder from
the University of Pittsburgh verified the codes. Sequences
for which manual FACS coding was not confirmed were ex-
cluded. Only AUs of at least intensity B were employed
in our experiments. Onset and offset time stamps were as-
sumed to be representative of a local AU 0 (i.e. neutral ex-
pression). AU 0 is employed later in our experiments in a
normalization technique.

Contraction of the facial muscles produces changes in
the appearance and shape of facial landmarks (e.g., brows)
and in the direction and magnitude of motion on the surface
of the skin and in the appearance of transient facial features
(e.g., wrinkles). In our experiments, we focus on two types
of muscle action. Contraction of the frontalis muscle raises
the brows in an arch-like shape (AU 1 in FACS) and pro-
duces horizontal furrows in the forehead (AU 1+2 in FACS).
Contraction of the corrugator supercilii and depressor su-
percilii muscles draws the inner (i.e., medial) portion of the
brows together and downward and causes vertical wrinkles
to form or deepen between the brows (AU 4 in FACS). The
levator palpebrae superioris (AU 5 in FACS) is associated
with the raising of the upper eyelid. Because these action
units and action unit combinations in the eye and brow re-

gion occur frequently during conversation and in expression
of emotion, we concentrated on them in our experiments.

Our experiments were conducted on the task of subject-
independent facial action recognition. Due to the meagre
number of examples available, a leave-one-out approach [8]
had to be employed during our experiments.

4. AAM Derived Representations
In this section we describe both 2D and 3D active appear-
ance models. We later derive features based on both models.
Please note examples of the AAM shape registration results
in Figure 1.

4.1. 2D Active Appearance Models
The 2D shape s of a 2D AAM [7] is a 2D triangulated mesh.
In particular, s is a column vector containing the vertex lo-
cations of the mesh. AAMs allow linear shape variation.
This means that the 2D shape s can be expressed as a base
shape s0 plus a linear combination of m shape vectors si:

s = s0 +
m∑

i=1

pi si (1)

where the coefficients p = (p1, . . . , pm)T are the shape pa-
rameters. AAMs are normally computed from training data
consisting of a set of images with the shape mesh (hand)
marked on them [7]. The Procrustes alignment algorithm
and Principal Component Analysis (PCA) are then applied
to compute the base shape s0 and the shape variation si.

The appearance of a 2D AAM is defined within the base
mesh s0. Let s0 also denote the set of pixels u = (u, v)T

that lie inside the base mesh s0, a convenient abuse of ter-
minology. The appearance of the AAM is then an image
A(u) defined over the pixels u ∈ s0. AAMs allow linear
appearance variation. This means that the appearance A(u)
can be expressed as a base appearance A0(u) plus a linear
combination of l appearance images Ai(u):

A(u) = A0(u) +
l∑

i=1

λi Ai(u) (2)

where the coefficients λi are the appearance parameters.
The base (mean) appearance A0 and appearance images Ai

are usually computed by applying Principal Components
Analysis to the (shape normalized) training images [7].

Although Equations (1) and (2) describe the shape and
appearance variation, they do not describe how to generate
a model instance. The AAM instance with shape parameters
p and appearance parameters λi is created by warping the
appearance A from the base mesh s0 onto the model shape
mesh s. In particular, the pair of meshes s0 and s define a
piecewise affine warp from s0 to s denoted W(u;p). Note
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Figure 1: AAM shape registration examples across a number of subjects.

that for ease of presentation we have omitted any mention of
the 2D similarity transformation that is used with an AAM
to normalize the shape [7]. In this paper we include the nor-
malizing warp in W(u;p) and the similarity normalization
parameters in p. See [9] for the details of how to do this.

4.2. 3D Active Appearance Models
The 3D shape s of a 3D AAM [10] is a 3D triangulated
mesh. In particular, s is a column vector containing the
vertex locations of the mesh. 3D AAMs also allow linear
shape variation. The 3D shape vector s can be expressed
as a base shape s0 plus a linear combination of m shape
vectors si:

s = s0 +
m∑

i=1

pi si (3)

where the coefficients pi are the shape parameters. 3D
AAMs can be computed from training data consisting of
a set of 3D range images with the mesh vertices located
in them. In this paper we automatically compute 3D
shape from a training set of 2D examples using non-rigid
structure-from-motion [10].

The appearance of a 3DMM is a 2D image A(u) just like
the appearance of a 2D AAM. The appearance variation of a
3DMM is also governed by Equation (2) and is computed in
a similar manner by applying Principal Components Analy-
sis to the unwarped input texture maps.

To generate a 3D AAM model instance, an image for-
mation model is needed to convert the 3D shape s into a 2D
mesh, onto which the appearance is warped. The following
scaled orthographic imaging model is used:

u = Pso(x) = σ

(
ix iy iz
jx jy jz

)
x +

(
ou

ov

)
. (4)

where (ou, ov) is an offset to the origin, the projection
axes i = (ix, iy, iz) and j = (jx, jy, jz) are orthonormal
(i·i = j·j = 1, i·j = 0), and σ is the scale. The 3D AAM in-
stance is computed by first projecting every 3D shape vertex
x = (x, y, z)T onto a 2D vertex u using Equation (4). The
appearance A(u) is then warped onto the 2D mesh (taking
into account visibility) to generate the final model instance.

4.3. AAM Tracking

We derive features for each of the 20 subjects in the FACS
database based on AAM tracking. We use real-time 2D+3D
fitting algorithm of [10]. To improve tracking performance
and robustness, each subject is tracked using a person-
specific AAM model [11].

To compute subject-independent features for use in clas-
sification we also build a single generic AAM model for all
subjects. A final AAM tracking result is obtained by pro-
jecting each person-specific tracking result into the generic
model. This simply involves computing the 2D shape p, 3D
shape p, and appearance parameters λ in the generic model
given the vertex locations s of the person-specific fit.

4.4. AAM Representations

As the AAM allows one to decouple appearance and shape
from of a face image a number of representations can be
derived (see Figure 2),

2DS: 2D shape, s representation (see Equation (1)) of the
face and its facial features. Normalization processes
can be applied such as: (i) the removal of the similar-
ity transform (i.e. remove 2D translation, scale, and
rotation), and (ii) the application of an affine transform
given some fixed anchor points on the face. We shall
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refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DS
Warp to 

mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper
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Whole Whole - AU 0 Brow Brow - AU 0
Feature NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF

2DS 35.63 20.69 65.52 51.72 28.74 25.29 62.07 64.37
2DS-NS 54.02 60.92 77.01 82.76 56.32 60.92 80.46 89.66
2DS-A 55.17 44.83 67.82 68.97 56.32 59.77 68.97 72.41
2DA 54.02 39.08 59.77 70.11 57.47 42.53 62.07 75.86
3DS 48.28 45.98 57.47 62.07 42.53 47.13 55.17 70.11

Table 1: This table depicts results for feature evaluation on the task of recognition for AUs 1, 1+2 and 4. One can see that the optimal result
(italicized) was achieved using a SVM classifier for the 2D shape representation where no similarity transform is applied (i.e. 2DS-NS).
The normalization steps of restricting the area of the face analyzed to the eye region, and the normalization by AU 0 also have an additional
benefit.

Whole Whole - AU 0 Brow Brow - AU 0
Feature NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF

2DS 25.24 17.48 54.37 43.69 22.33 21.36 58.25 54.37
2DS-NS 45.63 51.46 59.22 70.87 45.63 53.40 71.84 79.61
2DS-A 45.63 51.46 53.40 60.19 48.54 52.43 60.19 64.08
2DA 53.40 32.04 20.83 36.52 49.51 51.46 64.08 71.84
3DS 30.10 35.92 45.63 52.43 33.98 35.92 47.57 59.22

Table 2: This table depicts results for feature evaluation on the task of recognition for AUs 1, 1+2 4 and 5. One can see that the optimal result
(italicized) was achieved using a SVM classifier for the 2D shape representation where no similarity transform is applied (i.e. 2DS-NS).
This result is consistent with Table 1.

due to its good performance, and ability to perform well in
may pattern recognition tasks [13]. Please refer to [13] for
additional information on SVM estimation and kernel se-
lection. We shall refer to this classifier as SVM-RBF.

Since SVMs are intrinsically binary classifiers, special
steps must be taken to extend them to the multi-class
scenario required for facial action recognition. In our
work, we adhered to the “one-against-one” approach [13]
in which K(K − 1)/2 classifiers are constructed, where K
are the number of AU classes, and each one trains data from
two different classes. In classification we use a voting strat-
egy, where each binary classification is considered to be a
single vote. A classification decision is achieved by choos-
ing the class with the maximum number of votes.

6. Recognition Experiments

Table 1 depicts the recognition results for our experiments
on both the SVM and NN-LDA classifiers for the AU
classes 1, 1+2 and 4. A number of AAM derived repre-
sentations were analyzed. Specifically, we looked at repre-
sentations of the face based on 2D shape (2DS), 3D shape
(3DS) and 2D appearance (2DA). In our experiments we
also investigated a number of normalization techniques: (i)
using the entire face (whole), (ii) using the entire face mi-
nus the local neutral (i.e. AU 0) face (whole-AU0), (iii) us-
ing only the eye/brow region (brow), and (iv) using only the

eye/brow region minus the local neutral (i.e. AU 0) face
(brow-AU0). Normalizations (iii) and (iv) were rationalized
based on our prior knowledge of where the AUs were oc-
curring spatially within the face. Similar recognition results
can be seen in Table 2 for the harder problem of recognizing
AU classes 1, 1+2, 4, and 5.

One can see some immediate trends in Tables 1 and 2.
First, there does not seem to be any benefit in employing
3D shape representations of the face, even after the removal
of the similarity transform. One hypothesis for this poor re-
sult, can be attributed to the noise associated with inferring
the depth information of the face. Due to this noise, any 3D
normalization, such as the removal of the similarity trans-
form, would add to the already considerable “real-world”
within-class variation.

A second trend worth noting is that normalization in the
form of: (a) restricting the spatial context of the facial ac-
tion recognition task (i.e. restricting recognition to the area
around the eyes/brow), and (b) subtracting the local AU
0 from each sequence, significantly improves performance
for nearly every feature representation investigated. Third,
2D shape is the dominant feature with both the removal of
the similarity transform (2DS-NS) and the application of an
affine transform (2DS-A) performing well. However, pro-
vided one normalizes the 2D appearance (2DA) by the local
AU 0, the 2D appearance seems to be quite useful.

In Table 3 we see the confusion matrix for the dominant
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1 1+2 4 5

1 86.42 11.54 3.85 0.00

1+2 3.45 96.55 0.00 0.00

4 12.50 0.00 84.38 3.12

5 43.75 6.25 18.75 31.25

Observed
A

ct
u

al

Table 3: Confusion matrix for the shape feature 2DS-NS, demon-
strating good performance on AUs 1, 1+2 and 4, but poor perfor-
mance on AU 5.

Observed

A
ct

u
al

1 1+2 4 5

1 76.92 19.23 3.85 0

1+2 13.79 86.21 0 0

4 15.62 18.75 62.5 3.12

5 18.75 12.5 12.5 56.25

Table 4: Confusion matrix for the appearance feature 2DA,
demonstrating reasonable performance on AUs 1, 1+2 and 4, but
much better performance, with respect to 2DS-NS, on AU 5.

representation 2DS-NS using a SVM-RBF classifier for the
task of recognizing AU classes 1, 1+2, 4, and 5. Interest-
ingly the performance of the recognizer suffers mainly from
the poor job it does on AU 5.

Inspecting Table 4 however, for the 2DA appearance fea-
ture one can see this recognizer does a good job on AUs
1, 1+2 and 4, but does a better job on AU5 than 2DS-NS
does. This may indicate that shape and appearance repre-
sentations of the face may hold some complimentary infor-
mation with regard to recognizing facial actions.

7. Discussion
In this paper we have explored a number of representations
of the face, derived from AAMs, for the purpose of facial
action recognition. We have demonstrated that a number of
representations derived from the AAM are highly useful for
the task of facial action recognition. A number of outcomes
came from our experiments,

• It was demonstrated that restricting the face area ac-
cording to the spatial location of the AU improved
recognition performance. This improvement could be
attributed to the removal of unwanted AU artifacts in
non-essential areas of the face. We have some addi-
tional results that speculate different that the shape and
appearance representations of the face may be compli-
mentary for different AUs.

• Normalization by the AU 0 frame for both shape and
texture representations is significantly beneficial for
recognition performance.

• Shape features have a large role to play in facial action
unit recognition. Based on our initial experiments the

ability to successfully register the shape of the face can
be highly beneficial in terms of AU recognition perfor-
mance.

Some additional work still needs to be done, with model
based representations of the face, in obtaining adequate 3D
depth information from the face. We believe further im-
provement in this aspect of model based representations of
the face, could play large dividends towards the lofty goal
of automatic ubiquitous facial action recognition.
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